Search results for: dominant growth models
11939 Grain Yield, Morpho-Physiological Parameters and Growth Indices of Wheat (Triticum Aestivum L.) Varieties Exposed to High Temperature under Late Sown Condition
Authors: Shital Bangar, Chetana Mandavia
Abstract:
A field experiment was carried out in Factorial Randomized Block Design (FRBD) with three replications at Instructional Farm Krushigadh, Junagadh Agricultural University, Junagadh, India to assess the biochemical parameters of wheat in order to assess the thermotolerance. Nine different wheat varieties GW 433, GW 431, HI 1571, GW 432, RAJ 3765, HD 2864, HI 1563, HD 3091 and PBW 670 sown in timely and late sown conditions (i.e., 22 Nov and 6 Dec 2012) were analysed. All the varieties differed significantly with respect to grain yield morpho-physiological parameters and growth indices for time of sowing, varieties and varieties x time of sowing interactions. The observations on morpho-physiological parameters viz., germination percentage, canopy temperature depression and growth indices viz., leaf area index (LAI), leaf area ratio (LAR) were recorded. Almost all the morpho-physiological parameters, growth indices and grain yield studied were affected adversely by late sowing, registering reduction in their magnitude. Germination percentage was reduced under late sown condition but variety PBW 670 was the best. Varieties GW 432 performed better with respect to canopy temperature depression while sown late. Under late sown condition, variety GW 431 recorded higher LAI while HI 1563 had maximum LAR. Considering yield performance, HD 2864 was best under timely sown condition, while GW 433 was best under late sown condition. Varieties HI 1571, GW 433 and GW 431 could be labelled as thermo-tolerant because there was least reduction in grain yield under late sown condition (1.75 %, 7.90 % and13.8 % respectively). Considering correlation coefficient, grain yield showed very strong significant positive association with germination percentage. Leaf area ratio was strongly and significantly correlated with grain yield but in negative direction. Canopy temperature depression and leaf area index also had positive correlation with grain yield but were non-significant.Keywords: growth indices, morpho-physiological parametrs, thermo-tolerance, wheat
Procedia PDF Downloads 43911938 Problem Gambling in the Conceptualization of Health Professionals: A Qualitative Analysis of the Discourses Produced by Psychologists, Psychiatrists and General Practitioners
Authors: T. Marinaci, C. Venuleo
Abstract:
Different conceptualizations of disease affect patient care. This study aims to address this gap. It explores how health professionals conceptualize gambling problem, addiction and the goals of recovery process. In-depth, semi-structured, open-ended interviews were conducted with Italian psychologists, psychiatrists, general practitioners, and support staff (N= 114), working within health centres for the treatment of addiction (public health services or therapeutic communities) or medical offices. A Lexical Correspondence Analysis (LCA) was applied to the verbatim transcripts. LCA allowed to identify two main factorial dimensions, which organize similarity and dissimilarity in the discourses of the interviewed. The first dimension labelled 'Models of relationship with the problem', concerns two different models of relationship with the health problem: one related to the request for help and the process of taking charge and the other related to the identification of the psychopathology underlying the disorder. The second dimension, labelled 'Organisers of the intervention' reflects the dialectic between two ways to address the problem. On the one hand, they are the gambling dynamics and its immediate life-consequences to organize the intervention (whatever the request of the user is); on the other hand, they are the procedures and the tools which characterize the health service to organize the way the professionals deal with the user’ s problem (whatever it is and despite the specify of the user’s request). The results highlight how, despite the differences, the respondents share a central assumption: understanding gambling problem implies the reference to the gambler’s identity, more than, for instance, to the relational, social, cultural or political context where the gambler lives. A passive stance is attributed to the user, who does not play any role in the definition of the goal of the intervention. The results will be discussed to highlight the relationship between professional models and users’ ways to understand and deal with the problems related to gambling.Keywords: cultural models, health professionals, intervention models, problem gambling
