Search results for: real-time data visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25664

Search results for: real-time data visualization

25514 Transitional Separation Bubble over a Rounded Backward Facing Step Due to a Temporally Applied Very High Adverse Pressure Gradient Followed by a Slow Adverse Pressure Gradient Applied at Inlet of the Profile

Authors: Saikat Datta

Abstract:

Incompressible laminar time-varying flow is investigated over a rounded backward-facing step for a triangular piston motion at the inlet of a straight channel with very high acceleration, followed by a slow deceleration experimentally and through numerical simulation. The backward-facing step is an important test-case as it embodies important flow characteristics such as separation point, reattachment length, and recirculation of flow. A sliding piston imparts two successive triangular velocities at the inlet, constant acceleration from rest, 0≤t≤t0, and constant deceleration to rest, t0≤tKeywords: laminar boundary layer separation, rounded backward facing step, separation bubble, unsteady separation, unsteady vortex flows

Procedia PDF Downloads 70
25513 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography

Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway

Abstract:

This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.

Keywords: steganography, stego, LSB, crop

Procedia PDF Downloads 271
25512 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization

Procedia PDF Downloads 280
25511 Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures

Authors: M. Afshin, A. Sohankar, M. Dehghan Manshadi, M. R. Daneshgar, G. R. Dehghan Kamaragi

Abstract:

In this paper, the influence of an upstream structure on the flow pattern within and around the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation in this case is dependent on the presence of upstream objects. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns inside and outside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream object reverses the airflow direction inside the wind-catcher.

Keywords: natural ventilation, smoke flow visualization, two-sided wind-catcher, flow patterns

Procedia PDF Downloads 581
25510 Visual and Verbal Imagination in a Bilingual Context

Authors: Erzsebet Gulyas

Abstract:

Our inner world, our imagination, and our way of thinking are invisible and inaudible to others, but they influence our behavior. To investigate the relationship between thinking and language use, we created a test in Hungarian using ideas from the literature. The test prompts participants to make decisions based on visual images derived from the written information presented. There is a correlation (r=0.5) between the test result and the self-assessment of the visual imagery vividness and the visual and verbal components of internal representations measured by self-report questionnaires, as well as with responses to language-use inquiries in the background questionnaire. 56 university students completed the tests, and SPSS was used to analyze the data.

Keywords: imagination, internal representations, verbalization, visualization

Procedia PDF Downloads 58
25509 Digital Reconstruction of the Cultural Landscape: Chengde Summer Resort as a Case Study

Authors: Jingsen Lian, Steffen Nijhuis, Gregory Bracken, Kai Lan

Abstract:

This study explores the digital reconstruction of the Chengde Mountain Resort (CMR), a UNESCO World Heritage Site recognized for its cultural landscape significance. Using mixed methods, the research combines spatial, textual, and graphical data to reconstruct the historical evolution of CMR's landscape across four phases from 1704 to the present. Data acquisition includes 3D point clouds, historical maps, traditional paintings, poetry, land-use records, academic papers, engineering drawings, and old photographs. Interdisciplinary techniques such as georectification, 3D modeling, and textual analysis were employed to integrate these diverse datasets into a cohesive Web-GIS platform. The reconstructed data illustrates dynamic landscape changes, reflecting shifting cultural and ecological priorities. The Web-GIS platform facilitates data visualization, querying, and customization, serving multiple stakeholders, including researchers, government planners, and local communities. This study underscores the value of digital tools in cultural heritage preservation, offering a model for adaptive and participatory management of historical sites while promoting open access and stakeholder engagement.

Keywords: landscape mapping, cultural landscape, heritage, case study, mixed methods

Procedia PDF Downloads 16
25508 Decision Support Tool for Water Re-used Systems

Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz

Abstract:

The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.

Keywords: circular economy, digital tool, geo-visualization, wastewater re-use

Procedia PDF Downloads 60
25507 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing

Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang

Abstract:

With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.

Keywords: heat island effect, neural network, comprehensive evaluation, visualization

Procedia PDF Downloads 140
25506 Visualizing Imaging Pathways after Anatomy-Specific Follow-Up Imaging Recommendations

Authors: Thusitha Mabotuwana, Christopher S. Hall

Abstract:

Radiologists routinely make follow-up imaging recommendations, usually based on established clinical practice guidelines, such as the Fleischner Society guidelines for managing lung nodules. In order to ensure optimal care, it is important to make guideline-compliant recommendations, and also for patients to follow-up on these imaging recommendations in a timely manner. However, determining such compliance rates after a specific finding has been observed usually requires many time-consuming manual steps. To address some of these limitations with current approaches, in this paper we discuss a methodology to automatically detect finding-specific follow-up recommendations from radiology reports and create a visualization for relevant subsequent exams showing the modality transitions. Nearly 5% of patients who had a lung related follow-up recommendation continued to have at least eight subsequent outpatient CT exams during a seven year period following the recommendation. Radiologist and section chiefs can use the proposed tool to better understand how a specific patient population is being managed, identify possible deviations from established guideline recommendations and have a patient-specific graphical representation of the imaging pathways for an abstract view of the overall treatment path thus far.

