Search results for: multilingual sentiment analysis
27833 Voice of Customer: Mining Customers' Reviews on On-Line Car Community
Authors: Kim Dongwon, Yu Songjin
Abstract:
This study identifies the business value of VOC (Voice of Customer) on the business. Precisely, we intend to demonstrate how much negative and positive sentiment of VOC has an influence on car sales market share in the unites states. We extract 7 emotions such as sadness, shame, anger, fear, frustration, delight and satisfaction from the VOC data, 23,204 pieces of opinions, that had been posted on car-related on-line community from 2007 to 2009(a part of data collection from 2007 to 2015), and intend to clarify the correlation between negative and positive sentimental keywords and contribution to market share. In order to develop a lexicon for each category of negative and positive sentiment, we took advantage of Corpus program, Antconc 3.4.1.w and on-line sentimental data, SentiWordNet and identified the part of speech(POS) information of words in the customers' opinion by using a part-of-speech tagging function provided by TextAnalysisOnline. For the purpose of this present study, a total of 45,741 pieces of customers' opinions of 28 car manufacturing companies had been collected including titles and status information. We conducted an experiment to examine whether the inclusion, frequency and intensity of terms with negative and positive emotions in each category affect the adoption of customer opinions for vehicle organizations' market share. In the experiment, we statistically verified that there is correlation between customer ideas containing negative and positive emotions and variation of marker share. Particularly, "Anger," a domain of negative domains, is significantly influential to car sales market share. The domain "Delight" and "Satisfaction" increased in proportion to growth of market share.Keywords: data mining, opinion mining, sentiment analysis, VOC
Procedia PDF Downloads 21427832 The Power of Public Opinion in the Xinhai Revolution: Media, Public Sentiment, and Social Mobilization
Authors: Yu Yaochuan
Abstract:
This paper explores the pivotal role of public opinion during the Xinhai Revolution. Examining the dynamics of public sentiment in Chinese society in 1911 shows how information dissemination, ideological propaganda, and public mobilization worked together to drive the revolution to success. The study highlights the indispensable role of revolutionary newspapers, assemblies, and speeches in spreading revolutionary ideas, mobilizing the public, and shaping policy perceptions. By analyzing these historical events, the paper provides a deeper insight into the Xinhai Revolution and offers theoretical and empirical support for understanding the application of public opinion in modern social and political transformations.Keywords: Xinhai Revolution, public opinion, social mobilization, information dissemination, ideology, political transformation
Procedia PDF Downloads 4327831 Exploring Tweeters’ Concerns and Opinions about FIFA Arab Cup 2021: An Investigation Study
Authors: Md. Rafiul Biswas, Uzair Shah, Mohammad Alkayal, Zubair Shah, Othman Althawadi, Kamila Swart
Abstract:
Background: Social media platforms play a significant role in the mediated consumption of sport, especially so for sport mega-event. The characteristics of Twitter data (e.g., user mentions, retweets, likes, #hashtag) accumulate the users in one ground and spread information widely and quickly. Analysis of Twitter data can reflect the public attitudes, behavior, and sentiment toward a specific event on a larger scale than traditional surveys. Qatar is going to be the first Arab country to host the mega sports event FIFA World Cup 2022 (Q22). Qatar has hosted the FIFA Arab Cup 2021 (FAC21) to serve as a preparation for the mega-event. Objectives: This study investigates public sentiments and experiences about FAC21 and provides an insight to enhance the public experiences for the upcoming Q22. Method: FCA21-related tweets were downloaded using Twitter Academic research API between 01 October 2021 to 18 February 2022. Tweets were divided into three different periods: before T1 (01 Oct 2021 to 29 Nov 2021), during T2 (30 Nov 2021 -18 Dec 2021), and after the FAC21 T3 (19 Dec 2021-18 Feb 2022). The collected tweets were preprocessed in several steps to prepare for analysis; (1) removed duplicate and retweets, (2) removed emojis, punctuation, and stop words (3) normalized tweets using word lemmatization. Then, rule-based classification was applied to remove irrelevant tweets. Next, the twitter-XLM-roBERTa-base model from Huggingface was applied to identify the sentiment in the tweets. Further, state-of-the-art BertTopic modeling will be applied to identify trending topics over different periods. Results: We downloaded 8,669,875 Tweets posted by 2728220 unique users in different languages. Of those, 819,813 unique English tweets were selected in this study. After splitting into three periods, 541630, 138876, and 139307 were from T1, T2, and T3, respectively. Most of the sentiments were neutral, around 60% in different periods. However, the rate of negative sentiment (23%) was high compared to positive sentiment (18%). The analysis indicates negative concerns about FAC21. Therefore, we will apply BerTopic to identify public concerns. This study will permit the investigation of people’s expectations before FAC21 (e.g., stadium, transportation, accommodation, visa, tickets, travel, and other facilities) and ascertain whether these were met. Moreover, it will highlight public expectations and concerns. The findings of this study can assist the event organizers in enhancing implementation plans for Q22. Furthermore, this study can support policymakers with aligning strategies and plans to leverage outstanding outcomes.Keywords: FIFA Arab Cup, FIFA, Twitter, machine learning