Procedia PDF Downloads 15411937 Probing Syntax Information in Word Representations with Deep Metric Learning
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.Keywords: deep metric learning, syntax tree probing, natural language processing, word representations
Procedia PDF Downloads 6411936 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability
Authors: Yu Song, Yuefei Jin
Abstract:
Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.Keywords: feeder bus, route optimization, link growth probability, the graph theory
Procedia PDF Downloads 7511935 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images
Authors: Yalçın Bozkurt
Abstract:
Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breedsKeywords: artificial neural networks, bodyweight, cattle, digital body measurements
Procedia PDF Downloads 37211934 Religion, Health and Ageing: A Geroanthropological Study on Spiritual Dimensions of Well-Being among the Elderly Residing in Old Age Homes in Jallandher Punjab, India
Authors: A. Rohit Kumar, B. R. K. Pathak
Abstract:
Background: Geroanthropology or the anthropology of ageing is a term which can be understood in terms of the anthropology of old age, old age within anthropology, and the anthropology of age. India is known as the land of spirituality and philosophy and is the birthplace of four major religions of the world namely Hinduasim, Buddhisim, Jainisim, and Sikhism. The most dominant religion in India today is Hinduism. About 80% of Indians are Hindus. Hinduism is a religion with a large number of Gods and Goddesses. Religion in India plays an important role at all life stages i.e. at birth, adulthood and particularly during old age. India is the second largest country in the world with 72 million elder persons above 60 years of age in 2001 as compared to china 127 million. The very concept of old age homes in India is new. The elderly people staying away from their homes, from their children or left to them is not considered to be a very happy situation. This paper deals with anthropology of ageing, religion and spirituality among the elderly residing in old age homes and tries to explain that how religion plays a vital role in the health of the elderly during old age. Methods: The data for the present paper was collected through both Qualitative and Quantitative methods. Old age homes located in Jallandher (Punjab) were selected for the present study. Age sixty was considered as a cut off age. Narratives, case studies were collected from 100 respondents residing in old age homes. The dominant religion in Punjab was found to be Sikhism and Hinduism while Jainism and Buddhism were found to be in minority. It was found that as one grows older the religiosity increases. Religiosity and sprituality was found to be directly proportional to ageing. Therefore religiosity and health were found to be connected. Results and Conclusion: Religion was found out to be a coping mechanism during ill health. The elderly living in old age homes were purposely selected for the study as the elderly in old age homes gets medical attention provided only by the old age home authorities. Moreover, the inmates in old age homes were of low socio-economic status couldn’t afford medical attention on their own. It was found that elderly who firmly believed in religion were found to be more satisfied with their health as compare to elderly who does not believe in religion at all. Belief in particular religion, God and godess had an impact on the health of the elderly.Keywords: ageing, geroanthropology, religion, spirituality
Procedia PDF Downloads 34011933 Media Manipulations and the Culture of Beneficial Endophytic Fungi in the Leaves and Stem Bark of Grewia lasiocarpa E. Mey. Ex Harv
Authors: Akwu A. Nneka, Naidoo, Yougasphree
Abstract:
A significantly high number of microbes exist in higher plants; these microbes include bacteria, fungi, and actinomycetes. There are reports on the benefits of endophytic fungi and their products of metabolism to the host plant and man, consequently, it is expedient to explore the changes that could arise as a result of manipulating their growth media. Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is an indigenous Southern African plant, that belongs to a genus with known medicinal properties. Three media were used to culture the endophytic fungi viz., Potato Dextrose Agar (PDA), Malt Extract Agar (MEA), and Bacteriological Agar (BA) were used singly, and supplemented with three dilutions of the leaves and stem bark extracts. The manipulated growth media composition had a significant effect on the diversity of the isolated fungal populations. Several endophytic fungi were isolated; their distribution and diversity revealed a significant relatedness with the manipulated media. The media supplemented with the plant extracts was observed to give a significant increase in the growth rate and yield of the endophytes. To the best of our knowledge, this is the first study describing the endophytic fungi present in the leaves and stem bark of G. lasiocarpa E. Mey. ex Harv.Keywords: Grewia lasiocarpa, plant-based extracts, endophytic fungi, Malvaceae
