Search results for: low cost rehabilitation robot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7022

Search results for: low cost rehabilitation robot

6872 Approximate Spring Balancing for the Arm of a Humanoid Robot to Reduce Actuator Torque

Authors: Apurva Patil, Ashay Aswale, Akshay Kulkarni, Shubham Bharadiya

Abstract:

The potential benefit of gravity compensation of linkages in mechanisms using springs to reduce actuator requirements is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs with child–parent connections and no auxiliary links. Application of this method to the developed arm of a humanoid robot is presented here. Spring balancing is particularly important in this case because the serial chain of linkages has to work against gravity.This work involves approximate spring balancing of the open-loop chain of linkages using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Reduced actuator torque facilitates the use of lower end actuators which are generally smaller in weight and volume thereby lowering the space requirements and the total weight of the arm. This is particularly important for humanoid robots where the parent actuator has to handle the weight of the subsequent actuators as well. Actuators with lower actuation requirements are more energy efficient, thereby reduce the energy consumption of the mechanism. Lower end actuators are lower in cost and facilitate the development of low-cost devices. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free-length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached to the preceding parent link, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant arm of the humanoid robot is compact. The cost benefits and reduced complexity can be significant advantages in the development of this arm of the humanoid robot.

Keywords: actuator torque, child-parent connections, spring balancing, the arm of a humanoid robot

Procedia PDF Downloads 224
6871 Effects of Bedside Rehabilitation of Stroke Patients in Activities and Daily Living Function

Authors: Chiung-Hua Chan, Fang-Yuan Chang, Li-Chi Huang

Abstract:

Stroke patients received regular rehabilitation therapy have measurable advancement in muscle strength, balance, control upper and lower physical activity, walking speed and endurance. This study aimed to investigate the relationship between increases in bedside rehabilitation time and the function of activities and daily living (ADL) in stroke patients. The study was quasi-experimental research design and randomized sampling. The researcher collected 12 stroke patients of stroke patients transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. All participants then were assigned to case group and control group. Data collection was through direct observation of assessment ADL of stroke patients by researchers on Day 1. Case group received regular rehabilitation, exercises in increase of bedside rehabilitation schedules exercise programs by ward nurses. Bedside rehabilitation exercise content with physical, functional and linguistic frequency and time, Control group only give routine rehabilitation schedule care. This was a randomized study performed in 12 patients who were stroke patients and transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. First, the researcher explained the purpose and method of the study to the patients or the family members. All participants completed a consent informed before participation. Patients were randomly assigned to a ‘bedside rehabilitation program’ (BRP) group and a control (C) group. The BRP group received bedside rehabilitation schedules exercise programs by ward nurses. while the C group did not. Both groups received routine rehabilitation schedule. The Functional Independence Measure was used to measure outcome at the first, 14th and the 28th day of rehabilitation ward admitted. Data were analyzed using SPSS 22.0. After implementation of standardized ‘‘bedside rehabilitation program’, the results were: (1) the increasing of bedside rehabilitation had significant difference (p<.05) in promotion ADL function of stroke patients (2) the extend time of the bedside rehabilitation has significant difference (p<.05) in promotion ADL function of stroke patients compared with the control group. This study demonstrated that the ‘bedside rehabilitation program’ enhanced the ADL function in stroke patients. The nurses and rehabilitation ward managers need to understand that the extend time and frequency of rehabilitation provide a chance to enhanced the ADL function of stroke patients.

Keywords: stroke, bedside rehabilitation, functional activity, ADL

Procedia PDF Downloads 111
6870 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, gazebo, Rviz, Turtlebot2, slam algorithms, 2d indoor environment, cartographer

Procedia PDF Downloads 127
6869 A Review on Robot Trajectory Optimization and Process Validation through off-Line Programming in Virtual Environment Using Robcad

Authors: Ashwini Umale

Abstract:

Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. An optimized trajectory of multi-axis robot is important and directly influences the Performance of the executing task. Optimal is defined to be the minimum time to transition from the current speed to the set speed. In optimization of trajectory through virtual environment explores the most suitable way to represent robot motion from virtual environment to real environment. This paper aims to review the research of trajectory optimization in virtual environment using simulation software Robcad. Improvements are to be expected in trajectory optimization to generate smooth and collision free trajectories with minimization of overall robot cycle time.

