Search results for: malicious images detector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2877

Search results for: malicious images detector

2727 Controlling Images and Survival Strategies for Muslim Women in Pakistan

Authors: Ayesha Murtza

Abstract:

Controlling images develop misinformed behaviors about impoverished Muslim Pakistani women that add to the oppression these Pakistani women endure their whole lives. Meanwhile, patriarchal and stereotypical societies provide an ideological justification for gender, class, and racial oppression, especially for women. Cojoining the concepts of controlling images by Patricia Hill Collins (1990) and binary thinking by Barbara Christian (1987), this paper discusses the ways in which various controlling images of urban and rural women are being presented in Pakistani dramas. These images reinforce an interlocking system of oppression for women in Pakistan. This paper further explores how these controlling images of intersecting components like class, gender, religion, ethnicity, physical appearance, color, and caste normalize hegemonic gendered oppression in society and how men have the same attitude towards women of their family whether they belong to the rural or urban class since they are the product of the same society. It further sheds light on how these matrixes of domination are an inevitable part of Pakistani women’s everyday lives and how these women reinforce survival strategies for coping with all these forms of oppression. By employing the feminist interactional framework, this paper elucidates the role of masculinity, femininity, feminist activism, and traditional knowledge against a monolithic image of Pakistani women. By highlighting these, this paper complicates the role of descriptive and visual images, religion, women’s rights, and the stereotypical role of women in Pakistani dramas.

Keywords: controlling images, oppression, women, Pakistan

Procedia PDF Downloads 85
2726 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: contrast enhacement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia PDF Downloads 378
2725 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images

Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat

Abstract:

The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.

Keywords: image segmentation, clustering, GUI, 2D MRI

Procedia PDF Downloads 377
2724 A Survey on Lossless Compression of Bayer Color Filter Array Images

Authors: Alina Trifan, António J. R. Neves

Abstract:

Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.

Keywords: bayer image, CFA, lossless compression, image coding standards

Procedia PDF Downloads 321
2723 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer

Procedia PDF Downloads 283
2722 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li

Abstract:

The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.

Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition

Procedia PDF Downloads 306
2721 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 19
2720 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 182
2719 Noise Removal Techniques in Medical Images

Authors: Amhimmid Mohammed Saffour, Abdelkader Salama

Abstract:

Filtering is a part of image enhancement techniques, it is used to enhance certain details such as edges in the image that are relevant to the application. Additionally, filtering can even be used to eliminate unwanted components of noise. Medical images typically contain salt and pepper noise and Poisson noise. This noise appears to the presence of minute grey scale variations within the image. In this paper, different filters techniques namely (Median, Wiener, Rank order3, Rank order5, and Average) were applied on CT medical images (Brain and chest). We using all these filters to remove salt and pepper noise from these images. This type of noise consists of random pixels being set to black or white. Peak Signal to Noise Ratio (PSNR), Mean Square Error r(MSE) and Histogram were used to evaluated the quality of filtered images. The results, which we have achieved shows that, these filters, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients with no difficulty.

Keywords: CT imaging, median filter, adaptive filter and average filter, MATLAB

Procedia PDF Downloads 313
2718 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array

Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim

Abstract:

We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.

Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display

Procedia PDF Downloads 584
2717 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration

Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim

Abstract:

In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.

Keywords: gas sensor, leak detector, lower concentration, and calibration

Procedia PDF Downloads 240
2716 The Intersection/Union Region Computation for Drosophila Brain Images Using Encoding Schemes Based on Multi-Core CPUs

Authors: Ming-Yang Guo, Cheng-Xian Wu, Wei-Xiang Chen, Chun-Yuan Lin, Yen-Jen Lin, Ann-Shyn Chiang

Abstract:

With more and more Drosophila Driver and Neuron images, it is an important work to find the similarity relationships among them as the functional inference. There is a general problem that how to find a Drosophila Driver image, which can cover a set of Drosophila Driver/Neuron images. In order to solve this problem, the intersection/union region for a set of images should be computed at first, then a comparison work is used to calculate the similarities between the region and other images. In this paper, three encoding schemes, namely Integer, Boolean, Decimal, are proposed to encode each image as a one-dimensional structure. Then, the intersection/union region from these images can be computed by using the compare operations, Boolean operators and lookup table method. Finally, the comparison work is done as the union region computation, and the similarity score can be calculated by the definition of Tanimoto coefficient. The above methods for the region computation are also implemented in the multi-core CPUs environment with the OpenMP. From the experimental results, in the encoding phase, the performance by the Boolean scheme is the best than that by others; in the region computation phase, the performance by Decimal is the best when the number of images is large. The speedup ratio can achieve 12 based on 16 CPUs. This work was supported by the Ministry of Science and Technology under the grant MOST 106-2221-E-182-070.