Procedia PDF Downloads 15411932 Challenging Barriers to the Evolution of the Saudi Animation Industry Life-Cycle
Authors: Ohud Alharbi, Emily Baines
Abstract:
The animation industry is one of the creative industries that have attracted recent historiographical attention. However, there has been very limited research on Saudi Arabian and wider Arabian animation industries, while there are a large number of studies that have covered this issue for North America, Europe and East Asia. The existing studies show that developed countries such as USA, Japan and the UK have reached the Maturity stage in their animation industry life-cycle. On the other hand, developing countries that are still in the Introduction phase of the industry life-cycle face challenges to improve their industry. Saudi Arabia is one of the countries whose animation industry is still in its infancy. Thus, the aim of this paper is to address the main barriers that hinder the evolution of the industry life-cycle for Saudi animation – challenges that are also relevant to many other early stage industries in developing countries. These barriers have been analysed using the early mobility barriers defined by Porter, to provide a conceptual structure for defining recommendations to enable the transition to a strong Growth phase industry. This study utilized qualitative methods to collect data, which involved in-depth interviews, document analysis and observations. It also undertook a comparative case study approach to investigate the animation industry life-cycle, with three selected case studies that have a more developed industry than Saudi animation. Case studies include: the United Kingdom, which represents a Mature animation industry; Egypt, which represents an established Growth stage industry; and the United Arab of Emirates, which is an early Growth stage industry. This study suggests adopting appropriate strategies that arise as findings from the comparative case studies, to overcome barriers and facilitate the growth of the Saudi animation industry.Keywords: barriers, industry life-cycle, Saudi animation, industry
Procedia PDF Downloads 57611931 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 10611930 An Effect of Organic Supplements on Stimulating Growth of Vanda and Mokara Seedlings in Tissue Culture
Authors: Kullanart Obsuwan, Chockpisit Thepsithar
Abstract:
This study aimed to investigate effect of different organic supplements on growth of Vanda and Mokara seedlings. Vanda and Mokara seedlings approximately 0.2 and 0.3 cm. in height were sub-cultured onto VW supplemented with 150 ml/L coconut water, 100 g/L potato extract, 100 g/L ‘Gros Michel’ banana (AAA group) and 100 g/L ‘Namwa’ banana (ABB group). The explants were sub-cultured onto the same medium every month for 3 months. The best medium increased stem height to 0.52 and 0.44 Cm. in Vanda and Mokara respectively was supplemented with coconut water. The maximum fresh weight of Vanda (0.59 g) was found on medium supplemented with ‘Gros Michel’ banana while Mokara cultured on medium supplemented with Potato extract had the maximum fresh weight (0.27 g) and number of roots (5.20 roots/shoot) statistically different (p≤ 0.05) to other treatments. However, Vanda cultured on medium supplemented with ‘Namwa’ banana had the maximum number of roots (3.80 roots/shoot). Our results suggested that growth of different orchid genera was responded diversely to different organic supplements.Keywords: orchid, in vitro propagation, fresh weight, plant height
Procedia PDF Downloads 36811929 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300
Authors: Dmitry V. Fomichev, Vladimir I. Solonin
Abstract:
In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics
Procedia PDF Downloads 45811928 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16611927 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15811926 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review
Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari
Abstract:
The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency
Procedia PDF Downloads 16111925 EDTA Enhanced Plant Growth, Antioxidant Defense System, and Phytoextraction of Copper by Brassica napus L.
