Search results for: content-based features
2073 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings
Authors: A. Fayad, Q. Alqhazaly, T. Cinkler
Abstract:
In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.Keywords: BER, DuoBinary, NRZ-OOK, TWDM-PON
Procedia PDF Downloads 1492072 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete
Authors: Jiaqi Huang, Lu Jin
Abstract:
Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete
Procedia PDF Downloads 1782071 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems
Authors: Robert Höttger, Lukas Krawczyk, Burkhard Igel
Abstract:
This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Further- more, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.Keywords: partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis
Procedia PDF Downloads 6192070 Contemporary Living Spaces – Exploring, Differentiating, and Defining the Terms and Requirements of “Micro” and “Small” Homes in Bulgaria
Authors: Evgenia Dimova-Aleksandrova, Elitsa Deianova
Abstract:
Dynamic changes in modern life and habitation due to demographic, urban, technology, and ecological factors affect the size of modern homes leading to a trend of decreasing their area. The current paper aims to investigate the differences between “micro” homes and “small” homes. In Bulgaria, these two types are not included in legal regulations, and therefore, a precise definition and special requirements are needed and sought in order to include their characteristic features in contemporary individual habitation. The purpose of the current study is to determine limits in built-up volume for the two types, to create a definition of the terms “micro” and “small” home, and to find methods to distinguish them. A comparative analysis will differentiate these types of habitation units, thus determining the boundaries for the built-up area for both concepts. The analysis is based on a case study from European practices and is focused on defining minimal requirements for “micro” and “small” home in the context of contemporary demands for high quality habitation in limited areas.Keywords: Bulgaria, differentiation, micro home, requirements, small home
Procedia PDF Downloads 972069 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification
Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor
Abstract:
Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.Keywords: additive parameter, angular softmax, speaker verification, PLDA
Procedia PDF Downloads 1002068 Modification and Surface Characterization of the Co20Cr15W10Ni Alloy for Application as Biomaterial
Authors: Fernanda A. Vechietti, Natália O. B. Muniz, Laura C. Treccani, Kurosch. Rezwan, Luis Alberto dos Santos
Abstract:
CoCr alloys are widely used in prosthetic implants due to their excellent mechanical properties, such as good tensile strength, elastic modulus and wear resistance. Their biocompatibility and lack of corrosion are also prominent features of this alloy. One of the most effective and simple ways to protect metal’s surfaces are treatments, such as electrochemical oxidation by passivation, which is used as a protect release of metallic ions. Another useful treatment is the electropolishing, which is used to reduce the carbide concentration and protrusion at the implanted surface. Electropolishing is a cheap and effective method for treatment of implants, which generally has complex geometries. The purpose of this study is surface modification of the alloy CoCr(ASTM F90-09) by different methods: polishing, electro polishing, passivation and heat treatment for application as biomaterials. The modification of the surface was studied and characterized by SEM, profilometry, wettability and compared to the surface of the samples untreated. The heat treatment and of passivation increased roughness (0.477 µm and 0.825 µm) the samples in relation the sample electropolished and polished(0.131 µm and 0.274 µm) and were observed the improve wettability’s with the increase the roughness.Keywords: biomaterial, CoCr, surface treatment, heat treatment, roughness
Procedia PDF Downloads 5412067 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes
Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo
Abstract:
Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic
Procedia PDF Downloads 1592066 Mapping the Relationship between Elements of Urban Morphology Density of Crime
Authors: Fabio Salvador Aparecido Santos, Spencer Chainey, Richard Wortley
Abstract:
