Search results for: network driver
5036 VISSIM Modeling of Driver Behavior at Connecticut Roundabouts
Authors: F. Clara Fang, Hernan Castaneda
Abstract:
The Connecticut Department of Transportation (ConnDOT) has constructed four roundabouts in the State of Connecticut within the past ten years. VISSIM traffic simulation software was utilized to analyze these roundabouts during their design phase. The queue length and level of service observed in the field appear to be better than predicted by the VISSIM model. The objectives of this project are to: identify VISSIM input variables most critical to accurate modeling; recommend VISSIM calibration factors; and, provide other recommendations for roundabout traffic operations modeling. Traffic data were collected at these roundabouts using Miovision Technologies. Cameras were set up to capture vehicle circulating activity and entry behavior for two weekdays. A large sample size of filed data was analyzed to achieve accurate and statistically significant results. The data extracted from the videos include: vehicle circulating speed; critical gap estimated by Maximum Likelihood Method; peak hour volume; follow-up headway; travel time; and, vehicle queue length. A VISSIM simulation of existing roundabouts was built to compare both queue length and travel time predicted from simulation with measured in the field. The research investigated a variety of simulation parameters as calibration factors for describing driver behaviors at roundabouts. Among them, critical gap is the most effective calibration variable in roundabout simulation. It has a significant impact to queue length, particularly when the volume is higher. The results will improve the design of future roundabouts in Connecticut and provide decision makers with insights on the relationship between various choices and future performance.Keywords: driver critical gap, roundabout analysis, simulation, VISSIM modeling
Procedia PDF Downloads 2925035 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.Keywords: distributed generation photovoltaic (DG PV), optimal location, penetration level, sub–transmission network
Procedia PDF Downloads 3515034 The Modification of Convolutional Neural Network in Fin Whale Identification
Authors: Jiahao Cui
Abstract:
In the past centuries, due to climate change and intense whaling, the global whale population has dramatically declined. Among the various whale species, the fin whale experienced the most drastic drop in number due to its popularity in whaling. Under this background, identifying fin whale calls could be immensely beneficial to the preservation of the species. This paper uses feature extraction to process the input audio signal, then a network based on AlexNet and three networks based on the ResNet model was constructed to classify fin whale calls. A mixture of the DOSITS database and the Watkins database was used during training. The results demonstrate that a modified ResNet network has the best performance considering precision and network complexity.Keywords: convolutional neural network, ResNet, AlexNet, fin whale preservation, feature extraction
Procedia PDF Downloads 1265033 Passenger Flow Characteristics of Seoul Metropolitan Subway Network
Authors: Kang Won Lee, Jung Won Lee
Abstract:
Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB
Procedia PDF Downloads 2915032 Analysis of Network Performance Using Aspect of Quantum Cryptography
Authors: Nisarg A. Patel, Hiren B. Patel
Abstract:
Quantum cryptography is described as a point-to-point secure key generation technology that has emerged in recent times in providing absolute security. Researchers have started studying new innovative approaches to exploit the security of Quantum Key Distribution (QKD) for a large-scale communication system. A number of approaches and models for utilization of QKD for secure communication have been developed. The uncertainty principle in quantum mechanics created a new paradigm for QKD. One of the approaches for use of QKD involved network fashioned security. The main goal was point-to-point Quantum network that exploited QKD technology for end-to-end network security via high speed QKD. Other approaches and models equipped with QKD in network fashion are introduced in the literature as. A different approach that this paper deals with is using QKD in existing protocols, which are widely used on the Internet to enhance security with main objective of unconditional security. Our work is towards the analysis of the QKD in Mobile ad-hoc network (MANET).Keywords: cryptography, networking, quantum, encryption and decryption
Procedia PDF Downloads 1855031 Communication Infrastructure Required for a Driver Behaviour Monitoring System, ‘SiaMOTO’ IT Platform