Authors: Ume Habiba, Shafaqat Ali, Mujahid Farid, Muhammad Bilal Shakoor
Abstract:
Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland’s nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.Keywords: antioxidants, biomass, copper, EDTA, phytoextraction, tolerance
Procedia PDF Downloads 41111924 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models
Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park
Abstract:
Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.Keywords: display-control layout design, interactive layout design system, mental model, train drivers
Procedia PDF Downloads 30511923 Promotive Role of 5-Aminolevulinic Acid on Chromium-Induced Morphological, Photosynthetic and Oxidative Changes in Cauliflower (Brassica oleracea Botrytis L.)
Authors: Shafaqat Ali, Rehan Ahmad, Muhammad Rizwan
Abstract:
Chromium (Cr) is one of the most toxic pollutants among heavy metals that adversely affect living organisms and physiological processes in plants. The present study investigated the effect of without and with 15 mg L-1 5-Aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100 and 200 μM) in the growth medium. Results showed that Cr stress decreased the plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD), and caused oxidative stress, as observed by increased level of malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), in both leaves and roots of cauliflower. Chromium concentrations and total Cr uptake increased in roots, stem and leaves of plants with increasing Cr levels in the growth medium. Foliar application of ALA increased plant growth, biomass, photosynthetic pigments and gas exchange characteristics under Cr stress as compared to without ALA application. As compared to Cr stress alone, ALA application decreased the levels of MDA, H2O2 and EL while further enhanced the activities of antioxidant enzymes in both leaves and roots. Chromium concentrations and total Cr uptake decreased by the ALA application as compared to without ALA. These results showed that foliar application of ALA might be effective in reducing Cr uptake and toxicity in cauliflower.Keywords: antioxidant enzymes, cauliflower, photosynthesis, chromium, ALA, hydrogen peroxide, electrolyte leakage
Procedia PDF Downloads 30111922 Optimal Formation of Metallic Nuggets during the Reduction of Coal-Composite Briquette
Authors: Chol Min Yu, Sok Chol Ri
Abstract:
The optimization of formation and growth of metallic nuggets during self-reduction of coal composite briquette (CCB here) is essential to increase the yield of valuable metals. The formation of metallic nuggets was investigated theoretically and experimentally during the reduction of coal composite briquette made from stainless steel dust and coal. The formation of metallic nuggets is influenced by slag viscosity and interfacial tension between the liquid metal and the slag in the reduced product. Surface tensions of liquid metal and slag are rather strong, respectively, due to the high basicity of its slag. Strong surface tensions of them lead to increase of interfacial tension between the liquid metal and the slag to be favorable to the growth of metallic nuggets. The viscosity of slag and interfacial tension between the liquid metal and the slag depends on the temperature and composition of the slag. The formation and the growth of metallic nuggets depend on carbon to oxygen ratio FC/O and temperature.Keywords: stainless steel dust, coal-composite briquette, temperature, high basicity, interfacial tension
Procedia PDF Downloads 7911921 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection
Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew
Abstract:
The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.