Keywords: trajectory optimization, forward kinematics and reverse kinematics, dynamic constraints, robcad simulation software

Procedia PDF Downloads 482
6868 Rehabilitation of CP Using Pediatric Functional Independent Measure (WeeFIM) as Indicator Instruments Suitable for CP: Saudi's Perspective

Authors: Bara M. Yousef

Abstract:

Kingdome of Saudi Arabia (KSA). High numbers of traffic accidents with sever, moderate and mild level of impairments admits to Sultan bin Abdulaziz humanitarian city. Over a period of 4 months the city received 111 male and 79 female subjects with CP, who received 4-6 weeks of rehabilitation and using WeeFIM score to measure rehabilitation outcomes. WeeFIM measures and covers various domains, such as: self-care, mobility, locomotion, communication and other psycho-social aspects. Our findings shed the light on the fact that nearly 85% of people at admission got better after rehabilitation program services at individual sever moderate and mild and has arrange of (59 out of 128 WeeFIM score) and by the time of discharge they leave the city with better FIM score close to (72 out of 128 WeeFIM score) for the entire study sample. WeeFIM score is providing fair evidence to rehabilitation specialists to assess their outcomes. However there is a need to implement other instruments and compare it to WeeFIM in order to reach better outcomes at discharge level.

Keywords: Cerepral Palsy (CP), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability

Procedia PDF Downloads 203
6867 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 44
6866 Use of Virtual Reality to Manage Anxiety in Patients on Neuro-Rehabilitation Unit

Authors: Anthony Cogrove, Shagun Saikia, Pradeep Deshpande

Abstract:

Introduction: Management of anxiety in rehabilitation setting often is a challenge and is usually done by using medication. The role of psychology and the creation of a quite environment in order to reduce stimulation helps in the process. We have a hypothesis that feedback from a calm visual imagery with soothing music help in reducing anxiety in these setting Aim-To explore the possibility of using virtual reality in the management of anxiety in a setting of neuro-rehabilitation unit. Method: Six patients in an inpatient rehabilitation unit with acquired brain injury subjected to a low stimulation calming visual motion picture with calm music. Six sessions were conducted over 6 weeks. All sessions were performed in a separate purpose built room in the unit. . A cohort of 6 people with various neurological conditions were involved in 6 sessions of 30 minutes during their inpatient rehabilitation. They reported benefit from using the virtual reality environment in reducing their anxiety. Results: All reported improvement in their anxiety levels. They felt there was a calming effect of the session. There was a sense of feeling of self empowerment on direct questioning. Conclusion: Virtual reality environment can aid the traditional rehabilitation techniques used to manage the levels of anxiety experienced by people with acquired brain injury undergoing inpatient rehabilitation.

Keywords: neurological rehabilitation, virtual reality, anxiety, calming environment

Procedia PDF Downloads 89
6865 Analysis of the Use of a NAO Robot to Improve Social Skills in Children with Autism Spectrum Disorder in Saudi Arabia

Authors: Eman Alarfaj, Hissah Alabdullatif, Huda Alabdullatif, Ghazal Albakri, Nor Shahriza Abdul Karim

Abstract:

Autism Spectrum Disorder is extensively spread amid children; it affects their social, communication and interactive skills. As robotics technology has been proven to be a significant helpful utility those able individuals to overcome their disabilities. Robotic technology is used in ASD therapy. The purpose of this research is to show how Nao robots can improve the social skills for children who suffer from autism in Saudi Arabia by interacting with the autistic child and perform a number of tasks. The objective of this research is to identify, implement, and test the effectiveness of the module for interacting with ASD children in an autism center in Saudi Arabia. The methodology in this study followed the ten layers of protocol that needs to be followed during any human-robot interaction. Also, in order to elicit the scenario module, TEACCH Autism Program was adopted. Six different qualified interaction modules have been elicited and designed in this study; the robot will be programmed to perform these modules in a series of controlled interaction sessions with the Autistic children to enhance their social skills.