Authors: Dogaru-Ulieru Valentin, Sălișteanu Ioan Corneliu, Ardeleanu Mihăiță Nicolae, Broscăreanu Ștefan, Sălișteanu Bogdan, Mihai Mihail
Abstract:
The SiaMOTO system is a communications and data processing platform for vehicle traffic. The human factor is the most important factor in the generation of this data, as the driver is the one who dictates the trajectory of the vehicle. Like any trajectory, specific parameters refer to position, speed and acceleration. Constant knowledge of these parameters allows complex analyses. Roadways allow many vehicles to travel through their confined space, and the overlapping trajectories of several vehicles increase the likelihood of collision events, known as road accidents. Any such event has causes that lead to its occurrence, so the conditions for its occurrence are known. The human factor is predominant in deciding the trajectory parameters of the vehicle on the road, so monitoring it by knowing the events reported by the DiaMOTO device over time, will generate a guide to target any potentially high-risk driving behavior and reward those who control the driving phenomenon well. In this paper, we have focused on detailing the communication infrastructure of the DiaMOTO device with the traffic data collection server, the infrastructure through which the database that will be used for complex AI/DLM analysis is built. The central element of this description is the data string in CODEC-8 format sent by the DiaMOTO device to the SiaMOTO collection server database. The data presented are specific to a functional infrastructure implemented in an experimental model stage, by installing on a number of 50 vehicles DiaMOTO unique code devices, integrating ADAS and GPS functions, through which vehicle trajectories can be monitored 24 hours a day.Keywords: DiaMOTO, Codec-8, ADAS, GPS, driver monitoring
Procedia PDF Downloads 795030 The Reliability of Wireless Sensor Network
Authors: Bohuslava Juhasova, Igor Halenar, Martin Juhas
Abstract:
The wireless communication is one of the widely used methods of data transfer at the present days. The benefit of this communication method is the partial independence of the infrastructure and the possibility of mobility. In some special applications it is the only way how to connect. This paper presents some problems in the implementation of a sensor network connection for measuring environmental parameters in the area of manufacturing plants.Keywords: network, communication, reliability, sensors
Procedia PDF Downloads 6545029 Designing Emergency Response Network for Rail Hazmat Shipments
Authors: Ali Vaezi, Jyotirmoy Dalal, Manish Verma
Abstract:
The railroad is one of the primary transportation modes for hazardous materials (hazmat) shipments in North America. Installing an emergency response network capable of providing a commensurate response is one of the primary levers to contain (or mitigate) the adverse consequences from rail hazmat incidents. To this end, we propose a two-stage stochastic program to determine the location of and equipment packages to be stockpiled at each response facility. The raw input data collected from publicly available reports were processed, fed into the proposed optimization program, and then tested on a realistic railroad network in Ontario (Canada). From the resulting analyses, we conclude that the decisions based only on empirical datasets would undermine the effectiveness of the resulting network; coverage can be improved by redistributing equipment in the network, purchasing equipment with higher containment capacity, and making use of a disutility multiplier factor.Keywords: hazmat, rail network, stochastic programming, emergency response
Procedia PDF Downloads 1825028 The Coauthorship Network Analysis of the Norwegian School of Economics
Authors: Ivan Belik, Kurt Jornsten
Abstract:
We construct the coauthorship network based on the scientific collaboration between the faculty members at the Norwegian School of Economics (NHH) and based on their international academic publication experience. The network structure is based on the NHH faculties’ publications recognized by the ISI Web of Science for the period 1950 – Spring, 2014. The given network covers the publication activities of the NHH faculty members (over six departments) based on the information retrieved from the ISI Web of Science in Spring, 2014. In this paper we analyse the constructed coauthorship network in different aspects of the theory of social networks analysis.Keywords: coauthorship networks, social networks analysis, Norwegian School of Economics, ISI
Procedia PDF Downloads 4335027 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 905026 An Algorithm to Depreciate the Energy Utilization Using a Bio-Inspired Method in Wireless Sensor Network
Authors: Navdeep Singh Randhawa, Shally Sharma
Abstract:
Wireless Sensor Network is an autonomous technology emanating in the current scenario at a fast pace. This technology faces a number of defiance’s and energy management is one of them, which has a huge impact on the network lifetime. To sustain energy the different types of routing protocols have been flourished. The classical routing protocols are no more compatible to perform in complicated environments. Hence, in the field of routing the intelligent algorithms based on nature systems is a turning point in Wireless Sensor Network. These nature-based algorithms are quite efficient to handle the challenges of the WSN as they are capable of achieving local and global best optimization solutions for the complex environments. So, the main attention of this paper is to develop a routing algorithm based on some swarm intelligent technique to enhance the performance of Wireless Sensor Network.Keywords: wireless sensor network, routing, swarm intelligence, MPRSO
Procedia PDF Downloads 3535025 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax
Authors: Svitov David, Alyamkin Sergey
Abstract:
The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.Keywords: ArcFace, distillation, face recognition, margin-based softmax
Procedia PDF Downloads 1485024 Dynamics of Chirped RZ Modulation Format in GEPON Fiber to the Home (FTTH) Network
Authors: Anurag Sharma, Manoj Kumar, Ashima, Sooraj Parkash
Abstract:
The work in this paper presents simulative comparison for different modulation formats such as NRZ, Manchester and CRZ in a 100 subscribers at 5 Gbps bit rate Gigabit Ethernet Passive Optical Network (GEPON) FTTH network. It is observed from the simulation results that the CRZ modulation format is best suited for the designed system. A link design for 1:100 splitter is used as Passive Optical Network (PON) element which creates communication between central offices to different users. The Bit Error Rate (BER) is found to be 2.8535e-10 at 5 Gbit/s systems for CRZ modulation format.Keywords: PON , FTTH, OLT, ONU, CO, GEPON
Procedia PDF Downloads 7095023 Internet of Things: Route Search Optimization Applying Ant Colony Algorithm and Theory of Computer Science
Authors: Tushar Bhardwaj
Abstract:
Internet of Things (IoT) possesses a dynamic network where the network nodes (mobile devices) are added and removed constantly and randomly, hence the traffic distribution in the network is quite variable and irregular. The basic but very important part in any network is route searching. We have many conventional route searching algorithms like link-state, and distance vector algorithms but they are restricted to the static point to point network topology. In this paper we propose a model that uses the Ant Colony Algorithm for route searching. It is dynamic in nature and has positive feedback mechanism that conforms to the route searching. We have also embedded the concept of Non-Deterministic Finite Automata [NDFA] minimization to reduce the network to increase the performance. Results show that Ant Colony Algorithm gives the shortest path from the source to destination node and NDFA minimization reduces the broadcasting storm effectively.Keywords: routing, ant colony algorithm, NDFA, IoT
Procedia PDF Downloads 4445022 Driver of Migration and Appropriate Policy Concern Considering the Southwest Coastal Part of Bangladesh
Authors: Aminul Haque, Quazi Zahangir Hossain, Dilshad Sharmin Chowdhury
Abstract:
The human migration is getting growing concern around the world, and recurrent disasters and climate change impact have great influence on migration. Bangladesh is one of the disaster prone countries that/and has greater susceptibility to stress migration by recurrent disasters and climate change. The study was conducted to investigate the factors that have a strong influence on current migration and changing pattern of life and livelihood means of the southwest coastal part of Bangladesh. Moreover, the study also revealed a strong relationship between disasters and migration and appropriate policy concern. To explore this relation, both qualitative and quantitative methods were applied to a questionnaire survey at household level and simple random sampling technique used in the sampling process along with different secondary data sources for understanding policy concern and practices. The study explores the most influential driver of migration and its relationship with social, economic and environmental drivers. The study denotes that, the environmental driver has a greater effect on the intention of permanent migration (t=1.481, p-value=0.000) at the 1 percent significance level. The significant number of respondents denotes that abrupt pattern of cyclone, flood, salinity intrusion and rainfall are the most significant environmental driver to make a decision on permanent migration. The study also found that