Procedia PDF Downloads 4511920 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices
Authors: S. Srinivasan, E. Cretu
Abstract:
The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape
Procedia PDF Downloads 13311919 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence
Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang
Abstract:
The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence
Procedia PDF Downloads 7411918 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 11211917 Multiple Shoot Induction and Plant Regeneration of Kepuh (Sterculia foetida L.) Tissue Culture
Authors: Titin Handayani, Endang Yuniastuti
Abstract:
Kepuh (Sterculia foetida L.) is a potential plant contain mainly oil seeds that can be used as a source of alternative bioenergy and medicine. The main problem of kepuh cultivation is the limited supply of seed plants. Seeds development were very easy, but to produce fruit have to wait for approximately 5 years. The objective of this research was to obtain kepuh plants through direct in vitro regeneration. Hypocotyls and shoot tips explants were excised from sterile germinated seedlings and placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of plant growth regulators. The results showed that shoots induction from the apical and axillary buds on MS medium + 1.5 and 2 mg/L BAP and 0.5 and 1 mg/L IAA was growth very slowly. Increasing of BAP concentrations was increased shoot formation. The first subcultures were increased the rate of shoots growth on MS medium supplemented with 2 mg/L BAP and 0.5 mg/L IAA. The second of shoots subculture on MS medium + 1.5 to 2 mg/L BAP + 0.5 mg/L IAA was increased the number of shoots up to 4.8 in average. The best medium of shoots elongation were MS + 1 mgL-1 kinetin + 5 mg/L GA3. The highest percentage of roots (65%) occurred on MS medium with 5 mg/L IBA which average number of roots was 3.1. High percentages of survival and plants of normal appearance were obtained after five weeks of acclimatization.Keywords: Kepuh, Sterculia foetida L, shoot multiplication, rooting, acclimatization, bioenergy, medicine
Procedia PDF Downloads 29511916 Economic Growth: The Nexus of Oil Price Volatility and Renewable Energy Resources among Selected Developed and Developing Economies
Authors: Muhammad Siddique, Volodymyr Lugovskyy
Abstract:
This paper explores how nations might mitigate the unfavorable impacts of oil price volatility on economic growth by switching to renewable energy sources. The impacts of uncertain factor prices on economic activity are examined by looking at the Realized Volatility (RV) of oil prices rather than the more traditional method of looking at oil price shocks. The United States of America (USA), China (C), India (I), United Kingdom (UK), Germany (G), Malaysia (M), and Pakistan (P) are all included to round out the traditional literature's examination of selected nations, which focuses on oil-importing and exporting economies. Granger Causality Tests (GCT), Impulse Response Functions (IRF), and Variance Decompositions (VD) demonstrate that in a Vector Auto-Regressive (VAR) scenario, the negative impacts of oil price volatility extend beyond what can be explained by oil price shocks alone for all of the nations in the sample. Different nations have different levels of vulnerability to changes in oil prices and other factors that may play a role in a sectoral composition and the energy mix. The conventional method, which only takes into account whether a country is a net oil importer or exporter, is inadequate. The potential economic advantages of initiatives to decouple the macroeconomy from volatile commodities markets are shown through simulations of volatility shocks in alternative energy mixes (with greater proportions of renewables). It is determined that in developing countries like Pakistan, increasing the use of renewable energy sources might lessen an economy's sensitivity to changes in oil prices; nonetheless, a country-specific study is required to identify particular policy actions. In sum, the research provides an innovative justification for mitigating economic growth's dependence on stable oil prices in our sample countries.Keywords: oil price volatility, renewable energy, economic growth, developed and developing economies
Procedia PDF Downloads 7811915 Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region.Keywords: surface water, water quality index (WQI), Mann Kendall (MK) test, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 2311914 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 30811913 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities
Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová
Abstract:
Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.Keywords: BIM model, urban space, BIM methodology, facility management
Procedia PDF Downloads 12311912 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia
Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui
Abstract:
To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia
Procedia PDF Downloads 29111911 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 6911910 Interaction of Water Stress and VA Mycorrhizal Inoculation on Green Bean under Different P Levels
Authors: Shahram Baghban Cirus, Parisa Alizadeh Oskuie
Abstract:
In a greenhouse experiment, green bean were inoculated with three levels of phosphorus (P1, P2, P3, respectively 0, 50, 100 kgP/h) and four levels of water stress(Fc1, Fc2, Fc3 ,Fc4, respectively 0.8Fc, 0.7Fc, 0.6Fc, 0.5Fc) and one species of VA mycorrhiza (Glomus versiform) or left uninocolated as control plants in the steril soil. AM colonization significantly stimulated plant growth, leaf area, shoot, and pod dry weight but water stress significantly decreased colonization, pod and shoot dry weight, and shoot P. The use P levels significantly increased leaf area, shoot, and pod dry weight, pods length, and colonization.Keywords: green bean, plant growth, VA mycorrhiza, water-stress
Procedia PDF Downloads 352