Procedia PDF Downloads 10027830 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 14227829 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis
Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie
Abstract:
Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis
Procedia PDF Downloads 8327828 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis
Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu
Abstract:
Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding
Procedia PDF Downloads 16727827 The Multi-Lingual Acquisition Patterns of Elementary, High School and College Students in Angeles City, Philippines
Authors: Dennis Infante, Leonora Yambao
Abstract:
The Philippines is a multilingual community. A Filipino learns at least three languages throughout his lifespan. Since languages are learned and picked up simultaneously in the environment, a student naturally develops a language system that combines features of at least three languages: the local language, English and Filipino. This study seeks to investigate this particular phenomenon and aspires to propose a theoretical framework of unique language acquisition in the elementary, high school and college in the three languages spoken and used in media, community, business and school: Kapampangan, the local language; Filipino, the national language; and English. The study randomly selects five students from three participating schools in order to acquire language samples. The samples were analyzed in the subsentential, sentential and suprasentential levels using grammatical theories. The data are classified to map out the pattern of substitution or shifting from one language to another.Keywords: language acquisition, mother tongue, multiculturalism, multilingual education
Procedia PDF Downloads 38027826 Hospitality Management to Welcome Foreign Guests in the Japanese Lodging Industry
Authors: Shunichiro Morishita
Abstract:
This study examines the factors for attracting foreign guests in the Japanese lodging industry and discusses some measures taken for accepting foreign guests. It reviews three different accommodation providers acclaimed highly by foreign guests, Yamashiroya, Sawanoya and Fuji-Hakone Guest House, and identifies their characteristics. The common points for attracting foreign guests were: 1) making the best use of the old facilities, 2) multilingual signs, guidance and websites, 3) necessary and sufficient communication in English, 4) events and opportunities to experience Japanese culture, 5) omotenashi, warm and homely Japanese hospitality. These findings indicate that foreign guests’ dissatisfaction level can be decreased through internationalization utilizing ICT and by offering multilingual support. On the other hand, their satisfaction level can be increased by encouraging interaction with other guests and local Japanese people, providing events and opportunities to experience Japanese culture and omotenashi, home-style Japanese hospitality.Keywords: hospitality management, foreign guests, Japanese lodging industry, Omotenashi
Procedia PDF Downloads 15927825 Errors in Selected Writings of EFL Students: A Study of Department of English, Taraba State University, Jalingo, Nigeria
Authors: Joy Aworookoroh
Abstract:
Writing is one of the active skills in language learning. Students of English as a foreign language are expected to write efficiently and proficiently in the language; however, there are usually challenges to optimal performance and competence in writing. Errors, on the other hand, in a foreign language learning situation are more positive than negative as they provide the basis for solving the limitations of the students. This paper investigates the situation in the Department of English, Taraba State University Jalingo. Students are administered a descriptive writing test across different levels of study. The target students are multilingual with an L1 of either Kuteb, Hausa or Junkun languages. The essays are accessed to identify the different kinds of errors in them alongside the classification of the order. Errors of correctness, clarity, engagement, and delivery were identified. However, the study identified that the degree of errors reduces alongside the experience and exposure of the students to an EFL classroom.Keywords: errors, writings, descriptive essay, multilingual
Procedia PDF Downloads 6327824 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective
Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar
Abstract:
There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts
Procedia PDF Downloads 11427823 Kazakh Language Assessment in a New Multilingual Kazakhstan
Authors: Karlygash Adamova
Abstract:
This article is focused on the KazTest as one of the most important high-stakes tests and the key tool in Kazakh language assessment. The research will also include the brief introduction to the language policy in Kazakhstan. Particularly, it is going to be changed significantly and turn from bilingualism (Kazakh, Russian) to multilingual policy (three languages - Kazakh, Russian, English). Therefore, the current status of the abovementioned languages will be described. Due to the various educational reforms in the country, the language evaluation system should also be improved and moderated. The research will present the most significant test of Kazakhstan – the KazTest, which is aimed to evaluate the Kazakh language proficiency. Assessment is an ongoing process that encompasses a wide area of knowledge upon the productive performance of the learners. Test is widely defined as a standardized or standard method of research, testing, diagnostics, verification, etc. The two most important characteristics of any test, as the main element of the assessment - validity and reliability - will also be described in this paper. Therefore, the preparation and design of the test, which is assumed to be an indicator of knowledge, and it is highly important to take into account all these properties.Keywords: multilingualism, language assessment, testing, language policy
Procedia PDF Downloads 13627822 The Impact of Financial News and Press Freedom on Abnormal Returns around Earnings Announcements in Greater China
Authors: Yu-Chen Wei, Yang-Cheng Lu, I-Chi Lin
Abstract:
This study examines the impacts of news sentiment and press freedom on abnormal returns during the earnings announcement in greater China including the Shanghai, Shenzhen and Taiwan stock markets. The news sentiment ratio is calculated by using the content analysis of semantic orientation. The empirical results show that news released prior to the event date may decrease the cumulative abnormal returns prior to the earnings announcement regardless of whether it is released in China or Taiwan. By contrast, companies with optimistic financial news may increase the cumulative abnormal returns during the announcement date. Furthermore, the difference in terms of press freedom is considered in greater China to compare the impact of press freedom on abnormal returns. The findings show that, the freer the press is, the more negatively significant will be the impact of news on the abnormal returns, which means that the press freedom may decrease the ability of the news to impact the abnormal returns. The intuition is that investors may receive alternative news related to each company in the market with greater press freedom, which proves the efficiency of the market and reduces the possible excess returns.Keywords: news, press freedom, Greater China, earnings announcement, abnormal returns
Procedia PDF Downloads 39327821 Volatility Index, Fear Sentiment and Cross-Section of Stock Returns: Indian Evidence
Authors: Pratap Chandra Pati, Prabina Rajib, Parama Barai
Abstract:
The traditional finance theory neglects the role of sentiment factor in asset pricing. However, the behavioral approach to asset-pricing based on noise trader model and limit to arbitrage includes investor sentiment as a priced risk factor in the assist pricing model. Investor sentiment affects stock more that are vulnerable to speculation, hard to value and risky to arbitrage. It includes small stocks, high volatility stocks, growth stocks, distressed stocks, young stocks and non-dividend-paying stocks. Since the introduction of Chicago Board Options Exchange (CBOE) volatility index (VIX) in 1993, it is used as a measure of future volatility in the stock market and also as a measure of investor sentiment. CBOE VIX index, in particular, is often referred to as the ‘investors’ fear gauge’ by public media and prior literature. The upward spikes in the volatility index are associated with bouts of market turmoil and uncertainty. High levels of the volatility index indicate fear, anxiety and pessimistic expectations of investors about the stock market. On the contrary, low levels of the volatility index reflect confident and optimistic attitude of investors. Based on the above discussions, we investigate whether market-wide fear levels measured volatility index is priced factor in the standard asset pricing model for the Indian stock market. First, we investigate the performance and validity of Fama and French three-factor model and Carhart four-factor model in the Indian stock market. Second, we explore whether India volatility index as a proxy for fearful market-based sentiment indicators affect the cross section of stock returns after controlling for well-established risk factors such as market excess return, size, book-to-market, and momentum. Asset pricing tests are performed using monthly data on CNX 500 index constituent stocks listed on the National stock exchange of India Limited (NSE) over the sample period that extends from January 2008 to March 2017. To examine whether India volatility index, as an indicator of fear sentiment, is a priced risk factor, changes in India VIX is included as an explanatory variable in the Fama-French three-factor model as well as Carhart four-factor model. For the empirical testing, we use three different sets of test portfolios used as the dependent variable in the in asset pricing regressions. The first portfolio set is the 4x4 sorts on the size and B/M ratio. The second portfolio set is the 4x4 sort on the size and sensitivity beta of change in IVIX. The third portfolio set is the 2x3x2 independent triple-sorting on size, B/M and sensitivity beta of change in IVIX. We find evidence that size, value and momentum factors continue to exist in Indian stock market. However, VIX index does not constitute a priced risk factor in the cross-section of returns. The inseparability of volatility and jump risk in the VIX is a possible explanation of the current findings in the study.Keywords: India VIX, Fama-French model, Carhart four-factor model, asset pricing
Procedia PDF Downloads 25227820 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques
Authors: Ved Kulkarni, Karthik Kini
Abstract:
This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.Keywords: data mining, language processing, artificial neural networks, sentiment analysis
