Search results for: market structure
10730 A Stochastic Volatility Model for Optimal Market-Making
Authors: Zubier Arfan, Paul Johnson
Abstract:
The electronification of financial markets and the rise of algorithmic trading has sparked a lot of interest from the mathematical community, for the market making-problem in particular. The research presented in this short paper solves the classic stochastic control problem in order to derive the strategy for a market-maker. It also shows how to calibrate and simulate the strategy with real limit order book data for back-testing. The ambiguity of limit-order priority in back-testing is dealt with by considering optimistic and pessimistic priority scenarios. The model, although it does outperform a naive strategy, assumes constant volatility, therefore, is not best suited to the LOB data. The Heston model is introduced to describe the price and variance process of the asset. The Trader's constant absolute risk aversion utility function is optimised by numerically solving a 3-dimensional Hamilton-Jacobi-Bellman partial differential equation to find the optimal limit order quotes. The results show that the stochastic volatility market-making model is more suitable for a risk-averse trader and is also less sensitive to calibration error than the constant volatility model.Keywords: market-making, market-microsctrucure, stochastic volatility, quantitative trading
Procedia PDF Downloads 14910729 Clustering of Extremes in Financial Returns: A Comparison between Developed and Emerging Markets
Authors: Sara Ali Alokley, Mansour Saleh Albarrak
Abstract:
This paper investigates the dependency or clustering of extremes in the financial returns data by estimating the extremal index value θ∈[0,1]. The smaller the value of θ the more clustering we have. Here we apply the method of Ferro and Segers (2003) to estimate the extremal index for a range of threshold values. We compare the dependency structure of extremes in the developed and emerging markets. We use the financial returns of the stock market index in the developed markets of US, UK, France, Germany and Japan and the emerging markets of Brazil, Russia, India, China and Saudi Arabia. We expect that more clustering occurs in the emerging markets. This study will help to understand the dependency structure of the financial returns data.Keywords: clustring, extremes, returns, dependency, extermal index
Procedia PDF Downloads 40410728 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test
Authors: Gee-Cheol Kim, Joo-Won Kang
Abstract:
Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.Keywords: arch structure, seismic response, shaking table, spatial structure
Procedia PDF Downloads 36510727 Application of Ontologies to Contract for Difference Documents
Authors: Renato Figueira Franco
Abstract:
This paper aims to create a representational information system applied to the securities market, particularly the development of an ontology applied to the analysis of the Key Information Documents of Contracts for Difference. The process of obtaining knowledge and its proper formal representation has raised the attention both from the scientific literature and the capital markets supervisory authorities. The formal knowledge representation is embodied in the construction of ontologies, which are responsible for defining a knowledge base structure of a given scientific domain, facilitating its understanding, and allowing its sharing among the scientific community. The scope of this study is restricted to the analysis of capital markets ontologies in order to capture its structure, semantics and knowledge sharing between people and systems.Keywords: ontology, financial markets, CFD, PRIIPs, key information documents
Procedia PDF Downloads 6410726 The Impact of Gender Inequality on Corruption:Evidence from Politics and Labor Market
Authors: Mahmoud Salari
Abstract:
Corruption and gender inequality are the main topics of interest for both economists and policymakers. This study develops various static and dynamic estimation models to examine the impact of gender inequality in politics and the labor market on corruption using data of 170 countries from 1998 to 2014. This study uses two most reliable corruption indexes, including Corruption Perceptions Index (CPI) and Corruption Control (CC), to evaluate corruption levels across countries. The results indicate that gender inequality in politics has a strong impact on corruption level, and those countries that have larger/smaller gender inequality in their parliaments are faced with higher/lower corruption, respectively. Meanwhile, there is no enough evidence that supports the relationship between gender inequality in the labor market and corruption, and the results indicate that gender inequality in the labor market is not directly linked to the corruption level.Keywords: corruption, female labor force participation, politics, gender inequality
Procedia PDF Downloads 18610725 The Effect of Market Orientation on Marketing Performance through Product Adaptation Strategy
Authors: Hotlan Siagian, Hatane Semuel, Wilma Laura Sahetapy
Abstract:
This study aims at examining the effect of market orientation on marketing performance through product adaptation strategy. The population of the research is domestic leather craft companies located in five regions, the center of the leather craft industry in Indonesia, i.e., Central Java, East Java, South Sulawesi, Bali, and West Kalimantan. The respondent consists of a manager level from each company. Data collection used a questionnaire designed with five-item Likert scale. Collected data were analyzed using structural equation modeling (SEM) technique with SmartPLS software version 3.0 to examine the hypotheses. The result of the study shows that all hypotheses are supported. Market orientation affects marketing performance. Market orientation affects product adaptation strategy. Product adaptation strategy influences the marketing performance. The research also has revealed the main finding that product adaptation strategy contributes to a mediating role in the market orientation strategy and marketing performance relationship. The leather craft companies in Indonesia, therefore, may refer to this result in improving their marketing performance.Keywords: leather craft industry, market orientation, marketing performance, product adaptation strategy
Procedia PDF Downloads 35810724 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm
Authors: Ghada Badr, Arwa Alturki
Abstract:
The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining
Procedia PDF Downloads 45710723 Stock Characteristics and Herding Formation: Evidence from the United States Equity Market
Authors: Chih-Hsiang Chang, Fang-Jyun Su
Abstract:
This paper explores whether stock characteristics influence the herding formation among investors in the US equity market. To extend the research scope of the existing literature, this paper further examines the role that stock risk characteristics play in the US equity market, and the way they influence investors’ decision-making. First, empirical results show that whether general stocks or high-risk stocks, there are no herding behaviors among the investors in the US equity market during the whole research period or during four great events. Moreover, stock characteristics have great influence on investors’ trading decisions. Finally, there is a bidirectional lead-lag relationship of the herding formation between high-risk stocks and low-risk stocks, but the influence of high-risk stocks on the low-risk stocks is stronger than that of low-risk stocks on the high-risk stocks.Keywords: stock characteristics, herding formation, investment decision, US equity market, lead-lag relationship
Procedia PDF Downloads 27410722 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 8810721 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique
Authors: P. Kanakasabapathy, S. Radhika
Abstract:
In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self-scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self-scheduling to ensure profit for the plant.Keywords: ancillary services, BPSO, power system economics, self-scheduling, sliding window technique
Procedia PDF Downloads 40010720 Effectiveness of European Active Labor Market Policies
Authors: Marwa Sahnoun, Chokri Abdennadher
Abstract:
This article comes, very timely, to look at the effectiveness of active labor market policies (ALMP) in improving labor market outcomes. Using panel data estimates for 19 European countries during the period 2000-2012, this article showed the role of institutional factors, especially the role of employment policies implementation based on three variables: the allocation of resources for the implementation of policies, continuity and timing in the implementation of policies to capture their effectiveness on the labor market. Empirical results shows favor effect of training, employment incentives, sheltered employment and rehabilitation and direct job creation on the entire population employment growth. Results shows also that start-up incentives seems to be more effective in increasing employment than other types of policies. Importantly, two aspects are important in terms of implementation: public expenditure on program administration, e.g. (PES) watches the most favorable aspect and the continuity of policies implemented.Keywords: active labor market policies, implementation, public expenditure on program administration, start-up incentives, training
Procedia PDF Downloads 39810719 The Real Estate Market Sustainability Concept and Its Implementation in Management of Real Estate Companies
Authors: Linda Kauškale, Ineta Geipele
Abstract:
Due to the rapidly changing external environment, portfolio management strategies became closely interconnected with real estate industry development and macroeconomic development tendencies. The aim of the research is to analyze sustainable real estate market development influencing factors, with particular focus on its economic and management aspects that influences real estate investment decisions as well. Scientific literature and article analysis, data analysis, expert evaluation, and other quantitative and qualitative research methods were used in the research. Developed real estate market sustainability model and index analysis approach can be applied by investors and real estate companies in real estate asset management and can help in risk minimization activities in international entrepreneurship. Future research directions have been identified in the research as well.Keywords: indexes, investment decisions, real estate market, sustainability