the temporary migration pattern has 2-fold increased compared to last ten (10) years. It also appears from the study that environmental factors have a great implication on the changing pattern of the occupation of the study area and it has reported that about 76% of the respondent now in the changing modality of livelihood compare to their traditional practices. The study bares that the migration has foremost impact on children and women by increasing hardship and creating critical social security. The exposure-route of permanent migration is not smooth indeed, these migrations creating urban and conflict in Chittagong hill tracks of Bangladesh. The study denotes that there is not any safeguard of the stress migrant on existing policy and not have any measures for safe migration and resettlement rather considering the emergency response and shelter. The majority of (98%) people believes that migration is not to be the adoption strategies, but contrary to this young group of respondent believes that safe migration could be the adaptation strategy which could bring a positive result compare to the other resilience strategies. On the other hand, the significant number of respondents uttered that appropriate policy measure could be an adaptation strategy for being the formation of a resilient community and reduce the migration by meaningful livelihood options with appropriate protection measure.Keywords: environmental driver, livelihood, migration, resilience
Procedia PDF Downloads 2655021 Relationship between Driving under the Influence and Traffic Safety
Authors: Eun Hak Lee, Young-Hyun Seo, Hosuk Shin, Seung-Young Kho
Abstract:
Among traffic crashes, driving under the influence (DUI) of alcohol is the most dangerous behavior in Seoul, South Korea. In 2016 alone 40 deaths occurred on of 2,857 cases of DUI. Since DUI is one of the major factors in increasing the severity of crashes, the intensive management of DUI required to reduce traffic crash deaths and the crash damages. This study aims to investigate the relationship between DUI and traffic safety in order to establish countermeasures for traffic safety improvement. The analysis was conducted on the habitual drivers who drove under the influence. Information of habitual drivers is matched to crash data and fine data. The descriptive statistics on data used in this study, which consists of driver license acquisition, traffic fine, and crash data provided by the Korean National Police Agency, are described. The drivers under the influence are classified by statistically significant criteria, such as driver’s age, license type, driving experience, and crash reasons. With the results of the analysis, we propose some countermeasures to enhance traffic safety.Keywords: driving under influence, traffic safety, traffic crash, traffic fine
Procedia PDF Downloads 2225020 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems
Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas
Abstract:
This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.Keywords: transportation networks, freight delivery, data flow, monitoring, e-services
Procedia PDF Downloads 1295019 Impact of Series Reactive Compensation on Increasing a Distribution Network Distributed Generation Hosting Capacity
Authors: Moataz Ammar, Ahdab Elmorshedy
Abstract:
The distributed generation hosting capacity of a distribution network is typically limited at a given connection point by the upper voltage limit that can be violated due to the injection of active power into the distribution network. The upper voltage limit violation concern becomes more important as the network equivalent resistance increases with respect to its equivalent reactance. This paper investigates the impact of modifying the distribution network equivalent reactance at the point of connection such that the upper voltage limit is violated at a higher distributed generation penetration, than it would without the addition of series reactive compensation. The results show that series reactive compensation proves efficient in certain situations (based on the ratio of equivalent network reactance to equivalent network resistance at the point of connection). As opposed to the conventional case of capacitive compensation of a distribution network to reduce voltage drop, inductive compensation is seen to be more appropriate for alleviation of distributed-generation-induced voltage rise.Keywords: distributed generation, distribution networks, series compensation, voltage rise
Procedia PDF Downloads 3985018 Securing Mobile Ad-Hoc Network Utilizing OPNET Simulator
Authors: Tariq A. El Shheibia, Halima Mohamed Belhamad
Abstract:
This paper is considered securing data based on multi-path protocol (SDMP) in mobile ad hoc network utilizing OPNET simulator modular 14.5, including the AODV routing protocol at the network as based multi-path algorithm for message security in MANETs. The main idea of this work is to present a way that is able to detect the attacker inside the MANETs. The detection for this attacker will be performed by adding some effective parameters to the network.Keywords: MANET, AODV, malicious node, OPNET
Procedia PDF Downloads 2975017 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks
Authors: Rei-Heng Cheng, Wen-Pinn Fang
Abstract:
A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks
Procedia PDF Downloads 3935016 Factors of Social Network Platform Usage and Privacy Risk: A Unified Theory of Acceptance and Use of Technology2 Model
Abstract:
The trust and use of social network platforms by users are instrumental factors that contribute to the platform’s sustainable development. Studying the influential factors of the use of social network platforms is beneficial for developing and maintaining a large user base. This study constructed an extended unified theory of acceptance and use of technology (UTAUT2) moderating model with perceived privacy risks to analyze the factors affecting the trust and use of social network platforms. 444 participants completed our 35 surveys, and we verified the survey results by structural equation model. Empirical results reveal the influencing factors that affect the trust and use of social network platforms, and the extended UTAUT2 model with perceived privacy risks increases the applicability of UTAUT2 in social network scenarios. Social networking platforms can increase their use rate by increasing the economics, functionality, entertainment, and privacy security of the platform.Keywords: perceived privacy risk, social network, trust, use, UTAUT2 model
Procedia PDF Downloads 995015 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation
Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton
Abstract:
Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication
Procedia PDF Downloads 1725014 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index
Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei
Abstract:
Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.Keywords: exchange index, forecasting, perceptron neural network, Tehran stock exchange
Procedia PDF Downloads 4655013 Mapping Network Connection of Personality Traits and Psychiatric Symptoms in Chinese Adolescents
Authors: Yichao Lv, Minmin Cai, Yanqiang Tao, Xinyuan Zou, Chao Zhang, Xiangping Liu
Abstract:
Objective: This study aims to explore the network structure of personality traits and mental health and identify key factors for effective intervention strategies. Methods: All participants (N = 6,067; 3,368 females) underwent the Eysenck Personality Scale (EPQ) to measure personality traits and the Symptom Self-rating Scale (SCL-90) to measure psychiatric symptoms. Using the mean value of the SCL-90 total score plus one standard deviation as the cutoff, 854 participants (14.08%; 528 females) were categorized as individuals exhibiting potential psychological symptoms and were included in the follow-up network analysis. The structure and bridge centrality of the network for dimensions of EPQ and SCL-90 were estimated. Results: Between the EPQ and SCL-90, psychoticism (P), extraversion (E), and neuroticism (N) showed the strongest positive correlations with somatization (Som), interpersonal sensitivity (IS), and hostility (Hos), respectively. Extraversion (E), somatization (Som), and anxiety (Anx) were identified as the most important bridge factors influencing the overall network. Conclusions: This study explored the network structure and complex connections between mental health and personality traits from a network perspective, providing potential targets for intervening in adolescent personality traits and mental health.Keywords: EPQ, SCL-90, Chinese adolescents, network analysis
Procedia PDF Downloads 485012 NSBS: Design of a Network Storage Backup System
Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan
Abstract:
The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.Keywords: agent, network backup system, three architecture model, NSBS
Procedia PDF Downloads 4605011 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3995010 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment
Procedia PDF Downloads 4355009 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm
Authors: Alireza Alesaadi
Abstract:
Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering
Procedia PDF Downloads 5135008 GIS-Based Topographical Network for Minimum “Exertion” Routing
Authors: Katherine Carl Payne, Moshe Dror
Abstract:
The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.Keywords: topograph, RPE, routing, GIS
Procedia PDF Downloads 5475007 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 383