Keywords: follow-up recommendations, follow-up tracking, care pathways, imaging pathway visualization

Procedia PDF Downloads 139
25505 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 138
25504 Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification

Authors: Abd Al-Salam Al-Masgari, Haylay Tsegab, Ismailalwali Babikir, Monera A. Shoieb

Abstract:

We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics.

Keywords: karst, central Luconia, seismic attributes, Miocene carbonate build-ups

Procedia PDF Downloads 75
25503 Big Data Analysis Approach for Comparison New York Taxi Drivers' Operation Patterns between Workdays and Weekends Focusing on the Revenue Aspect

Authors: Yongqi Dong, Zuo Zhang, Rui Fu, Li Li

Abstract:

The records generated by taxicabs which are equipped with GPS devices is of vital importance for studying human mobility behavior, however, here we are focusing on taxi drivers' operation strategies between workdays and weekends temporally and spatially. We identify a group of valuable characteristics through large scale drivers' behavior in a complex metropolis environment. Based on the daily operations of 31,000 taxi drivers in New York City, we classify drivers into top, ordinary and low-income groups according to their monthly working load, daily income, daily ranking and the variance of the daily rank. Then, we apply big data analysis and visualization methods to compare the different characteristics among top, ordinary and low income drivers in selecting of working time, working area as well as strategies between workdays and weekends. The results verify that top drivers do have special operation tactics to help themselves serve more passengers, travel faster thus make more money per unit time. This research provides new possibilities for fully utilizing the information obtained from urban taxicab data for estimating human behavior, which is not only very useful for individual taxicab driver but also to those policy-makers in city authorities.

Keywords: big data, operation strategies, comparison, revenue, temporal, spatial

Procedia PDF Downloads 228
25502 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 207
25501 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: Ahmed Amrani, Oussama Allali, Amira Ben Hamida, Felix Defrance, Stephanie Morland, Eva Pineau, Thomas Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city

Procedia PDF Downloads 177
25500 Design of Geochemical Maps of Industrial City Using Gradient Boosting and Geographic Information System

Authors: Ruslan Safarov, Zhanat Shomanova, Yuri Nossenko, Zhandos Mussayev, Ayana Baltabek

Abstract:

Geochemical maps of distribution of polluting elements V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb on the territory of the Pavlodar city (Kazakhstan), which is an industrial hub were designed. The samples of soil were taken from 100 locations. Elemental analysis has been performed using XRF. The obtained data was used for training of the computational model with gradient boosting algorithm. The optimal parameters of model as well as the loss function were selected. The computational model was used for prediction of polluting elements concentration for 1000 evenly distributed points. Based on predicted data geochemical maps were created. Additionally, the total pollution index Zc was calculated for every from 1000 point. The spatial distribution of the Zc index was visualized using GIS (QGIS). It was calculated that the maximum coverage area of the territory of the Pavlodar city belongs to the moderately hazardous category (89.7%). The visualization of the obtained data allowed us to conclude that the main source of contamination goes from the industrial zones where the strategic metallurgical and refining plants are placed.

Keywords: Pavlodar, geochemical map, gradient boosting, CatBoost, QGIS, spatial distribution, heavy metals

Procedia PDF Downloads 87
25499 Augmented Reality Using Cuboid Tracking as a Support for Early Stages of Architectural Design

Authors: Larissa Negris de Souza, Ana Regina Mizrahy Cuperschmid, Daniel de Carvalho Moreira

Abstract:

Augmented Reality (AR) alters the elaboration of the architectural project, which relates to project cognition: representation, visualization, and perception of information. Understanding these features from the earliest stages of the design can facilitate the study of relationships, zoning, and overall dimensions of the forms. This paper’s goal was to explore a new approach for information visualization during the early stages of architectural design using Augmented Reality (AR). A three-dimensional marker inspired by the Rubik’s Cube was developed, and its performance, evaluated. This investigation interwovens the acquired knowledge of traditional briefing methods and contemporary technology. We considered the concept of patterns (Alexander et al. 1977) to outline geometric forms and associations using visual programming. The Design Science Research was applied to develop the study. An SDK was used in a game engine to generate the AR app. The tool's functionality was assessed by verifying the readability and precision of the reconfigurable 3D marker. The results indicated an inconsistent response. To use AR in the early stages of architectural design the system must provide consistent information and appropriate feedback. Nevertheless, we conclude that our framework sets the ground for looking deep into AR tools for briefing design.