Keywords: humanoid robot Nao, ASD, human-robot interaction, social skills

Procedia PDF Downloads 242
6864 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 121
6863 A Method of Drilling a Ground Using a Robotic Arm

Authors: Lotfi Beji, Laredj Benchikh

Abstract:

Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.

Keywords: drilling, resonant vibration, robot arm, control

Procedia PDF Downloads 267
6862 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: control, identification, robot, co-manipulation, sensor-less

Procedia PDF Downloads 141
6861 Basavaraj Kabade, K. T. Nagaraja, Swathi Ramanathan, A. Veeraragavan, P. S. Reashma

Authors: Dechrit Maneetham

Abstract:

Pick and place task is one among the most important tasks in industrial field handled by 'Selective Compliance Assembly Robot Arm' (SCARA). Repeatability with high-speed movement in a horizontal plane is a remarkable feature of this type of manipulator. The challenge of design SCARA is the difficulty of achieving stability of high-speed movement with the long length of links. Shorter links arm can move more stable. This condition made the links should be considered restrict then followed by restriction of operation area (workspace). In this research, authors demonstrated on expanding SCARA robot’s workspace in horizontal area via linear sliding actuator that embedded to base link of the robot arm. With one additional prismatic joint, the previous robot manipulator with 3 degree of freedom (3-DOF), 2 revolute joints and 1 prismatic joint becomes 4-DOF PRRP manipulator. This designation increased workspace of robot from 0.5698m² performed by the previous arm (without linear actuator) to 1.1281m² by the proposed arm (with linear actuator). The increasing rate was about 97.97% of workspace with the same links' lengths. The result of experimentation also indicated that the operation time spent to reach object position was also reduced.

Keywords: kinematics, linear sliding actuator, manipulator, control system

Procedia PDF Downloads 242
6860 A Conceptualization of the Relationship between Frontline Service Robots and Humans in Service Encounters and the Effect on Well-Being

Authors: D. Berg, N. Hartley, L. Nasr

Abstract:

This paper presents a conceptual model of human-robot interaction within service encounters and the effect on the well-being of both consumers and service providers. In this paper, service providers are those employees who work alongside frontline service robots. The significance of this paper lies in the knowledge created which outlines how frontline service robots can be effectively utilized in service encounters for the benefit of organizations and society as a whole. As this paper is conceptual in nature, the main methodologies employed are theoretical, namely problematization and theory building. The significance of this paper is underpinned by the shift of service robots from manufacturing plants and factory floors to consumer-facing service environments. This service environment places robots in direct contact with frontline employees and consumers creating a hybrid workplace where humans work alongside service robots. This change from back-end to front-end roles may have implications not only on the physical environment, servicescape, design, and strategy of service offerings and encounters but also on the human parties of the service encounter itself. Questions such as ‘how are frontline service robots impacting and changing the service encounter?’ and ‘what effect are such changes having on the well-being of the human actors in a service encounter?’ spring to mind. These questions form the research question of this paper. To truly understand social service robots, an interdisciplinary perspective is required. Besides understanding the function, system, design or mechanics of a service robot, it is also necessary to understand human-robot interaction. However not simply human-robot interaction, but particularly what happens when such robots are placed in commercial settings and when human-robot interaction becomes consumer-robot interaction and employee-robot interaction? A service robot in this paper is characterized by two main factors; its social characteristics and the consumer-facing environment within which it operates. The conceptual framework presented in this paper contributes to interdisciplinary discussions surrounding social robotics, service, and technology’s impact on consumer and service provider well-being, and hopes that such knowledge will help improve services, as well as the prosperity and well-being of society.