Procedia PDF Downloads 1727819 Capturing Public Voices: The Role of Social Media in Heritage Management
Authors: Mahda Foroughi, Bruno de Anderade, Ana Pereira Roders
Abstract:
Social media platforms have been increasingly used by locals and tourists to express their opinions about buildings, cities, and built heritage in particular. Most recently, scholars have been using social media to conduct innovative research on built heritage and heritage management. Still, the application of artificial intelligence (AI) methods to analyze social media data for heritage management is seldom explored. This paper investigates the potential of short texts (sentences and hashtags) shared through social media as a data source and artificial intelligence methods for data analysis for revealing the cultural significance (values and attributes) of built heritage. The city of Yazd, Iran, was taken as a case study, with a particular focus on windcatchers, key attributes conveying outstanding universal values, as inscribed on the UNESCO World Heritage List. This paper has three subsequent phases: 1) state of the art on the intersection of public participation in heritage management and social media research; 2) methodology of data collection and data analysis related to coding people's voices from Instagram and Twitter into values of windcatchers over the last ten-years; 3) preliminary findings on the comparison between opinions of locals and tourists, sentiment analysis, and its association with the values and attributes of windcatchers. Results indicate that the age value is recognized as the most important value by all interest groups, while the political value is the least acknowledged. Besides, the negative sentiments are scarcely reflected (e.g., critiques) in social media. Results confirm the potential of social media for heritage management in terms of (de)coding and measuring the cultural significance of built heritage for windcatchers in Yazd. The methodology developed in this paper can be applied to other attributes in Yazd and also to other case studies.Keywords: social media, artificial intelligence, public participation, cultural significance, heritage, sentiment analysis
Procedia PDF Downloads 11327818 Emotion Mining and Attribute Selection for Actionable Recommendations to Improve Customer Satisfaction
Authors: Jaishree Ranganathan, Poonam Rajurkar, Angelina A. Tzacheva, Zbigniew W. Ras
Abstract:
In today’s world, business often depends on the customer feedback and reviews. Sentiment analysis helps identify and extract information about the sentiment or emotion of the of the topic or document. Attribute selection is a challenging problem, especially with large datasets in actionable pattern mining algorithms. Action Rule Mining is one of the methods to discover actionable patterns from data. Action Rules are rules that help describe specific actions to be made in the form of conditions that help achieve the desired outcome. The rules help to change from any undesirable or negative state to a more desirable or positive state. In this paper, we present a Lexicon based weighted scheme approach to identify emotions from customer feedback data in the area of manufacturing business. Also, we use Rough sets and explore the attribute selection method for large scale datasets. Then we apply Actionable pattern mining to extract possible emotion change recommendations. This kind of recommendations help business analyst to improve their customer service which leads to customer satisfaction and increase sales revenue.Keywords: actionable pattern discovery, attribute selection, business data, data mining, emotion
Procedia PDF Downloads 19927817 Contact Phenomena in Medieval Business Texts
Authors: Carmela Perta
Abstract:
Among the studies flourished in the field of historical sociolinguistics, mainly in the strand devoted to English history, during its Medieval and early modern phases, multilingual texts had been analysed using theories and models coming from contact linguistics, thus applying synchronic models and approaches to the past. This is true also in the case of contact phenomena which would transcend the writing level involving the language systems implicated in contact processes to the point of perceiving a new variety. This is the case for medieval administrative-commercial texts in which, according to some Scholars, the degree of fusion of Anglo-Norman, Latin and middle English is so high a mixed code emerges, and there are recurrent patterns of mixed forms. Interesting is a collection of multilingual business writings by John Balmayn, an Englishman overseeing a large shipment in Tuscany, namely the Cantelowe accounts. These documents display various analogies with multilingual texts written in England in the same period; in fact, the writer seems to make use of the above-mentioned patterns, with Middle English, Latin, Anglo-Norman, and the newly added Italian. Applying an atomistic yet dynamic approach to the study of contact phenomena, we will investigate these documents, trying to explore the nature of the switching forms they contain from an intra-writer variation perspective. After analysing the accounts and the type of multilingualism in them, we will take stock of the assumed mixed code nature, comparing the characteristics found in this genre with modern assumptions. The aim is to evaluate the possibility to consider the switching forms as core elements of a mixed code, used as professional variety among merchant communities, or whether such texts should be analysed from a switching perspective.Keywords: historical sociolinguistics, historical code switching, letters, medieval england
