Search results for: steel tube
2146 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking
Authors: M. Bahgat, H. Hanafy, H. Al-Tassan
Abstract:
Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.Keywords: reduction, ironmaking, steel dust, coating
Procedia PDF Downloads 3022145 The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts
Authors: Nety Trisnawaty, Mirna Febriani
Abstract:
The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires.Keywords: chromium ion, stainless steel, artificial saliva, black tea leaves extracts
Procedia PDF Downloads 2792144 Numerical and Experimental Investigation of the Turbulence Level Influence on the Flow through the Staggered Smooth Tube Bundle
Authors: L. Adjlout, N.Benharrat, O. Ladjdel, F. Djemil, A. Adjlout, T. Yahiaoui
Abstract:
The present investigation is an experimental and numerical studies of the turbulence level influence on the flow in a smooth staggered tube bundle. The experiments were carried out in a closed circuit wind tunnel of subsonic type (TE44). Three turbulence levels at the inlet namely 1%, 4.6% and 6.3% and two Reynolds numbers Re = 9300 and Re = 13950 were performed. The obtained results for the central tube show that there are two minimum values for the angles 70° and 280° corresponding to the separation points. The pressure coefficient distributions seem to have constant values between 120° and 240° resulting in Von Karman street configuration in the wake. These remarks were valid for the tests carried out. The numerical study was performed by the ANSYS FLUENT code which solves the averaged Navier-Stokes equations (RANS). Two turbulence models (k-ε RNG and k-ε realizable), two types of grids and two levels of turbulence at the entrance of 4.6% and 6.3% for Reynolds numbers of 9300 and 13950 were considered. The obtained results for the central tube were compared with the present experimental results. It is concluded that the K-ε realizable is more suitable for the pressure distribution prediction than the K-ε RNG model compared to the present experimental results for this studied case.Keywords: tube bundle, staggered configuration, turbulence level, numerical, experimental
Procedia PDF Downloads 1282143 The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel
Authors: Abdulmagid A. Khattabi, Ahmed A. Hablous, Mofied M. Elnemry
Abstract:
The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content.Keywords: proportion of carbon in the steel, corrosion rate, erosion, corrosion resistance in carbon-steel
Procedia PDF Downloads 6062142 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production: A Cost-Minimization Approach
Authors: Yoftahe Nigussie Worku
Abstract:
This report unveils a meticulous project focused on the design intricacies of a Fire Tube Boiler tailored for the efficient generation of saturated steam. The overarching objective is to produce 2000kg/h of saturated steam at 12-bar design pressure, achieved through the development of an advanced fire tube boiler. This design is meticulously crafted to harmonize cost-effectiveness and parameter refinement, with a keen emphasis on material selection for component parts, construction materials, and production methods throughout the analytical phases. The analytical process involves iterative calculations, utilizing pertinent formulas to optimize design parameters, including the selection of tube diameters and overall heat transfer coefficients. The boiler configuration incorporates two passes, a strategic choice influenced by tube and shell size considerations. The utilization of heavy oil fuel no. 6, with a higher heating value of 44000kJ/kg and a lower heating value of 41300kJ/kg, results in a fuel consumption of 140.37kg/hr. The boiler achieves an impressive heat output of 1610kW with an efficiency rating of 85.25%. The fluid flow pattern within the boiler adopts a cross-flow arrangement strategically chosen for inherent advantages. Internally, the welding of the tube sheet to the shell, secured by gaskets and welds, ensures structural integrity. The shell design adheres to European Standard code sections for pressure vessels, encompassing considerations for weight, supplementary accessories (lifting lugs, openings, ends, manhole), and detailed assembly drawings. This research represents a significant stride in optimizing fire tube boiler technology, balancing efficiency and safety considerations in the pursuit of enhanced saturated steam production.Keywords: fire tube, saturated steam, material selection, efficiency
Procedia PDF Downloads 792141 The Experimental and Numerical Analysis of TRIP Steel Wire Drawing Processes Drawn with Different Partial Reductions
Authors: Sylwia Wiewiorowska, Zbigniew Muskalski
Abstract:
The strain intensity and redundant strains, dependent in multistage TRIP wire drawing processes from values used single partial reductions, should influence on the intensity of transformation the retained austenite into martensite and thereby on mechanical properties of drawn wires. The numerical analysis of drawing processes with use of Drawing 2D programme, for steel wires made from TRIP steel with 0,29 % has been shown in the work. The change of strain intensity Ԑc and the values of redundant strain Ԑxy, has been determined for particular draws in dependence of used single partial reductions.Keywords: steel wire, TRIP steel, drawing processes, fem modelling