Keywords: augmented reality, cuboid marker, early design stages, graphic representation, patterns

Procedia PDF Downloads 105
25498 Three-Dimensional Computer Graphical Demonstration of Calcified Tissue and Its Clinical Significance

Authors: Itsuo Yokoyama, Rikako Kikuti, Miti Sekikawa, Tosinori Asai, Sarai Tsuyoshi

Abstract:

Introduction: Vascular access for hemodialysis therapy is often difficult, even for experienced medical personnel. Ultrasound guided needle placement have been performed occasionally but is not always helpful in certain cases with complicated vascular anatomy. Obtaining precise anatomical knowledge of the vascular structure is important to prevent access-related complications. With augmented reality (AR) device such as AR glasses, the virtual vascular structure is shown superimposed on the actual patient vessels, thus enabling the operator to maneuver catheter placement easily with free both hands. We herein report our method of AR guided vascular access method in dialysis treatment Methods: Three dimensional (3D) object of the arm with arteriovenous fistula is computer graphically created with 3D software from the data obtained by computer tomography, ultrasound echogram, and image scanner. The 3D vascular object thus created is viewed on the screen of the AR digital display device (such as AR glass or iPad). The picture of the vascular anatomical structure becomes visible, which is superimposed over the real patient’s arm, thereby the needle insertion be performed under the guidance of AR visualization with ease. By this method, technical difficulty in catheter placement for dialysis can be lessened and performed safely. Considerations: Virtual reality technology has been applied in various fields and medical use is not an exception. Yet AR devices have not been widely used among medical professions. Visualization of the virtual vascular object can be achieved by creation of accurate three dimensional object with the help of computer graphical technique. Although our experience is limited, this method is applicable with relative easiness and our accumulating evidence has suggested that our method of vascular access with the use of AR can be promising.

Keywords: abdominal-aorta, calcification, extraskeletal, dialysis, computer graphics, 3DCG, CT, calcium, phosphorus

Procedia PDF Downloads 168
25497 Insight-Based Evaluation of a Map-Based Dashboard

Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg

Abstract:

Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage compared to task-based evaluation methods.

Keywords: visual analytics, dashboard, insight-based evaluation, geographic visualization

Procedia PDF Downloads 119
25496 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification

Authors: Chun Chen Yea, Wen Huei Chou

Abstract:

Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.

Keywords: digital storytelling, visualization, ocean acidification, social advocacy

Procedia PDF Downloads 122
25495 Evaluation of Fetal brain using Magnetic Resonance Imaging

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

Ordinary fetal brain development can be considered by in vivo attractive reverberation imaging (MRI) from the 18th gestational week (GW) to term and depends fundamentally on T2-weighted and diffusion-weighted (DW) arrangements. The foremost commonly suspected brain pathologies alluded to fetal MRI for assist assessment are ventriculomegaly, lost corpus callosum, and anomalies of the posterior fossa. Brain division could be a crucial to begin with step in neuroimage examination. Within the case of fetal MRI it is especially challenging and critical due to the subjective introduction of the hatchling, organs that encompass the fetal head, and irregular fetal movement. A few promising strategies have been proposed but are constrained in their execution in challenging cases and in realtime division. Fetal MRI is routinely performed on a 1.5-Tesla scanner without maternal or fetal sedation. The mother lies recumbent amid the course of the examination, the length of which is ordinarily 45 to 60 minutes. The accessibility and continuous approval of standardizing fetal brain development directions will give critical devices for early discovery of impeded fetal brain development upon which to oversee high-risk pregnancies.

Keywords: brain, fetal, MRI, imaging

Procedia PDF Downloads 83
25494 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient

Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez

Abstract:

Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.

Keywords: wind tunnel, low cost instrumentation, experimental testing, CFD simulation

Procedia PDF Downloads 186
25493 Analysis of Land Use, Land Cover Changes in Damaturu, Nigeria: Using Satellite Images

Authors: Isa Muhammad Zumo, Musa Lawan

Abstract:

This study analyzes the land use/land cover changes in Damaturu metropolis from 1986 to 2005. LandSat TM Images of 1986, 1999, and 2005 were used. Built-up lands, agric lands, water body and other lands were created as themes within ILWIS 3.4 software. The images were displayed in False Colour Composite (FCC) for a better visualization and identification of the themes created. Training sample sets were collected based on the ground truth data during field the checks. Statistical data were then extracted from the classified sample set. Area in hectares for each theme was calculated for each year and the result for each land use/land cover types for each study year was compared. From the result, it was found out that built-up areas have a considerable increase from 37.71 hectares in 1986 to 1062.72 hectares in 2005. It has an annual increase rate of approximately 0.34%. The results also reveal that there is a decrease of 5829.66 hectares of other lands (vacant lands) from 1986 to 2005.