Keywords: frontline service robots, human-robot interaction, service encounters, well-being

Procedia PDF Downloads 187
6859 Efficient Control of Some Dynamic States of Wheeled Robots

Authors: Boguslaw Schreyer

Abstract:

In some types of wheeled robots it is important to secure starting acceleration and deceleration maxima while at the same time maintaining transversal stability. In this paper torque distribution between the front and rear wheels as well as the timing of torque application have been calculated. Both secure an optimum traction coefficient. This paper also identifies required input signals to a control unit, which controls the torque values and timing. Using a three dimensional, two mass model of a robot developed by the author a computer simulation was performed confirming the calculations presented in this paper. These calculations were also implemented and confirmed during military robot testing.

Keywords: robot dynamics, torque distribution, traction coefficient, wheeled robots

Procedia PDF Downloads 298
6858 Development of 3D Laser Scanner for Robot Navigation

Authors: Ali Emre Öztürk, Ergun Ercelebi

Abstract:

Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.

Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model

Procedia PDF Downloads 254
6857 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: chaos, chaotic trajectories, differential mobile robot, Henon map, Khepera III robot, patrolling applications

Procedia PDF Downloads 285
6856 Preliminary Proposal to Use Adaptive Computer Games in the Virtual Rehabilitation Therapy

Authors: Mamoun S. Ideis, Zein Salah

Abstract:

Virtual Rehabilitation (VR) refers to using Virtual Reality’s hardware and simulations as means of exercising tools to rehabilitate patients in need. These patients will undergo their treatment exercises while playing different computer games, which helps achieve greater motivation for patients undergoing their therapeutic exercises. Virtual Rehabilitation systems adopt computer games as part of the treatment therapy. In this paper, we present a preliminary proposal to using adaptive computer games in Virtual Rehabilitation therapy. We also present some tips in designing those adaptive computer games by using different machine learning algorithms in order to create a personalized experience for each patient, which in turn, increases the potential benefits of the treatment that each patient receives. Furthermore, we propose a method of comparing the results of treatment using the adaptive computer games with the results of using static and classical computer games.

Keywords: virtual rehabilitation, physiotherapy, adaptive computer games, post-stroke, game design

Procedia PDF Downloads 273
6855 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources

Procedia PDF Downloads 255
6854 Industrial Practical Training for Mechanical Engineering Students: A Multidisciplinary Approach

Authors: Bashiru Olayinka Adisa, Najeem Lateef

Abstract:

The integrated knowledge in the application of mechanical engineering, microprocessor and electronic sensor technologies is becoming the basic skill of a modern engineer in machinery based processes. To meet this objective, we have developed a cross-disciplinary industrial training to teach essential hard technical and soft project skills to the mechanical engineering students in mid-curriculum. Ten groups of students were selected to participate in a 150 hour program. The students were required to design and build a robot with ability to follow tracks and pick/place target blocks in specific locations. The students were trained to integrate the knowledge of computer aid design, electronics, sensor theories and motor technology to fabricate a workable robot as a major outcome of this course. On completion of the project, students competed for top robot honors by demonstrating their robots' movements and performance in pick/place to a panel of judges.

Keywords: electronics, sensor theories and motor, robot, technology

Procedia PDF Downloads 261
6853 Development of Underactuated Robot Hand Using Cross Section Deformation Spring

Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato

Abstract:

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of a cross section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Keywords: robot hand, underactuated mechanism, cross-section deformation spring, prosthetic hand

Procedia PDF Downloads 353
6852 Design and Manufacture of an Autonomous Agricultural Robot for Pesticide Application

Authors: Caner Koc, Dilara Gerdan Koc, Emrah Saka, H. Ibrahim Karagol

Abstract:

The use of pesticides in agricultural activities is the most harmful to the environment and farmers' health, and it also has the greatest input prices, along with fertilizers. In this study, an electric, electrostatically charged, autonomous agricultural robot was developed, modeled, and prototyped and manufactured. It allows for sensitive pesticide applications with variable levels, has controllable spray nozzles, and uses camera distance sensors to detect and spray into tree canopies. The created prototype was produced with flexibility in mind. Two stages of prototype manufacture were completed. The initial stage involved designing and producing the flexible primary body of the autonomous vehicle. Detachable hanger assemblies are employed so that the main body robot can perform a variety of agricultural tasks. The design of the spraying devices and their fitting to the autonomous vehicle was completed as the second stage of the prototype. The built prototype spraying robot's itinerary was planned using the free, open-source program Mission Planner. PX4, telemetry, and RTK GPS are used to maneuver the autonomous car along the designated path. To avoid potential obstructions, the robot uses ultrasonic and lidar sensors. The developed autonomous vehicle's energy needs are intended to be met entirely by electric batteries. In the event that the batteries run out of power, the sockets are set up to be recharged both by using the generator and the main power source through the specifically constructed panel.

Keywords: autonomous agricultural robot, pesticide, smart farming, spraying, variable rate application

Procedia PDF Downloads 61
6851 Humans, Social Robots, and Mutual Love: An Application of Aristotle’s Nicomachean Ethics

Authors: Ruby Jean Hornsby

Abstract:

In our rapidly advancing techno-moral world, human-robot relationships are increasingly becoming a part of intimate human life. Indeed, social robots - that is, autonomous or semi-autonomous embodied artificial agents that generally possess human or animal-like qualities (such as responding to environmental stimuli, communicating, learning, performing human tasks, and making autonomous decisions) - have been designed to function as human friends. In light of such advances, immediate philosophical scrutiny is imperative in order to examine the extent to which human-robot interactions constitute genuine friendship and therefore contribute towards the good human life. Aristotle's conception of friendship is philosophically illuminating and sufficiently broad in scope to guide such analysis. On his account, it is necessary (though not sufficient) that for a friendship to exist between two agents - A and B - both agents must have a mutual love for one another. Aristotle claims that A loves B if: Condition 1: A desires those apparent good (qua pleasant, useful, or virtuous) properties attributable to B, and Condition 2: A has goodwill (wishes what is best) for B. This paper argues that human-robot interaction can (and does) successfully meet both conditions; as such, it demonstrates that robots and humans can reciprocally love one another. It will argue for this position by first justifying the claim that a human can desire apparent good features attributable to a robot (i.e., by taking them to be pleasant and/or useful) and outlining how it is that a human can wish a robot well in light of that robot's (quasi-) interests. Next, the paper will argue that a robot can (quasi-)desire certain properties that are attributable to a human before elucidating how it is possible for a robot to act in the interests of a human. Accordingly, this paper will conclude that it is already the case that humans can formulate relationships with robots that involve reciprocated love. This is significant because it suggests that social robots are candidates for human friendship and can therefore contribute toward flourishing human futures.

Keywords: ancient philosophy, friendship, inter-disciplinary applied ethics, love, social robotics

Procedia PDF Downloads 87
6850 Advanced Mechatronic Design of Robot Manipulator Using Hardware-In-The-Loop Simulation

Authors: Reza Karami, Ali Akbar Ebrahimi

Abstract:

This paper discusses concurrent engineering of robot manipulators, based on the Holistic Concurrent Design (HCD) methodology and by using a hardware-in-the-loop simulation platform. The methodology allows for considering numerous design variables with different natures concurrently. It redefines the ultimate goal of design based on the notion of satisfaction, resulting in the simplification of the multi-objective constrained optimization process. It also formalizes the effect of designer’s subjective attitude in the process. To enhance modeling efficiency for both computation and accuracy, a hardware-in-the-loop simulation platform is used, which involves physical joint modules and the control unit in addition to the software modules. This platform is implemented in the HCD design architecture to reliably evaluate the design attributes and performance super criterion during the design process. The resulting overall architecture is applied to redesigning kinematic, dynamic and control parameters of an industrial robot manipulator.