Procedia PDF Downloads 35810718 Volatility Spillover Among the Stock Markets of South Asian Countries
Authors: Tariq Aziz, Suresh Kumar, Vikesh Kumar, Sheraz Mustafa, Jhanzeb Marwat
Abstract:
The paper provides an updated version of volatility spillover among the equity markets of South Asian countries, including Pakistan, India, Srilanka, and Bangladesh. The analysis uses both symmetric and asymmetric Generalized Autoregressive Conditional Heteroscedasticity models to investigate volatility persistence and leverage effect. The bivariate EGARCH model is used to test for volatility transmission between two equity markets. Weekly data for the period February 2013 to August 2019 is used for empirical analysis. The findings indicate that the leverage effect exists in the equity markets of all the countries except Bangladesh. The volatility spillover from the equity market of Bangladesh to all other countries is negative and significant whereas the volatility of the equity market of Sri-Lanka does influence the volatility of any other country’s equity market. Indian equity market influence only the volatility of the Sri-Lankan equity market; and there is bidirectional volatility spillover between the equity markets of Pakistan and Bangladesh. The findings are important for policy-makers and international investors.Keywords: volatility spillover, volatility persistence, garch, egarch
Procedia PDF Downloads 13910717 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 21410716 Herb's Market Development for Capability Poverty Alleviation: Case Study of Bagh- E- Narges Village under Komak Charity's Support
Authors: Seyedeh Afsoon Mohseni
Abstract:
The importance of the approach to the poverty definition is revealed regarding to it’s effect on the nature of planning poverty alleviation programs. This research employs the capability deprivation approach to alleviate rural poverty and seeks to develop herb’s market to alleviate capability poverty with an NGO’s intervene, Komak charity foundation. This research has employed qualitative approach; the data were collected through field observations, review of documents and interviews. Subsequently they were analyses by thematic analysis method. According to the findings, Komak charity can provide the least sustenance of the rural poor and alleviate capability poverty emergence through Herb’s market development of the village. Employing the themes, the market development is planned in two phases of empirical production and product development. Komak charity can intervene as a facilitator by providing micro credits, cooperative and supervising. Furthermore, planning on education and raising participation are prerequisites for the efficiency of the plan.Keywords: capability poverty, Herb's market development, NGO, Komak charity foundation
Procedia PDF Downloads 43910715 The Impact of the European Single Market on the Austrian Economy
Authors: Reinhard Neck, Guido Schäfer
Abstract:
In this paper, we explore the macroeconomic effects of the European Single Market on Austria by simulating the McKibbin-Sachs Global Model. Global interdependence and the impact of long-run effects on short-run adjustments are taken into account. We study the sensitivity of the results with respect to different assumptions concerning monetary and fiscal policies for the countries and regions of the world economy. The consequences of different assumptions about budgetary policies in Austria are also investigated. The simulation results are contrasted with ex-post evaluations of the actual impact of Austria’s membership in the Single Market. As a result, it can be concluded that the Austrian participation in the European Single Market entails considerable long-run gains for the Austrian economy with nearly no adverse side-effects on any macroeconomic target variable.Keywords: macroeconomics, European Union, simulation, sensitivity analysis
Procedia PDF Downloads 27710714 Design and Optimization of Composite Canopy Structure
Authors: Prakash Kattire, Rahul Pathare, Nilesh Tawde
Abstract:
A canopy is an overhead roof structure generally used at the entrance of a building to provide shelter from rain and sun and may also be used for decorative purposes. In this paper, the canopy structure to cover the conveyor line has been studied. Existing most of the canopy structures are made of steel and glass, which makes a heavier structure, so the purpose of this study is to weight and cost optimization of the canopy. To achieve this goal, the materials of construction considered are Polyvinyl chloride (PVC) natural composite, Fiber Reinforced Plastic (FRP), and Structural steel Fe250. Designing and modeling were done in Solid works, whereas Altair Inspire software was used for the optimization of the structure. Through this study, it was found that there is a total 10% weight reduction in the structure with sufficient reserve for structural strength.Keywords: canopy, composite, FRP, PVC