Procedia PDF Downloads 5952140 Fabrication of a Continuous Flow System for Biofilm Studies
Authors: Mohammed Jibrin Ndejiko
Abstract:
Modern and current models such as flow cell technology which enhances a non-destructive growth and inspection of the sessile microbial communities revealed a great understanding of biofilms. A continuous flow system was designed to evaluate possibility of biofilm formation by Escherichia coli DH5α on the stainless steel (type 304) under continuous nutrient supply. The result of the colony forming unit (CFU) count shows that bacterial attachment and subsequent biofilm formation on stainless steel coupons with average surface roughness of 1.5 ± 1.8 µm and 2.0 ± 0.09 µm were both significantly higher (p ≤ 0.05) than those of the stainless steel coupon with lower surface roughness of 0.38 ± 1.5 µm. These observations support the hypothesis that surface profile is one of the factors that influence biofilm formation on stainless steel surfaces. The SEM and FESEM micrographs of the stainless steel coupons also revealed the attached Escherichia coli DH5α biofilm and dehydrated extracellular polymeric substance on the stainless steel surfaces. Thus, the fabricated flow system represented a very useful tool to study biofilm formation under continuous nutrient supply.Keywords: biofilm, flowcell, stainless steel, coupon
Procedia PDF Downloads 3172139 Hot-Dip Galvanizing as a Corrosion Protection System for Steel Hydraulic Structures
Authors: Farrokh Taherkhani, Thomas Pinger, Max Gündel
Abstract:
Corrosion and suitable corrosion protection systems are a significant factor in the consideration of life cycle costs for steel hydraulic structures. In addition to classic coating systems (for example, epoxy resin or polyurethane), zinc and its alloys offer effective and very durable corrosion protection for steels. As a protective layer, hot-dip galvanizing prevents the corrosive media from penetrating into the steel matrix and acts as a sacrificial anode, which corrodes in preference to steel. However, hot-dip galvanizing as a corrosion protection system has not yet been approved by the relevant authority, the Federal Waterways Engineering and Research Institute (BAW) in Germany. In order to make hot-dip galvanizing usable as a corrosion protection system for steel hydraulic structures in the future, different factors must be considered. These factors are (i) corrosion protection type, (ii) resistance to mechanical stress (i.e., abrasion resistance), (iii) combinability with cathodic corrosion protection, (iv) environmental effects, and (v) the crack formation and propagation during hot-dip galvanizing. In this work, hot-dip galvanizing as a corrosion protection system for steel hydraulic steel structures, as well as open questions, are discussed. This paper is based on initial long-term exposure tests with corrosion protection systems consisting of hot-dip galvanizing and duplex systems.Keywords: steel hydraulic structure, hot-dip galvanizing, corrosion resistance, zinc coating, organic coating and duplex systems
Procedia PDF Downloads 432138 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube
Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego
Abstract:
The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation
Procedia PDF Downloads 3152137 Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution
Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi
Abstract:
Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel.Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, XRD
Procedia PDF Downloads 682136 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow
Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof
Abstract:
A theoretical investigation from the viewpoint of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study. It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing a region with higher total temperature, compared to the distant region, peripheral to the vortex core.Keywords: energy separation mechanism, theoretical analysis, vortex tube, vortical flow
Procedia PDF Downloads 3992135 Effects of the Mass and Damping Matrix Model in the Non-Linear Seismic Response of Steel Frames
Authors: Alfredo Reyes-Salazar, Mario D. Llanes-Tizoc, Eden Bojorquez, Federico Valenzuela-Beltran, Juan Bojorquez, Jose R. Gaxiola-Camacho, Achintya Haldar
Abstract:
Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated with lateral vibrations are commonly used to develop matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the non-linear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead of the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment-resisting steel frames and that the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.Keywords: moment-resisting steel frames, consistent and concentrated mass matrices, non-linear seismic response, Rayleigh damping
Procedia PDF Downloads 1492134 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements
Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang
Abstract:
Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation
Procedia PDF Downloads 1442133 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall
Authors: Zhao Cai-qi, Ma Jun
Abstract:
Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.Keywords: twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing
Procedia PDF Downloads 4022132 Comparative Evaluation of Vanishing Interfacial Tension Approach for Minimum Miscibility Pressure Determination