Procedia PDF Downloads 7527816 Supporting Young Emergent Multilingual Learners in Prekindergarten Classrooms: Policy Implications
Authors: Tiedan Huang, Chun Zhang, Caitlin Coe
Abstract:
This study investigated the quality of instructional support for young Emergent Multilingual Learners (EMLs) in 50 Universal Prekindergarten (UPK) classroom in New York City (NYC). This is one of the first empirical studies examining the instructional support for this student population. We collected data using a mixed method of structured observations of teacher-child interactions in 50 classrooms, and surveys and interviews with program leaders and the teaching teams. We found that NYC’s UPK classrooms offered warm and supportive environments for EMLs. Nevertheless, in general, instructional support was relatively low. This study identified large mindset, knowledge, and practice gaps—and a real opportunity—among NYC early childhood professionals, specifically in the areas of providing adequate instructional and linguistic support for EMLs as well as partnering with families in capturing their cultural and home literacy assets. Consistent, rigorous, and meaningful use of data is necessary to support both EMLs’ language and literacy development and teachers’/leaders’ professional development.Keywords: high quality instruction, culturally and linguistically responsive practices, professional development, workforce development
Procedia PDF Downloads 8027815 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation
Procedia PDF Downloads 20627814 Evaluating the Impact of English Immersion in Kolkata’s High-Cost Private Schools
Authors: Ashmita Bhattacharya
Abstract:
This study aims to investigate whether the English immersion experience offered by Kolkata’s high-cost private English-medium schools lead to additive or subtractive language learning outcomes for students. In India, English has increasingly become associated with power, social status, and socio-economic mobility. As a result, a proliferation of English-medium schools has emerged across Kolkata and the wider Indian context. While in some contexts, English language learning can be an additive experience, in others, it can be subtractive where proficiency in English is developed at the expense of students’ native language proficiency development. Subtractive educational experiences can potentially have severe implications, including heritage language loss, detachment from cultural roots, and a diminished sense of national identity. Thus, with the use of semi-structured interviews, the language practices and lived experiences of 12 former students who attended high-cost private English-medium schools in Kolkata were thoroughly explored. The data collected was thematically coded and analysis was conducted using the Thematic Analysis approach. The findings indicate that the English immersion experience at Kolkata’s high-cost private English-medium schools provide a subtractive language learning experience to students. Additionally, this study suggests that robust home-based support for native languages might be crucial for mitigating the effects of subtractive English education. Furthermore, the study underscores the importance of integrating opportunities within schools that promote Indian languages and cultures as it can create a more positive, inclusive, and culturally responsive environment. Finally, although subject to further evaluation, the study recommends the implementation of bilingual and multilingual educational systems and provides suggestions for future research in this area.Keywords: bilingual education, English immersion, language loss, multilingual education, subtractive language learning
Procedia PDF Downloads 2927813 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 42327812 ExactData Smart Tool For Marketing Analysis
Authors: Aleksandra Jonas, Aleksandra Gronowska, Maciej Ścigacz, Szymon Jadczak
Abstract:
Exact Data is a smart tool which helps with meaningful marketing content creation. It helps marketers achieve this by analyzing the text of an advertisement before and after its publication on social media sites like Facebook or Instagram. In our research we focus on four areas of natural language processing (NLP): grammar correction, sentiment analysis, irony detection and advertisement interpretation. Our research has identified a considerable lack of NLP tools for the Polish language, which specifically aid online marketers. In light of this, our research team has set out to create a robust and versatile NLP tool for the Polish language. The primary objective of our research is to develop a tool that can perform a range of language processing tasks in this language, such as sentiment analysis, text classification, text correction and text interpretation. Our team has been working diligently to create a tool that is accurate, reliable, and adaptable to the specific linguistic features of Polish, and that can provide valuable insights for a wide range of marketers needs. In addition to the Polish language version, we are also developing an English version of the tool, which will enable us to expand the reach and impact of our research to a wider audience. Another area of focus in our research involves tackling the challenge of the limited availability of linguistically diverse corpora for non-English languages, which presents a significant barrier in the development of NLP applications. One approach we have been pursuing is the translation of existing English corpora, which would enable