Urban morphology can be understood as the study of the physical form of cities through its elements. Crime, at this turn, can be oversimplified as an action that breaks the rules established in a certain society. This study involves these two subjects through the relationship between elements of urban morphology and density of crime occurrences. We consider that there is a research gap about the influence of urban features on crime occurrences using statistic methods and mapping techniques on Geographic Information Systems. The investigation will comprehend three main phases. The first phase involves examining how theoretical principles associated with urban morphology can be viewed in terms of their influence on crime patterns. The second phase involves the development of tools to be used to model elements of urban morphology, and measure the relationship between these urban morphological elements and patterns of crime. The third phase involves determining the extent to which elements of the urban environment can contribute to crime reduction. Understanding the relationship between urban morphology and crime patterns in a Latin American context will help highlight the influence urban planning has on the crime problems that emerge in these settings, and how effectively urban planning can contribute to reducing crime.Keywords: Agent-based Modelling, Environmental Criminology, Geographic Information System, Urban Morphology
Procedia PDF Downloads 1342065 Malignancy Assessment of Brain Tumors Using Convolutional Neural Network
Authors: Chung-Ming Lo, Kevin Li-Chun Hsieh
Abstract:
The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic.Keywords: convolutional neural network, computer-aided diagnosis, glioblastoma, magnetic resonance imaging
Procedia PDF Downloads 1452064 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.Keywords: connectivism, learning analytics, lifelong learning, social semantic web
Procedia PDF Downloads 2132063 Choking among Infants and Young Children
Authors: Emad M.Abdullat, Hasan A. Ader-Rahman, Rayyan Al Ali, Arwa.A.Hudaib
Abstract:
This retrospective study aims to determine the epidemiological features of such deaths in one of the general teaching hospitals in Jordan with a focus on weaning practices and its relation to sucking as major factors underlying the mechanism of choking in infants and young children. The study utilized a retrospective design to review the records of forensic cases due to foreign body aspiration examined at the forensic department at the Jordan University Hospital. A total of 27 cases of choking in the pediatric age group were retrieved from the reports of the autopsy cases dissected. All cases of children who died due to chocking by foreign bodies were under 11 years old. Choking by food materials constituted (44.4%) of cases under 3 years of age while choking by non-food material were less prevalent under 3 years of age and comprising 18.5% of the cases. Health care personnel and parents need to be aware that introduction of solid food, unlike exclusive breast or formula-milk feeding, can have serious consequences if occurring in inappropriate timing or consistency during early childhood physical and functional development. Parents need to be educated regarding the appropriate timing and process of weaning.Keywords: chocking, infants, weaning practices, young children
Procedia PDF Downloads 4862062 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method
Authors: Omer Oral, Y. Emre Yilmaz
Abstract:
Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization
Procedia PDF Downloads 1362061 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor
Authors: Jadisha Cornejo, Helio Pedrini
Abstract:
Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks
Procedia PDF Downloads 1802060 Design and Implementation of an Affordable Electronic Medical Records in a Rural Healthcare Setting: A Qualitative Intrinsic Phenomenon Case Study
Authors: Nitika Sharma, Yogesh Jain
Abstract:
Introduction: An efficient Information System helps in improving the service delivery as well provides the foundation for policy and regulation of other building blocks of Health System. Health care organizations require an integrated working of its various sub-systems. An efficient EMR software boosts the teamwork amongst the various sub-systems thereby resulting in improved service delivery. Although there has been a huge impetus to EMR under the Digital India initiative, it has still not been mandated in India. It is generally implemented in huge funded public or private healthcare organizations only. Objective: The study was conducted to understand the factors that lead to the successful adoption of an affordable EMR in the low level healthcare organization. It intended to understand the design of the EMR and address the solutions to the challenges faced in adoption of the EMR. Methodology: The study was conducted in a non-profit registered Healthcare organization that has been providing healthcare facilities to more than 2500 villages including certain areas that are difficult to access. The data was collected with help of field notes, in-depth interviews and participant observation. A total of 16 participants using the EMR from different departments were enrolled via purposive sampling technique. The participants included in the study were working in the organization before the implementation of the EMR system. The study was conducted in one month period from 25 June-20 July 2018. The Ethical approval was taken from the institute along with prior approval of the participants. Data analysis: A word document of more than 4000 words was obtained after transcribing and translating the answers of respondents. It was further analyzed by focused coding, a line by line review of the transcripts, underlining words, phrases or sentences