Keywords: concurrent engineering, hardware-in-the-loop simulation, robot manipulator, multidisciplinary systems, mechatronics

Procedia PDF Downloads 426
6849 Representations of Childcare Robots as a Controversial Issue

Authors: Raya A. Jones

Abstract:

This paper interrogates online representations of robot companions for children, including promotional material by manufacturers, media articles and technology blogs. The significance of the study lies in its contribution to understanding attitudes to robots. The prospect of childcare robots is particularly controversial ethically, and is associated with emotive arguments. The sampled material is restricted to relatively recent posts (the past three years) though the analysis identifies both continuous and changing themes across the past decade. The method extrapolates social representations theory towards examining the ways in which information about robotic products is provided for the general public. Implications for social acceptance of robot companions for the home and robot ethics are considered.

Keywords: acceptance of robots, childcare robots, ethics, social representations

Procedia PDF Downloads 228
6848 Multi Objective Near-Optimal Trajectory Planning of Mobile Robot

Authors: Amar Khoukhi, Mohamed Shahab

Abstract:

This paper presents the optimal control problem of mobile robot motion as a nonlinear programming problem (NLP) and solved using a direct method of numerical optimal control. The NLP is initialized with a B-Spline for which node locations are optimized using a genetic search. The system acceleration inputs and sampling periods are considered as optimization variables. Different scenarios with different objectives weights are implemented and investigated. Interesting results are found in terms of complying with the expected behavior of a mobile robot system and time-energy minimization.

Keywords: multi-objective control, non-holonomic systems, mobile robots, nonlinear programming, motion planning, B-spline, genetic algorithm

Procedia PDF Downloads 347
6847 Virtual Reality Application for Neurorehabilitation

Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present a virtual reality application for neurorehabilitation. This application was developed using the Unity SDK integrating the Oculus Rift and Leap Motion devices. Essentially, it consists of three stages according to the kind of rehabilitation to carry on: ocular rehabilitation, head/neck rehabilitation, and eye-hand coordination. We build three scenes for each task; for ocular and head/neck rehabilitation, there are different objects moving in the field of view and extended field of view of the user according to some patterns relative to the therapy. In the third stage the user must try to touch with the hand some objects guided by its view. We report the primer results of the use of the application with healthy people.

Keywords: virtual reality, interactive technologies, video games, neurorehabilitation

Procedia PDF Downloads 386
6846 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability

Procedia PDF Downloads 198
6845 Formation Control for Linear Multi-Robot System with Switched Directed Topology and Time-Varying Delays

Authors: Yaxiao Zhang, Yangzhou Chen

Abstract:

This study investigate the formation problem for high-order continuous-time multi-robot with bounded symmetric time-varying delay protocol under switched directed communication topology. By using a linear transformation, the formation problem is transformed to stability analysis of a switched delay system. Under the assumption that each communication topology has a directed spanning tree, sufficient conditions are presented in terms of linear matrix inequalities (LMIs) that the multi-robot system can achieve a desired formation by the trade-off among the pre-exist topologies with the help of the scheme of average dwell time. A numeral example is presented to illustrate the effectiveness of the obtained results.

Keywords: multi-robot systems, formation, switched directed topology, symmetric time-varying delay, average dwell time, linear matrix inequalities (lmis)

Procedia PDF Downloads 512
6844 A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator

Authors: Abolfazl Zaraki, Yoshikatsu Hayashi, Harry Thorpe, Vincent Strong, Gisle-Andre Larsen, William Holderbaum

Abstract:

Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot’s reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot’s body posture but also to control the trajectory of the robot’s movement in a semi-autonomous manner (the human operator is retained in the robot’s control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit–Hartenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application.

Keywords: hyper-redundant robots, kinematic analysis, semi-autonomous control, serial manipulators

Procedia PDF Downloads 142
6843 Reliability-Based Life-Cycle Cost Model for Engineering Systems

Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski

Abstract:

The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.

Keywords: initial cost, life-cycle cost, maintenance cost, reliability

Procedia PDF Downloads 572