Keywords: Drosophila driver image, Drosophila neuron images, intersection/union computation, parallel processing, OpenMP

Procedia PDF Downloads 239
2715 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 69
2714 Facial Biometric Privacy Using Visual Cryptography: A Fundamental Approach to Enhance the Security of Facial Biometric Data

Authors: Devika Tanna

Abstract:

'Biometrics' means 'life measurement' but the term is usually associated with the use of unique physiological characteristics to identify an individual. It is important to secure the privacy of digital face image that is stored in central database. To impart privacy to such biometric face images, first, the digital face image is split into two host face images such that, each of it gives no idea of existence of the original face image and, then each cover image is stored in two different databases geographically apart. When both the cover images are simultaneously available then only we can access that original image. This can be achieved by using the XM2VTS and IMM face database, an adaptive algorithm for spatial greyscale. The algorithm helps to select the appropriate host images which are most likely to be compatible with the secret image stored in the central database based on its geometry and appearance. The encryption is done using GEVCS which results in a reconstructed image identical to the original private image.

Keywords: adaptive algorithm, database, host images, privacy, visual cryptography

Procedia PDF Downloads 130
2713 Medical Images Enhancement Using New Dynamic Band Pass Filter

Authors: Abdellatif Baba

Abstract:

In order to facilitate medical images analysis by improving their quality and readability, we present in this paper a new dynamic band pass filter as a general and suitable operator for different types of medical images. Our objective is to enrich the details of any treated medical image to make it sufficiently clear enough to give an understood and simplified meaning even for unspecialized people in the medical domain.

Keywords: medical image enhancement, dynamic band pass filter, analysis improvement

Procedia PDF Downloads 290
2712 Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind

Authors: Chantana Insra

Abstract:

The research “Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind” aims to provide original tactile format to institutions for the blind, as supplementary textbooks, to accumulate Buddhist knowledge, so that it could be extracurricular learning. The research studied on 33 students with both total and partial blindness, the latter with the ability to read Braille’s signs, of elementary 4 – 6, who are pursuing their studies on the second semester of the academic year 2013 at Bangkok School for the Blind. The researcher opted samples specifically, studied data acquired from both documents and fieldworks. Those methods must be related to the blind, tactile format production, and Buddha images in mudras representing days of a week. Afterwards, the formats will be analyzed and designed so that there would be 8 format pictures of Buddha images in mudras representing days of the week. Experts will next evaluate the media and try out.

Keywords: blind, tactile texture, Thai Buddha images, Mudras, texture design

Procedia PDF Downloads 351
2711 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network

Authors: Muhammad R. Ahmed, Mohammed Aseeri

Abstract:

Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.

Keywords: internal attack, wireless sensor network, network security, entropy

Procedia PDF Downloads 455
2710 Probing Extensive Air Shower Primaries and Their Interactions by Combining Individual Muon Tracks and Shower Depth

Authors: Moon Moon Devi, Ran Budnik

Abstract:

The current large area cosmic ray detector surface arrays typically measure only the net flux and arrival-time of the charged particles produced in an extensive air shower (EAS). Measurement of the individual charged particles at a surface array will provide additional distinguishing parameters to identify the primary and to map the very high energy interactions in the upper layers of the atmosphere. In turn, these may probe anomalies in QCD interactions at energies beyond the reach of current accelerators. The recent attempts of studying the individual muon tracks are limited in their expandability to larger arrays and can only probe primary particles with energy up to about 10^15.5 eV. New developments in detector technology allow for a realistic cost of large area detectors, however with limitations on energy resolutions, directional information, and dynamic range. In this study, we perform a simulation study using CORSIKA to combine the energy spectrum and lateral spread of the muons with the longitudinal depth (Xmax) of an EAS initiated by a primary at ultra high energies (10¹⁶ – 10¹⁹) eV. Using proton and iron as the shower primaries, we show that the muon observables and Xmax together can be used to distinguish the primary. This study can be used to design a future detector for the surface array, which will be able to enhance our knowledge of primaries and QCD interactions.

Keywords: ultra high energy extensive air shower, muon tracking, air shower primaries, QCD interactions

Procedia PDF Downloads 228
2709 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 303
2708 Narrating 1968: Felipe Cazals’ Canoa (1976) and Images of Massacre

Authors: Nancy Elizabeth Naranjo Garcia

Abstract:

Canoa (1976) by Felipe Cazals is a film that exposes the consequences of power that the Mexican State exercised over the 1968 student movement. The film, in this particular way, approaches the Tlatelolco Massacre from a point of view that takes into consideration the events that led up to it. Nonetheless, the reference to the political tension in Canoa remains ambiguous. Thus, the cinematographic representation refers to an event that leaves space for reflection, and as a consequence leaves evidence of an image that signals the notion of survival as Georges Didi-Huberman points out. In addition to denouncing the oppressive force by the Mexican State, the images in Canoa also emphasize what did not happen in Tlatelolco and its condensation with the student activists. To observe the images that Canoa offers in a new light, this work proposes further exploration with the following questions; How do the images in Canoa narrate? How are the images inserted in the film? In this fashion, a more profound comprehension of the objective and the essence of the images becomes feasible. As a result, it is possible to analyze the images of Canoa with the real killing at San Miguel Canoa in literature. The film visualizes a testimony of the event that once seemed unimaginable, an image that anticipates and structures the proceeding event. Therefore, this study takes a second look at how Canoa considers not only the killing at San Miguel Canoa and the Tlatlelolco Massacre, but goes further on contextualize an unimaginable image.

Keywords: cinematographic representation, student movement, Tlatelolco Massacre, unimaginable image

Procedia PDF Downloads 221
2707 An Image Stitching Approach for Scoliosis Analysis

Authors: Siti Salbiah Samsudin, Hamzah Arof, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris

Abstract:

Standard X-ray spine images produced by conventional screen-film technique have a limited field of view. This limitation may obstruct a complete inspection of the spine unless images of different parts of the spine are placed next to each other contiguously to form a complete structure. Another solution to producing a whole spine image is by assembling the digitized x-ray images of its parts automatically using image stitching. This paper presents a new Medical Image Stitching (MIS) method that utilizes Minimum Average Correlation Energy (MACE) filters to identify and merge pairs of x-ray medical images. The effectiveness of the proposed method is demonstrated in two sets of experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping spine images. The experimental results are compared to those produced by the Normalized Cross Correlation (NCC) and Phase Only Correlation (POC) methods for comparison. It is found that the proposed method outperforms those of the NCC and POC methods in identifying both the overlapping and non-overlapping medical images. The efficacy of the proposed method is further vindicated by its average execution time which is about two to five times shorter than those of the POC and NCC methods.

Keywords: image stitching, MACE filter, panorama image, scoliosis

Procedia PDF Downloads 458
2706 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features

Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis

Abstract:

Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.

Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks

Procedia PDF Downloads 207
2705 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks

Authors: Muneeb Ullah, Daishihan, Xiadong Young

Abstract:

Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.

Keywords: classification, deep learning, medical images, CXR, GAN.

Procedia PDF Downloads 96
2704 Make Up Flash: Web Application for the Improvement of Physical Appearance in Images Based on Recognition Methods

Authors: Stefania Arguelles Reyes, Octavio José Salcedo Parra, Alberto Acosta López

Abstract:

This paper presents a web application for the improvement of images through recognition. The web application is based on the analysis of picture-based recognition methods that allow an improvement on the physical appearance of people posting in social networks. The basis relies on the study of tools that can correct or improve some features of the face, with the help of a wide collection of user images taken as reference to build a facial profile. Automatic facial profiling can be achieved with a deeper study of the Object Detection Library. It was possible to improve the initial images with the help of MATLAB and its filtering functions. The user can have a direct interaction with the program and manually adjust his preferences.

Keywords: Matlab, make up, recognition methods, web application

Procedia PDF Downloads 144
2703 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging

Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis

Abstract:

Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).

Keywords: calcification materials, CNR, dual energy, X-rays

Procedia PDF Downloads 357
2702 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes

Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono

Abstract:

Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.

Keywords: hough forest, active shape model, segmentation, cardiac left ventricle

Procedia PDF Downloads 339
2701 Red Green Blue Image Encryption Based on Paillier Cryptographic System

Authors: Mamadou I. Wade, Henry C. Ogworonjo, Madiha Gul, Mandoye Ndoye, Mohamed Chouikha, Wayne Patterson

Abstract:

In this paper, we present a novel application of the Paillier cryptographic system to the encryption of RGB (Red Green Blue) images. In this method, an RGB image is first separated into its constituent channel images, and the Paillier encryption function is applied to each of the channels pixel intensity values. Next, the encrypted image is combined and compressed if necessary before being transmitted through an unsecured communication channel. The transmitted image is subsequently recovered by a decryption process. We performed a series of security and performance analyses to the recovered images in order to verify their robustness to security attack. The results show that the proposed image encryption scheme produces highly secured encrypted images.

Keywords: image encryption, Paillier cryptographic system, RBG image encryption, Paillier

Procedia PDF Downloads 238
2700 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 156
2699 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: anti-spoofing, CNN, fingerprint recognition, GAN

Procedia PDF Downloads 184
2698 Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications

Authors: Nicole Virgili, Romolo Remetti

Abstract:

The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors.

Keywords: Cyclotron, Geiger Muller detector, MCNPX, argon-41, emission of radioactive gas, detection efficiency determination

Procedia PDF Downloads 151