that might suggest themes to do thematic narrative analysis. Results: Based on the answers the results were thematically grouped under four headings: 1. governance of organization, 2. architecture and design of the software, 3. features of the software, 4. challenges faced in adoption and the solutions to address them. It was inferred that the successful implementation was attributed to the easy and comprehensive design of the system which has facilitated not only easy data storage and retrieval but contributes in constructing a decision support system for the staff. Portability has lead to increased acceptance by physicians. The proper division of labor, increased efficiency of staff, incorporation of auto-correction features and facilitation of task shifting has lead to increased acceptance amongst the users of various departments. Geographical inhibitions, low computer literacy and high patient load were the major challenges faced during its implementation. Despite of dual efforts made both by the architects and administrators to combat these challenges, there are still certain ongoing challenges faced by organization. Conclusion: Whenever any new technology is adopted there are certain innovators, early adopters, late adopters and laggards. The same pattern was followed in adoption of this software. He challenges were overcome with joint efforts of organization administrators and users as well. Thereby this case study provides a framework of implementing similar systems in public sector of countries that are struggling for digitizing the healthcare in presence of crunch of human and financial resources.Keywords: EMR, healthcare technology, e-health, EHR
Procedia PDF Downloads 1052059 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction
Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi
Abstract:
For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy
Procedia PDF Downloads 1112058 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems
Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb
Abstract:
Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems
Procedia PDF Downloads 6092057 Carbon Coated Yarn Supercapacitors: Parametric Study of Performance Output
Authors: Imtiaz Ahmed Khan, Sabu John, Sania Waqar, Lijing Wang, Mac Fergusson, Ilija Najdovski
Abstract:
Evolution of textiles, from its orthodox to more interactive role has stirred the researchers to uncover its application in numerous arenas. The idea of using textile based materials for wearable energy harvesting and storage devices have gained immense popularity. This is mainly due to textile comfort and flexibility features. In this work, nano-carbonous materials were infused on cellulosic fibers using caustic soda treatment. This paper presents the complete procedure of yarn supercapacitors fabrication process through dip coating technique and its characterization method. The main objective is to study, the effect of varying caustic soda concentration on mass loading of activated carbon on yarns and the related capacitance output of the designed yarn supercapacitor. Polyvinyl alcohol and Phosphoric acid were used as electrolyte in a two-electrode cell assembly to measure device electrochemical performance. The results show a promising increase in capacitance value using this technique.Keywords: yarn supercapacitors, activated carbon, dip coating, caustic soda, electrolyte, electrochemical characterization
Procedia PDF Downloads 4602056 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1432055 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4022054 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network
Authors: Asmau Mukhtar Ahmed, Olga Duran
Abstract:
Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image
Procedia PDF Downloads 1082053 The Effects of Source and Timing on the Acceptance of New Product Recommendation: A Lab Experiment
Abstract:
A new product is important for companies to extend consumers and manifest competitiveness. New product often involves new features that consumers might not be familiar with while it may also have a competitive advantage to attract consumers compared to established products. However, although most online retailers employ recommendation agents (RA) to influence consumers’ product choice decision, recommended new products are not accepted and chosen as expected. We argue that it might also be caused by providing a new product recommendation in the wrong way at the wrong time. This study seeks to discuss how new product evaluations sourced from third parties could be employed in RAs as evidence of the superiority for the new product and how the new product recommendation could be provided to a consumer at the right time so that it can be accepted and finally chosen during the consumer’s decision-making process. A 2*2 controlled laboratory experiment was conducted to understand the selection of new product recommendation sources and recommendation timing. Human subjects were randomly assigned to one of the four treatments to minimize the effects of individual differences on the results. Participants were told to make purchase choices from our product categories. We find that a new product recommended right after a similar existing product and with the source of the expert review will be more likely to be accepted. Based on this study, both theoretical and practical contributions are provided regarding new product recommendation.Keywords: new product recommendation, recommendation timing, recommendation source, recommendation agents