Authors: Waqar Ahmad Butt, Gholamreza Vakili Nezhaad, Ali Soud Al Bemani, Yahya Al Wahaibi
Abstract:
Minimum miscibility pressure (MMP) plays a great role in determining the displacement efficiency of different gas injection processes. Experimental techniques for MMP determination include industrially recommended slim tube, vanishing interfacial tension (VIT) and rising bubble apparatus (RBA). In this paper, MMP measurement study using slim tube and VIT experimental techniques for two different crude oil samples (M and N) both in live and stock tank oil forms is being presented. VIT measured MMP values for both 'M' and 'N' live crude oils were close to slim tube determined MMP values with 6.4 and 5 % deviation respectively. Whereas for both oil samples in stock tank oil form, VIT measured MMP showed a higher unacceptable deviation from slim tube determined MMP. This higher difference appears to be related to high stabilized crude oil heavier fraction and lack of multiple contacts miscibility. None of the different nine deployed crude oil and CO2 MMP computing correlations could result in reliable MMP, close to slim tube determined MMP. Since VIT determined MMP values for both considered live crude oils are in close match with slim tube determined MMP values, it confirms reliable, reproducible, rapid and cheap alternative for live crude oil MMP determination. Whereas VIT MMP determination for stock tank oil case needed further investigation about stabilization / destabilization mechanism of oil heavier ends and multiple contacts miscibility development issues.Keywords: minimum miscibility pressure, interfacial tension, multiple contacts miscibility, heavier ends
Procedia PDF Downloads 2682131 Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load
Authors: Yousef Al-Qaryouti, Besan Alagawani
Abstract:
The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings.Keywords: horizontal bracing system, steel moment frames, wind load resisting system, linear static analysis
Procedia PDF Downloads 2872130 Collapse Capacity Assessment of Inelastic Structures under Seismic Sequences
Authors: Shahrzad Mohammadi, Ghasem Boshrouei Sharq
Abstract:
All seismic design codes are based on the determination of the design earthquake without taking into account the effects of aftershocks in the design practice. In regions with a high level of seismicity, the occurrence of several aftershocks of various magnitudes and different time lags is very likely. This research aims to estimate the collapse capacity of a 10-story steel bundled tube moment frame subjected to as-recorded seismic sequences. The studied structure is designed according to the seismic regulations of the fourth revision of the Iranian code of practice for the seismic-resistant design of buildings (Code No.2800). A series of incremental dynamic analyses (IDA) is performed up to the collapse level of the intact structure. Then, in order to demonstrate the effects of aftershock events on the collapse vulnerability of the building, aftershock IDA analyzes are carried out. To gain deeper insight, collapse fragility curves are developed and compared for both series. Also, a study on the influence of various ground motion characteristics on collapse capacity is carried out. The results highlight the importance of considering the decisive effects of aftershocks in seismic codes due to their contribution to the occurrence of collapse.Keywords: IDA, aftershock, bundled tube frame, fragility assessment, GM characteristics, as-recorded seismic sequences
Procedia PDF Downloads 1402129 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia
Authors: Sawarni Hasibuan, Rudi Effendi Listyanto
Abstract:
The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency
Procedia PDF Downloads 3242128 Collapse Performance of Steel Frame with Hysteric Energy Dissipating Devices
Authors: Hyung-Joon Kim, Jin-Young Park
Abstract:
Energy dissipating devices (EDDs) have become more popular as seismic-force-resisting systems for building structures. However, there is little information on the collapse capacities of frames employing EDDs which are an important criterion for their seismic design. This study investigates the collapse capacities of steel frames with TADAS hysteric energy dissipative devices (HEDDs) that become an alternative to steel braced frames. To do this, 5-story steel ordinary concentrically braced frame and steel frame with HEDDs are designed and modeled. Nonlinear dynamic analyses and incremental dynamic analysis with 40 ground motions scaled to maximum considered earthquake are carried out. It is shown from analysis results that the significant enhancement in terms of the collapse capacities is found due to the introduction HEDDs.Keywords: collapse capacity, incremental dynamic analysis, steel braced frame, TADAS hysteric energy dissipative device
Procedia PDF Downloads 4822127 Corrosion Inhibition of Mild Steel in 20% Sulfuric Acid
Authors: M. Dekmouche, M. Hadjada, Z. Rahmani, M. Saidi
Abstract:
The effect of iodide ions on the corrosion inhibition of mild steel in 20% sulfuric acid in the presence of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) A1 synthesized in our laboratory,was studied by different electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization. The obtained results showed that A1 effectively reduces the corrosion rate of steel. The adsorption of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) followed Langmuir and temkin adsorption isotherm.Keywords: steel XC52, corrosion, inhibition, 3-méthylthio-5-p-méthoxyphényl-1, 2-dithiolylium against anion (I-) , sulfuric acid