Procedia PDF Downloads 14510713 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph
Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn
Abstract:
Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction
Procedia PDF Downloads 42410712 A Simulation of Land Market through Agent-Based Modeling
Authors: Zilin Zhang
Abstract:
Agent-based simulation has become a popular method of exploring the behavior of all kinds of urban systems. The city clearly is viewed as such a system. Many urban evolution processes, such as the development or the transaction of a piece of land, can be modeled with a set of rules. Such modeling approaches can be used to gain insight into urban-development and land market transactions in the real world. Our work contributes to such type of research by modeling the transactions of lands in a city and its surrounding suburbs. By replicating the demand and supply needs in the land market, we are able to demonstrate the different transaction patterns in three types of residential areas - downtown, city-suburban, and further suburban areas. In addition, we are also able to compare the vital roles of different activation conditions play in generating the various transaction patterns of the land market at the macro level. We use this simulation to loosely test our hypotheses about the nature of activation regimes by the replication of the Zi traders’ model. In the end, we hope our analytical results can be useful for city planners and policymakers to develop rational city plans and policies for shaping sustainable urban development.Keywords: simulation, agent-based modeling, housing market, city
Procedia PDF Downloads 8810711 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis
Authors: Petra Buzkova, Milos Kopa
Abstract:
Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression
Procedia PDF Downloads 26110710 Categorization of Cattle Farmers Based on Market Participation in Adamawa State, Nigeria
Authors: Mohammed Ibrahim Girei
Abstract:
Adamawa state is one the major producers of both crop and animals in Nigeria. Agricultural production serves as the major means livelihood of the people in the state. However, the agricultural activities of the farmers in the state are at subsistence level. However integration of these small scale farmers in local, national and international market is paramount importance. The paper was designed to categorize farmers based on market participation among the cattle farmers in Adamawa state, Nigeria. The multistage sampling procedure was employed. To achieve this procedure, structured questionnaires were used to collect data from 400 respondents. The data were analyzed using the descriptive statistics. The result revealed that the majority of market participants were net sellers (78.51 %) (Sales greater than purchase), net buyers were (purchase greater than sales) 12.95 % and only 9% were autarkic (sales equal purchase). The study recommends that Government should provide more effective security services in cattle farming communities, which is very important as the market participants in the study area were net sellers (producers), it will help in addressing the problem of cattle rustling and promote more investment in cattle industry. There is a need to establish a standard cattle market, veterinary services and grazing reserves in the area so that to facilitate the cattle production and marketing system in the area and to meet up with the challenging of livestock development as a result of rapid human population growth in developing countries like Nigeria.Keywords: categories, cattle, farmers, market, participation
Procedia PDF Downloads 12810709 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators
Authors: Andrea Bellucci, Martina Tofi
Abstract:
The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers
Procedia PDF Downloads 29610708 Risk and Impact of the COVID-19 Crisis on Real Estate
Authors: Tahmina Akhter
Abstract:
In the present work, we make a study of the repercussions of the pandemic generated by Covid-19 in the real estate market, this disease has affected almost all sectors of the economy across different countries in the world, including the real estate markets. This documentary research, basically focused on the years 2021 and 2022, as we seek to focus on the strongest time of the pandemic. We carried out the study trying to take into account the repercussions throughout the world and that is why the data we analyze takes into account information from all continents as possible. Particularly in the US, Europe and China where the Covid-19 impact has been of such proportions that it has fundamentally affected the housing market for middle-class housing. In addition, a risk has been generated, the investment of this market, due to the fact that companies in the sector have generated losses in certain cases; in the Chinese case, Evergrande, one of the largest companies in the sector, fell into default.Keywords: COVID-19, real estate market, statistics, pandemic
Procedia PDF Downloads 8410707 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan
Authors: Gong Kangming, Zhao Caiqi
Abstract:
High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design
Procedia PDF Downloads 46510706 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges
Authors: Mohamad Mahdi Namdari
Abstract:
In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing
Procedia PDF Downloads 4110705 Modification of Four Layer through the Thickness Woven Structure for Improved Impact Resistance
Authors: Muhammad Liaqat, Hafiz Abdul Samad, Syed Talha Ali Hamdani, Yasir Nawab
Abstract:
In the current research, the four layers, orthogonal through the thickness, 2D woven, 3D fabric structure was modified to improve the impact resistance of 3D fabric reinforced composites. This was achieved by imparting the auxeticity into four layers through the thickness woven structure. A comparison was made between the standard and modified four layers through the thickness woven structure in terms of auxeticity, penetration and impact resistance. It was found that the modified structure showed auxeticity in both warp and weft direction. It was also found that the penetration resistance of modified sample was less as compared to the standard structure, but impact resistance was improved up to 6.7% of modified four layers through the thickness woven structure.Keywords: 2D woven, 3D fabrics, auxetic, impact resistance, orthogonal through the thickness
Procedia PDF Downloads 33610704 Matching Farmer Competence and Farm Resources with the Transformation of Agri-Food Marketing Systems
Authors: Bhawat Chiamjinnawat
Abstract:
The agri-food market transformation has implied market growth for the fruit industry in Thailand. This article focuses on analysis of farmer competence and farm resources which affect market strategies used by fruit farmers in Chanthaburi province of Thailand. The survey data were collected through the use of face-to-face interviews with structured questionnaires. This study identified 14 drivers related to farmer competence and farm resources of which some had significant effect on the decision to use either high-value markets or traditional markets. The results suggest that farmers who used high-value markets were better educated and they had longer experience and larger sized business. Identifying the important factors that match with the market transformation provides policy with opportunities to support the fruit farmers to increase their market power. Policies that promote business expansion of agricultural cooperatives and knowledge sharing among farmers are recommended to reduce limitations due to limited knowledge, low experience, and small business sizes.Keywords: farmer competence, farm resources, fruit industry, high-value markets, Thailand
Procedia PDF Downloads 16310703 Impact of the Electricity Market Prices during the COVID-19 Pandemic on Energy Storage Operation
Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić
Abstract:
With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.Keywords: electrical market prices, electricity market, energy storage optimization, mixed integer linear programming (MILP) optimization
Procedia PDF Downloads 17010702 The Impacts of Cultural Differences on Consumer Behavior when Multinational Corporations Enter the Chinese Market
Authors: Xue Junwei
Abstract:
In the global economy, multinational corporations face challenges due to cultural differences impacting consumer behavior. Understanding these influences is vital for effective business decisions in the Chinese market. This study aims to analyze how cultural differences affect consumer behavior when multinational corporations enter the Chinese market, using cultural dimensions theory to derive marketing mix strategies. The study employs statistical analysis of cultural dimensions to investigate the impact on consumer behavior and derive marketing strategies for multinational corporations entering the Chinese market. Furthermore, this study enhances the study by incorporating qualitative data to complement the statistical analysis, providing a more comprehensive understanding of cultural impacts on consumer behavior. The study reveals significant implications of cultural differences on consumer behavior and provides insights into tailored marketing mix strategies for multinational corporations in the Chinese market. This research contributes to the theoretical understanding of how cultural dimensions influence consumer behavior and provides practical implications for multinational corporations entering the Chinese market. Data on cultural dimensions are collected and analyzed statistically and qualitatively to understand their impact on consumer behavior and derive effective marketing strategies. This study concludes that cultural differences have a profound impact on consumer behavior in the Chinese market, and understanding these nuances is crucial for the success of multinational corporations. Tailored marketing strategies are essential for navigating these cultural challenges.Keywords: marketing, multinational company, globalization, cultural differences
Procedia PDF Downloads 110701 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation
Authors: Li-hsing Shih, Wei-Jen Hsu
Abstract:
Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation
Procedia PDF Downloads 67