Procedia PDF Downloads 1522052 Study of Non-hodgkin’s Lymphoma
Authors: Zidani Abla
Abstract:
Lymphoma is a common type of cancer that affects the lymphatic system, including the lymph nodes, spleen and other associated organs. There are two main types of lymphoma: Hodgkin's lymphoma and non-Hodgkin's lymphoma. The epidemiological, clinical and biological features of lymphoma are poorly studied in Algeria. The main objective of our study is to investigate the epidemiological, clinical, paraclinical, etiological, evolutionary and biological characteristics of non-Hodgkin's lymphoma (NHL) in the hematology department of the University Hospital Center (HUC) of Batna. This is a study of 10 patients diagnosed at Batna University Hospital. 70% were male and 30% female (sex ratio M/F= 2.33). Median age was 51.7 years. Pain, especially abdominal pain, was the main reason for consultation. Stage IV predominated (40%), followed by stage III (20%). Abdominal adenopathies (34%) were the most abundant. Secondary hepatic localization was predominant. Large B-cell NHL predominated, accounting for 60% of cases, followed by small B-cell NHL (30%). Serology for hepatitis B and C, and human immunodeficiency virus (HIV) was negative. Biologically, a predominance of hyperleukocytosis, polynuclear neutrophilic leukocytosis, lymphopenia and hypoalbuminemia were present in the majority of cases. In summary, our results remain to be compared with other works for other periods and other regions in order to generalize lymphoma percentages for the entire Algerian population.Keywords: non Hodgkin's lymphoma, epidemiology, clinic, biology
Procedia PDF Downloads 272051 Evaluation of Persian Medical Terms Compatibility with International Naming Criteria Based on the Applied Translation Procedures
Authors: Ali Akbar Zeinali
Abstract:
Lack of appropriate equivalences for the terms or technical words is the result of ineffective translation guidelines adopted in the translation processes. The increasing number of foreign words and specific terms incorporated into the native language are due to the ongoing development of technology and science. Many problems appear in medical translation when the Persian translators try to employ non-Persian or imported words in medical texts, in which multiple equivalents may be created for one particular word based on the individual preferences of authors and translators in the target language due to lack of standardization. The study attempted to discuss the findings based on the compatibility of the international naming criteria, considering the translation procedures. About 67% of 339 equivalents under this study were grouped as incompatible words while about 33% of them were compatible terms. The similarities and differences were investigated and discussed according to the compatibility status of the equivalents with Sager’s criteria. Such equivalents have been classified into several groups through bi-dimensional descriptions that were different features of translation procedures related to the international naming criteria. In review of the frequency distribution of compatibilities, the equivalents were divided into two categories of compatibles and incompatibles, indicating the effectiveness of the applied translation procedures.Keywords: linguistics, medical translation, naming, terminology
Procedia PDF Downloads 1172050 Improvement of Bone Scintography Image Using Image Texture Analysis
Authors: Yousif Mohamed Y. Abdallah, Eltayeb Wagallah
Abstract:
Image enhancement allows the observer to see details in images that may not be immediately observable in the original image. Image enhancement is the transformation or mapping of one image to another. The enhancement of certain features in images is accompanied by undesirable effects. To achieve maximum image quality after denoising, a new, low order, local adaptive Gaussian scale mixture model and median filter were presented, which accomplishes nonlinearities from scattering a new nonlinear approach for contrast enhancement of bones in bone scan images using both gamma correction and negative transform methods. The usual assumption of a distribution of gamma and Poisson statistics only lead to overestimation of the noise variance in regions of low intensity but to underestimation in regions of high intensity and therefore to non-optional results. The contrast enhancement results were obtained and evaluated using MatLab program in nuclear medicine images of the bones. The optimal number of bins, in particular the number of gray-levels, is chosen automatically using entropy and average distance between the histogram of the original gray-level distribution and the contrast enhancement function’s curve.Keywords: bone scan, nuclear medicine, Matlab, image processing technique