us to use the wealth of linguistic resources available in English for other languages. Furthermore, we are looking into other methods, such as gathering language samples from social media platforms. By analyzing the language used in social media posts, we can collect a wide range of data that reflects the unique linguistic characteristics of specific regions and communities, which can then be used to enhance the accuracy and performance of NLP algorithms for non-English languages. In doing so, we hope to broaden the scope and capabilities of NLP applications. Our research focuses on several key NLP techniques including sentiment analysis, text classification, text interpretation and text correction. To ensure that we can achieve the best possible performance for these techniques, we are evaluating and comparing different approaches and strategies for implementing them. We are exploring a range of different methods, including transformers and convolutional neural networks (CNNs), to determine which ones are most effective for different types of NLP tasks. By analyzing the strengths and weaknesses of each approach, we can identify the most effective techniques for specific use cases, and further enhance the performance of our tool. Our research aims to create a tool, which can provide a comprehensive analysis of advertising effectiveness, allowing marketers to identify areas for improvement and optimize their advertising strategies. The results of this study suggest that a smart tool for advertisement analysis can provide valuable insights for businesses seeking to create effective advertising campaigns.Keywords: NLP, AI, IT, language, marketing, analysis
Procedia PDF Downloads 8527811 Multilingual Students Acting as Language Brokers in Italy: Their Points of View and Feelings towards This Activity
Authors: Federica Ceccoli
Abstract:
Italy is undergoing one of its largest migratory waves, and Italian schools are reporting the highest numbers of multilingual students coming from immigrant families and speaking minority languages. For these pupils, who have not perfectly acquired their mother tongue yet, learning a second language may represent a burden on their linguistic development and may have some repercussions on their school performances and relational skills. These are some of the reasons why they have turned out to be those who have the worst grades and the highest school drop-out rates. However, despite these negative outcomes, it has been demonstrated that multilingual immigrant students frequently act as translators or language brokers for their peers or family members who do not speak Italian fluently. This activity has been defined as Child Language Brokering (hereinafter CLB) and it has become a common practice especially in minority communities as immigrants’ children often learn the host language much more quickly than their parents, thus contributing to their family life by acting as language and cultural mediators. This presentation aims to analyse the data collected by a research carried out during the school year 2014-2015 in the province of Ravenna, in the Northern Italian region of Emilia-Romagna, among 126 immigrant students attending junior high schools. The purpose of the study was to analyse by means of a structured questionnaire whether multilingualism matched with language brokering experiences or not and to examine the perspectives of those students who reported having acted as translators using their linguistic knowledge to help people understand each other. The questionnaire consisted of 34 items roughly divided into 2 sections. The first section required multilingual students to provide personal details like their date and place of birth, as well as details about their families (number of siblings, parents’ jobs). In the second section, they were asked about the languages spoken in their families as well as their language brokering experience. The in-depth questionnaire sought to investigate a wide variety of brokering issues such as frequency and purpose of the activity, where, when and which documents young language brokers translate and how they feel about this practice. The results have demonstrated that CLB is a very common practice among immigrants’ children living in Ravenna and almost all students reported positive feelings when asked about their brokering experience with their families and also at school. In line with previous studies, responses to the questionnaire item regarding the people they brokered for revealed that the category ranking first is parents. Similarly, language-brokering activities tend to occur most often at home and the documents they translate the most (either orally or in writing) are notes from teachers. Such positive feelings towards this activity together with the evidence that it occurs very often in schools have laid the foundation for further projects on how this common practice may be valued and used to strengthen the linguistic skills of these multilingual immigrant students and thus their school performances.Keywords: immigration, language brokering, multilingualism, students' points of view
Procedia PDF Downloads 17927810 Children and Communities Benefit from Mother-Tongue Based Multi-Lingual Education
Authors: Binay Pattanayak
Abstract:
Multilingual state, Jharkhand is home to more than 19 tribal and regional languages. These are used by more than 33 communities in the state. The state has declared 12 of these languages as official languages of the state. However, schools in the state do not recognize any of these community languages even in early grades! Children, who speak in their mother tongues at home, local market and playground, find it very difficult to understand their teacher and textbooks in school. They fail to acquire basic literacy and numeracy skills in early grades. Out of frustration due to lack of comprehension, the majority of children leave school. Jharkhand sees the highest dropout in early grades in India. To address this, the state under the guidance of the author designed a mother tongue based pre-school education programme named Bhasha Puliya and bilingual picture dictionaries in 9 tribal and regional mother tongues of children. This contributed significantly to children’s school readiness in the school. Followed by this, the state designed a mother-tongue based multilingual education programme (MTB-MLE) for multilingual context. The author guided textbook development in 5 tribal (Santhali, Mundari, Ho, Kurukh and Kharia) and two regional (Odia and Bangla) languages. Teachers and community members were trained for MTB-MLE in around 1,000 schools of the concerned language pockets. Community resource groups were constituted along with their academic calendars in each school to promote story-telling, singing, painting, dancing, riddles, etc. with community support. This, on the one hand, created rich learning environments for children. On the other hand, the communities have discovered a great potential in the process of developing a wide variety of learning materials for children in own mother-tongue using their local stories, songs, riddles, paintings, idioms, skits, etc. as a process of their literary, cultural and technical enrichment. The majority of children are acquiring strong early grade reading skills (basic literacy and numeracy) in grades I-II thereby getting well prepared for higher studies. In a phased manner they are learning Hindi and English after 4-5 years of MTB-MLE using the foundational language learning skills. Community members have started designing new books, audio-visual learning materials in their mother-tongues seeing a great potential for their cultural and technological rejuvenation.Keywords: community resource groups, MTB-MLE, multilingual, socio-linguistic survey, learning
Procedia PDF Downloads 19727809 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot
Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.
Abstract:
Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud
Procedia PDF Downloads 7327808 A Syntactic Errors Analysis in the Malaysian ESL Learners' Written Composition
Authors: Annie Gedion, Johan Severinus Tati, Jacinta Caroline Peter
Abstract:
Syntax error analysis studies have a significant role in English language teaching especially in the second language. This study investigates the syntax errors in written composition by 50 multilingual ESL learners in Politeknik Kota Kinabalu Sabah, Malaysia. The subjects speak their own dialect, Malay as their second language and English as their third or foreign language. Data were collected from the written discourse in the form of descriptive essays. The subjects were asked to write in the classroom within 45 minutes. 15 categories of errors were classified into a set of syntactic categories and were analysed based on the five steps of the syntactic analysis procedure. The findings of the study showed that the mother tongue interference, as well as lack of vocabulary and grammar knowledge, were the major sources of syntax errors in the learners’ written composition. Learners should be exposed to the differentiation of Malay and English grammar to avoid interference and effective learning of second language writing.Keywords: errors analysis, syntactic analysis, English as a second language, ESL writing
Procedia PDF Downloads 28327807 Translanguaging as a Decolonial Move in South African Bilingual Classrooms
Authors: Malephole Philomena Sefotho
Abstract:
Nowadays, it is a fact that the majority of people, worldwide, are bilingual rather than monolingual due to the surge of globalisation and mobility. Consequently, bilingual education is a topical issue of discussion among researchers. Several studies that have focussed on it have highlighted the importance and need for incorporating learners’ linguistic repertoires in multilingual classrooms and move away from the colonial approach which is a monolingual bias – one language at a time. Researchers pointed out that a systematic approach that involves the concurrent use of languages and not a separation of languages must be implemented in bilingual classroom settings. Translanguaging emerged as a systematic approach that assists learners to make meaning of their world and it involves allowing learners to utilize all their linguistic resources in their classrooms. The South African language policy also room for diverse languages use in bi/multilingual classrooms. This study, therefore, sought to explore how teachers apply translanguaging in bilingual classrooms in incorporating learners’ linguistic repertoires. It further establishes teachers’ perspectives in the use of more than one language in teaching and learning. The participants for this study were language teachers who teach at bilingual primary schools in Johannesburg in South Africa. Semi-structured interviews were conducted to establish their perceptions on the concurrent use of languages. Qualitative research design was followed in analysing data. The findings showed that teachers were reluctant to allow translanguaging to take place in their classrooms even though they realise the importance thereof. Not allowing bilingual learners to use their linguistic repertoires has resulted in learners’ negative attitude towards their languages and contributed in learners’ loss of their identity. This article, thus recommends a drastic change to decolonised approaches in teaching and learning in multilingual settings and translanguaging as a decolonial move where learners are allowed to translanguage freely in their classroom settings for better comprehension and making meaning of concepts and/or related ideas. It further proposes continuous conversations be encouraged to bring eminent cultural and linguistic genocide to a halt.Keywords: bilingualism, decolonisation, linguistic repertoires, translanguaging