Keywords: land use, changes, analysis, environmental pollution

Procedia PDF Downloads 351
25492 Visibility of the Borders of the Mandibular Canal: A Comparative in Vitro Study Using Digital Panoramic Radiography, Reformatted Panoramic Radiography and Cross Sectional Cone Beam Computed Tomography

Authors: Keerthilatha Pai, Sakshi Kamra

Abstract:

Objectives: Determining the position of the mandibular canal prior to implant placement and surgeries of the posterior mandible are important to avoid the nerve injury. The visibility of the mandibular canal varies according to the imaging modality. Although panoramic radiography is the most common, slowly cone beam computed tomography is replacing it. This study was conducted with an aim to determine and compare the visibility of superior and inferior borders of the mandibular canal in digital panoramic radiograph, reformatted panoramic radiograph and cross-sectional images of cone beam computed tomography. Study design: digital panoramic, reformatted panoramic radiograph and cross sectional CBCT images of 25 human mandibles were evaluated for the visibility of the superior and inferior borders of the mandibular canal according to a 5 point scoring criteria. Also, the canal was evaluated as completely visible, partially visible and not visible. The mean scores and visibility percentage of all the imaging modalities were determined and compared. The interobserver and intraobserver agreement in the visualization of the superior and inferior borders of the mandibular canal were determined. Results: The superior and inferior borders of the mandibular canal were completely visible in 47% of the samples in digital panoramic, 63% in reformatted panoramic and 75.6% in CBCT cross-sectional images. The mandibular canal was invisible in 24% of samples in digital panoramic, 19% in reformatted panoramic and 2% in cross-sectional CBCT images. Maximum visibility was seen in Zone 5 and least visibility in Zone 1. On comparison of all the imaging modalities, CBCT cross-sectional images showed better visibility of superior border in Zones 2,3,4,6 and inferior border in Zones 2,3,4,6. The difference was statistically significant. Conclusion: CBCT cross-sectional images were much superior in the visualization of the mandibular canal in comparison to reformatted and digital panoramic radiographs. The inferior border was better visualized in comparison to the superior border in digital panoramic imaging. The mandibular canal was maximumly visible in posterior one-third region of the mandible and the visibility decreased towards the mental foramen.

Keywords: cone beam computed tomography, mandibular canal, reformatted panoramic radiograph, visualization

Procedia PDF Downloads 134
25491 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images

Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park

Abstract:

A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.

Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure

Procedia PDF Downloads 301
25490 Android – Based Wireless Electronic Stethoscope

Authors: Aw Adi Arryansyah

Abstract:

Using electronic stethoscope for detecting heartbeat sound, and breath sounds, are the effective way to investigate cardiovascular diseases. On the other side, technology is growing towards mobile. Almost everyone has a smartphone. Smartphone has many platforms. Creating mobile applications also became easier. We also can use HTML5 technology to creating mobile apps. Android is the most widely used type. This is the reason for us to make a wireless electronic stethoscope based on Android mobile. Android based Wireless Electronic Stethoscope designed by a simple system, uses sound sensors mounted membrane, then connected with Bluetooth module which will send the heart auscultation voice input data by Bluetooth signal to an android platform. On the software side, android will read the voice input then it will translate to beautiful visualization and release the voice output which can be regulated about how much of it is going to be released. We can change the heart beat sound into BPM data, and heart beat analysis, like normal beat, bradycardia or tachycardia.

Keywords: wireless, HTML 5, auscultation, bradycardia, tachycardia

Procedia PDF Downloads 352
25489 Data Transformations in Data Envelopment Analysis

Authors: Mansour Mohammadpour

Abstract:

Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.

Keywords: data transformation, data envelopment analysis, undesirable data, negative data

Procedia PDF Downloads 29
25488 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications

Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque

Abstract:

Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.

Keywords: energetic certification, virtual reality, augmented reality, sustainability

Procedia PDF Downloads 191
25487 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 53
25486 Documenting the 15th Century Prints with RTI

Authors: Peter Fornaro, Lothar Schmitt

Abstract:

The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.

Keywords: art history, computational photography, paste prints, reflectance transformation imaging

Procedia PDF Downloads 277
25485 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays

Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola

Abstract:

In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.

Keywords: augmented reality, situation awareness, virtual reality, visualization design

Procedia PDF Downloads 133