Procedia PDF Downloads 3272126 Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining
Authors: Vinay Patil, Swapnil Kekade, Ashish Supare, Vinayak Pawar, Shital Jadhav, Rajkumar Singh
Abstract:
In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed.Keywords: conventional turning, Taguchi method, S/N ratio, bainitic steel machining
Procedia PDF Downloads 3312125 Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility
Authors: Prasenjit Singha, Ajay Kumar Shukla
Abstract:
To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries.Keywords: desulphurization, degassing, factsage, reactor
Procedia PDF Downloads 2172124 Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method
Authors: Mai M. Khalaf, Hany M. Abd El-Lateef
Abstract:
A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively.Keywords: dip-coatings, corrosion protection, sol gel, TiO2 films, PEG
Procedia PDF Downloads 4292123 Reliability Analysis of Steel Columns under Buckling Load in Second-Order Theory
Authors: Hamed Abshari, M. Reza Emami Azadi, Madjid Sadegh Azar
Abstract:
For studying the overall instability of members of steel structures, there are several methods in which overall buckling and geometrical imperfection effects are considered in analysis. In first section, these methods are compared and ability of software to apply these methods is studied. Buckling loads determined from theoretical methods and software is compared for 2D one bay, one and two stories steel frames. To consider actual condition, buckling loads of three steel frames that have various dimensions are calculated and compared. Also, uncertainties that exist in loading and modeling of structures such as geometrical imperfection, yield stress, and modulus of elasticity in buckling load of 2D framed steel structures have been studied. By performing these uncertainties to each reliability analysis procedures (first-order, second-order, and simulation methods of reliability), one index of reliability from each procedure is determined. These values are studied and compared.Keywords: buckling, second-order theory, reliability index, steel columns
Procedia PDF Downloads 4922122 Poly(Butadiene-co-Acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel
Authors: Kok-Chong Yong
Abstract:
Poly(butadiene-co-acrylonitrile)-polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] blends with useful electrical conductivity (up to 0.1 S/cm) were prepared and their corrosion inhibiting behaviours for carbon steel were successfully assessed for the first time. The level of compatibility between NBR and PAni.DBSA was enhanced through the introduction of 1.0 wt % hydroquinone. As found from both total immersion and electrochemical corrosion tests, NBR-PAni.DBSA blends with 10.0-30.0 wt% of PAni.DBSA content exhibited the best corrosion inhibiting behaviour for carbon steel, either in acid or artificial brine environment. On the other hand, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5.0 wt % and ≥ 40.0 wt %) showed significantly poorer corrosion inhibiting behaviour for carbon steel.Keywords: conductive rubber, nitrile rubber, polyaniline, carbon steel, corrosion inhibition
Procedia PDF Downloads 4592121 Metallurgical Analysis of Surface Defect in Telescopic Front Fork
Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya
Abstract:
Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.Keywords: telescopic front fork, induction welding, hook crack, internal oxidation
Procedia PDF Downloads 1312120 Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge
Authors: Waheed Ahmad Safi, Shunichi Nakamura, Abdul Habib Ghaforzai
Abstract:
Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established.Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength
Procedia PDF Downloads 1282119 The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium
Authors: Harche Rima, Laoufi Nadia Aicha
Abstract:
The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV.Keywords: corrosion and prevention, steel, copper, aluminum, corrosion inhibitor, anti-cooling
Procedia PDF Downloads 492118 Inhibiting Effects of Zwitterionic Surfactant on the Erosion-Corrosion of API X52 Steel in Oil Sands Slurry
Authors: M. A. Deyab
Abstract:
The effect of zwitterionic surfactant (ZS) on erosion-corrosion of API X52 steel in oil sands slurry was studied using Tafel polarization and anodic polarization measurements. The surface morphology of API X52 steel was examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). ZS inhibited the erosion-corrosion of API X52 steel in oil sands' slurry, and the inhibition efficiency increased with increasing ZS concentration but decreased with increasing temperature. Polarization curves indicate that ZS act as a mixed type of inhibitor. Inhibition efficiencies of ZS in the dynamic condition are not as effective as that obtained in the static condition.Keywords: corrosion, surfactant, oil sands slurry, erosion-corrosion
Procedia PDF Downloads 1662117 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation
Authors: Bharatkumar Doshi
Abstract:
Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.Keywords: COMSOL, EMPW, FEM, Lorentz force
Procedia PDF Downloads 184