Procedia PDF Downloads 17927806 Investigating University Language Teacher’s Perception of Their Identities in the Algerian Multilingual Context
Authors: Yousra Drissi
Abstract:
This research explores language teacher identity in a multilingual context where both teachers and students come from different linguistic backgrounds. It seeks to understand how teachers perceive themselves as language teachers in this context in relation to different influencing factors, both internal and external. This study is being conducted due to the importance of language teacher identity (LTI) in the university context, which is being neglected in the present literature (in an attempt to address the gap in the present literature). The broader aim of this study is to bring attention to language teacher identity along with the different influencing elements which can either promote or hinder its development. In this research, we are using the sociocultural theory and post-structural theory. This research uses the mixed methods approach to collect and analyse relevant data. A structured survey was distributed to language teachers from different universities around Algeria, followed by in-depth interviews. Results are supposed to show the different points in self-perception that these teachers share or differ in. they will also help us identify the different internal and external factors that can be of influence. However, the results of this research can be used by institutions as well as decision-makers to better understand university teachers and help them improve their teaching practices by empowering their language teacher identity, starting from teacher education programs to continuous teacher development programs.Keywords: identity, language teacher identity, multilingualism, university teacher
Procedia PDF Downloads 7727805 Retrospection and Introspection on the Three-Decade Sight Translation Research in China—Bibliometric Analysis of CNKI (1987—2015) Relevant Articles
Authors: Wei Deng
Abstract:
Based on sorting and analyzing related literature on CNKI for nearly three decades between 1987—2015, this paper, adopting the method of bibliometrics, summarized and reviewed the domestic research on sight translation from three aspects. The analysis concluded the following findings: 1) The majority research had focused on the noumenon of sight translation. The rest of the three main research perspectives are in descending order: sight translation teaching, sight translation skills and other associated skills, and cognitive research of sight translation. 2) The domestic research increased significantly in recent five years, but there is much room for the quality. 3) The non-empirical study has had higher proportion, while the empirical study is unitary with the lack of triangle validation. This paper suggested that sight translation being in sore need of unified definition, multilingual, even interdisciplinary cooperation.Keywords: bibliometric analysis, perspectives, sight translation, tendency
Procedia PDF Downloads 33627804 A Recommender System for Job Seekers to Show up Companies Based on Their Psychometric Preferences and Company Sentiment Scores
Authors: A. Ashraff
Abstract:
The increasing importance of the web as a medium for electronic and business transactions has served as a catalyst or rather a driving force for the introduction and implementation of recommender systems. Recommender Systems play a major role in processing and analyzing thousands of data rows or reviews and help humans make a purchase decision of a product or service. It also has the ability to predict whether a particular user would rate a product or service based on the user’s profile behavioral pattern. At present, Recommender Systems are being used extensively in every domain known to us. They are said to be ubiquitous. However, in the field of recruitment, it’s not being utilized exclusively. Recent statistics show an increase in staff turnover, which has negatively impacted the organization as well as the employee. The reasons being company culture, working flexibility (work from home opportunity), no learning advancements, and pay scale. Further investigations revealed that there are lacking guidance or support, which helps a job seeker find the company that will suit him best, and though there’s information available about companies, job seekers can’t read all the reviews by themselves and get an analytical decision. In this paper, we propose an approach to study the available review data on IT companies (score their reviews based on user review sentiments) and gather information on job seekers, which includes their Psychometric evaluations. Then presents the job seeker with useful information or rather outputs on which company is most suitable for the job seeker. The theoretical approach, Algorithmic approach and the importance of such a system will be discussed in this paper.Keywords: psychometric tests, recommender systems, sentiment analysis, hybrid recommender systems
Procedia PDF Downloads 106