Procedia PDF Downloads 5052049 Examining Customer Acceptance of Chatbots in B2B Customer Service: A Factorial Survey
Authors: Kathrin Endres, Daniela Greven
Abstract:
Although chatbots are a widely known and established communication instrument in B2C customer services, B2B industries still hesitate to implement chatbots due to the incertitude of customer acceptance. While many studies examine the chatbot acceptance of B2C consumers, few studies are focusing on the B2B sector, where the customer is represented by a buying center consisting of several stakeholders. This study investigates the challenges of chatbot acceptance in B2B industries compared to challenges of chatbot acceptance from current B2C literature by interviewing experts from German chatbot vendors. The results show many similarities between the customer requirements of B2B customers and B2C consumers. Still, due to several stakeholders involved in the buying center, the features of the chatbot users are more diverse but obfuscated at the same time. Using a factorial survey, this study further examines the customer acceptance of varying situations of B2B chatbot designs based on the chatbot variables transparency, fault tolerance, complexity of products, value of products, as well as transfer to live chat service employees. The findings show that all variables influence the propensity to use the chatbot. The results contribute to a better understanding of how firms in B2B industries can design chatbots to advance their customer service and enhance customer satisfaction.Keywords: chatbots, technology acceptance, B2B customer service, customer satisfaction
Procedia PDF Downloads 1222048 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists
Authors: Sefik Can Karakaya, Ibrahim Demir
Abstract:
In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression
Procedia PDF Downloads 1422047 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films
Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost
Abstract:
In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate
Procedia PDF Downloads 1192046 The Assessment of the Comparative Efficiency of Reforms through the Integral Index of Transformation
Authors: Samson Davoyan, Ashot Davoyan, Ani Khachatryan
Abstract:
The indexes (Global Competitiveness Index, Economic Freedom Index, Human Development Index, etc.) developed by different international and non-government organizations in time and space express the quantitative and qualitative features of different fields of various reforms implemented in different countries. The main objective of our research is to develop new methodology that we will use to create integral index based on many indexes and that will include many areas of reforms. To achieve our aim we have used econometric methods (regression model for panel data method). The basis of our methodology is the development of the new integral index based on quantitative assessment of the change of two main parameters: the score of the countries by different indexes and the change of the ranks of countries for following two periods of time. As a result of the usage of methods for analyzes we have defined the indexes that are used to create the new integral index and the scales for each of them. Analyzing quantitatively and qualitatively analysis through the integral index for more than 100 countries for 2009-2014, we have defined comparative efficiency that helps to conclude in which directions countries have implemented reforms more effectively compared to others and in which direction reforms have implemented less efficiently.Keywords: development, rank, reforms, comparative, index, economic, corruption, social, program
Procedia PDF Downloads 3242045 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 2302044 Towards an Adversary-Aware ML-Based Detector of Spam on Twitter Hashtags
Authors: Niddal Imam, Vassilios G. Vassilakis
Abstract:
After analysing messages posted by health-related spam campaigns in Twitter Arabic hashtags, we found that these campaigns use unique hijacked accounts (we call them adversarial hijacked accounts) as adversarial examples to fool deployed ML-based spam detectors. Existing ML-based models build a behaviour profile for each user to detect hijacked accounts. This approach is not applicable for detecting spam in Twitter hashtags since they are computationally expensive. Hence, we propose an adversary-aware ML-based detector, which includes a newly designed feature (avg posts) to improve the detection of spam tweets posted by the adversarial hijacked accounts at a tweet-level in trending hashtags. The proposed detector was designed considering three key points: robustness, adaptability, and interpretability. The new feature leverages the account’s temporal patterns (i.e., account age and number of posts). It is faster to compute compared to features discussed in the literature and improves the accuracy of detecting the identified hijacked accounts by 73%.Keywords: Twitter spam detection, adversarial examples, evasion attack, adversarial concept drift, account hijacking, trending hashtag
Procedia PDF Downloads 77