Search results for: flotation machines
596 Genres as Time Machines: Hong Kong Cinema's Ways of Historicizing
Authors: Chin Pang Lei
Abstract:
Colonized by the UK, handed over to China, and now as a global financial city, Hong Kong’s history is never easy to write under the dominant discourses of colonialism, nationalism and globalization. In this plight, cinema, regarded as Hong Kong’s most representative cultural form, is used for writing, exploring and questioning the local history of the city. In their writing of the past, Hong Kong directors such as Wong Kar-wai, Stanley Kwan and Tsui Hark have demonstrated alternative ways of historicizing Hong Kong. Despite their interests in different periods of time (Wong is obsessed with the 1960s; Kwan is attracted to the 1930s; Tsui often goes back to the early 20th century), all these directors use genres as their time machines to revisit the past. As a popular cultural form, genres always come with a series of ideologies which define our lives and explain the society. Hence, in a changing society, genres change and complicate themselves with different packages of meanings. Genres function as open-ended and corrigible schemata which can contain multiple themes and various meanings. In Hong Kong, genres, often seen as highly commercial and overly market-oriented, are opportunities for alternative history writing and the exploration of local identities. This paper examines how these Hong Kong directors use the popular forms of genres, such as melodrama, martial art and gangster films, to present the past, and how the stories of the fictional characters, such as prostitutes, martial artists and jobless hooligans mobilize imagination of history. These texts show that genre is a crucial platform for Hong Kong’s post-colonial self-writing. Via genres, history in these films is against official and canonical history as well as grand narrative. Genres as time machines articulate a voice for Hong Kong.Keywords: Hong Kong cinema, genre, historicizing, local history, Wong Kar-Wai
Procedia PDF Downloads 366595 Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches
Authors: Bin Liu
Abstract:
As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors.Keywords: protein remote homology detection, protein fold recognition, top frequency profile, support vector machines
Procedia PDF Downloads 125594 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 294593 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 621592 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 515591 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines
Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun
Abstract:
This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry
Procedia PDF Downloads 234590 Cost Effective Real-Time Image Processing Based Optical Mark Reader
Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar
Abstract:
In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding
Procedia PDF Downloads 173589 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium
Authors: Kartikaningsih Danis, Yao-Hui Huang
Abstract:
Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.Keywords: boron removal, chemical coagulation, aluminum, electro-coagulation
Procedia PDF Downloads 404588 Quantum Entangled States and Image Processing
Authors: Sanjay Singh, Sushil Kumar, Rashmi Jain
Abstract:
Quantum registering is another pattern in computational hypothesis and a quantum mechanical framework has a few helpful properties like Entanglement. We plan to store data concerning the structure and substance of a basic picture in a quantum framework. Consider a variety of n qubits which we propose to use as our memory stockpiling. In recent years classical processing is switched to quantum image processing. Quantum image processing is an elegant approach to overcome the problems of its classical counter parts. Image storage, retrieval and its processing on quantum machines is an emerging area. Although quantum machines do not exist in physical reality but theoretical algorithms developed based on quantum entangled states gives new insights to process the classical images in quantum domain. Here in the present work, we give the brief overview, such that how entangled states can be useful for quantum image storage and retrieval. We discuss the properties of tripartite Greenberger-Horne-Zeilinger and W states and their usefulness to store the shapes which may consist three vertices. We also propose the techniques to store shapes having more than three vertices.Keywords: Greenberger-Horne-Zeilinger, image storage and retrieval, quantum entanglement, W states
Procedia PDF Downloads 306587 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation
Authors: Onur Ozveri, Korkut Karabag, Cagri Keles
Abstract:
It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance
Procedia PDF Downloads 194586 The Effect of Artificial Intelligence on Electric Machines and Welding
Authors: Mina Malak Zakaria Henin
Abstract:
The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses
Procedia PDF Downloads 28585 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 40584 Application of Support Vector Machines in Forecasting Non-Residential
Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut
Abstract:
This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.Keywords: forecasting, non-residential, construction, support vector machines
Procedia PDF Downloads 434583 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint
Authors: Melike Yaylacı, Tuğba Bilgin
Abstract:
Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters
Procedia PDF Downloads 99582 Performance of Constant Load Feed Machining for Robotic Drilling
Authors: Youji Miyake
Abstract:
In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling
Procedia PDF Downloads 194581 Design and Finite Element Analysis of Clamp Cylinder for Capacity Augmentation of Injection Moulding Machine
Authors: Vimal Jasoliya, Purnank Bhatt, Mit Shah
Abstract:
The Injection Moulding is one of the principle methods of conversions of plastics into various end products using a very wide range of plastics materials from commodity plastics to specialty engineering plastics. Injection Moulding Machines are rated as per the tonnage force applied. The work present includes Design & Finite Element Analysis of a structure component of injection moulding machine i.e. clamp cylinder. The work of the project is to upgrade the 1300T clamp cylinder to 1500T clamp cylinder for injection moulding machine. The design of existing clamp cylinder of 1300T is checked. Finite Element analysis is carried out for 1300T clamp cylinder in ANSYS Workbench, and the stress values are compared with acceptance criteria and theoretical calculation. The relation between the clamp cylinder diameter and the tonnage capacity has been derived and verified for 1300T clamp cylinder. The same correlation is used to find out the thickness for 1500T clamp cylinder. The detailed design of 1500T cylinder is carried out based on calculated thickness.Keywords: clamp cylinder, fatigue analysis, finite element analysis, injection moulding machines
Procedia PDF Downloads 335580 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui
Abstract:
A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines
Procedia PDF Downloads 149579 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.Keywords: bottleneck, golgohar iron ore mining & industrial company, maintainability, maintenance costs, reliability
Procedia PDF Downloads 363578 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin
Abstract:
There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.Keywords: cloud computing, energy utilization, power consumption, resource allocation
Procedia PDF Downloads 338577 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 475576 Statistical Manufacturing Cell/Process Qualification Sample Size Optimization
Authors: Angad Arora
Abstract:
In production operations/manufacturing, a cell or line is typically a bunch of similar machines (computer numerical control (CNCs), advanced cutting, 3D printing or special purpose machines. For qualifying a typical manufacturing line /cell / new process, Ideally, we need a sample of parts that can be flown through the process and then we make a judgment on the health of the line/cell. However, with huge volumes and mass production scope, such as in the mobile phone industry, for example, the actual cells or lines can go in thousands and to qualify each one of them with statistical confidence means utilizing samples that are very large and eventually add to product /manufacturing cost + huge waste if the parts are not intended to be customer shipped. To solve this, we come up with 2 steps statistical approach. We start with a small sample size and then objectively evaluate whether the process needs additional samples or not. For example, if a process is producing bad parts and we saw those samples early, then there is a high chance that the process will not meet the desired yield and there is no point in keeping adding more samples. We used this hypothesis and came up with 2 steps binomial testing approach. Further, we also prove through results that we can achieve an 18-25% reduction in samples while keeping the same statistical confidence.Keywords: statistics, data science, manufacturing process qualification, production planning
Procedia PDF Downloads 96575 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model
Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu
Abstract:
Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing
Procedia PDF Downloads 250574 Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance
Authors: Aysegul Sarac
Abstract:
Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms.Keywords: optimization, 6-Sigma methodology, washer-dryers, water condensation technology
Procedia PDF Downloads 360573 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 376572 Prevalence of Eimeria spp in Cattle in Anatolia Region, Turkey
Authors: Nermin Isik, Onur Ceylan
Abstract:
Bovine coccidiosis is a protozoan infection caused by coccidia parasites of the genus Eimeria which develops in the small and the large intestine. The aim of this study was to determine the prevalence of Eimeria spp. in cattle. This study was conducted between March 2014 and April 2015, involved 624 fecal samples of cattle. Cattle were grouped according to their age as follows: 6-12, 12-24 and >24 months. In a retrospective study from these faecal samples of cattle submitted to the University of Selcuk, Faculty of Veterinary Medicine, Laboratory of Parasitology were evaluated regarding the prevalence of Eimeria spp. In the laboratory, faecal samples were examined by Fulleborn saturated salt flotation technique and examined under a microscope for the presence of protozoan oocysts. Eimeria oocysts were found in 4.8% of all the samples. Eimeria infection was detected in 11.8%, 5.3% and 0.4% of the cattle in the age groups, respectively. This study showed that Eimeria infection was commonly seen in 6-24-month-old cattle. Further epidemiological investigation on economic significance and species composition of bovine coccidiosis needs to be pursued.Keywords: cattle, diarrhea, Eimeria spp, Turkey
Procedia PDF Downloads 352571 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems
Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin
Abstract:
Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability
Procedia PDF Downloads 448570 Data Security and Privacy Challenges in Cloud Computing
Authors: Amir Rashid
Abstract:
Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud
Procedia PDF Downloads 299569 Utilization and Characterizations of Olive Oil Industry By-Products
Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry
Abstract:
A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated.Keywords: cellulose, carboxymethyle cellulose, olive pulp, hydrogel
Procedia PDF Downloads 474568 Analysis Mechanized Boring (TBM) of Tehran Subway Line 7
Authors: Shahin Shabani, Pouya Pourmadadi
Abstract:
Tunnel boring machines (TBMs) have been used for the construction of various tunnels for mining projects for the purpose of access, conveyance of ore and waste, drainage, exploration, water supply and water diversion. Several mining projects have seen the successful and economic beneficial use of TBMs, and there is an increasing awareness of the benefits of TBMs for mining projects. Key technical considerations for the use of TBMs for the construction of tunnels for mining projects include geological issues (rock type, rock alteration, rock strength, rock abrasivity, durability, ground water inflows), depth of cover and the potential for overstressing/rockbursts, site access and terrain, portal locations, TBM constraints, minimum tunnel size, tunnel support requirements, contractor and labor experience, and project schedule demands. This study focuses on tunnelling mining, with the goal to develop methods and tools to be used to gain understanding of these processes, and to analyze metro of Tehran. The Metro Line 7 of Tehran is one of the Longest (26 Km) and deepest (27m) of projects that’s under implementation. Because of major differences like passing under all geotechnical layers of the town and encountering part of it with underground water table and also using mechanized excavation system, is one of special metro projects.Keywords: TBM, tunnel boring machines economic, metro, line 7
Procedia PDF Downloads 384567 Prevalence and Risk Factors of Eimeria Spp. and Giardia Spp. in Rabbits of Local Algerian Population
Authors: Mina Henneb, Rafik Belabbas, Safia Zenia
Abstract:
The objective of this study was to determine the prevalence and to identify the risk factors of Eimeria spp. and Giardia spp. infection in rabbits from the local population of four localities in northern Algeria. Dung samples were collected from 16 farms, totalling 111 rabbits, and were analysed by the flotation method. Additional, data regarding the farms and management practices were obtained by means of a questionnaire used in the surveys and interviews. The results revealed that the prevalence of Eimerias pp. contamination was 68.75% (11/16) for farms and 58.56% (65/111) for rabbits, respectively. The prevalence of Giardia spp. was respectively 56.25% (9/16) for farms and 11.7% (13/111) for rabbits. The analyses showed that the prevalence of Eimeria spp. was significantly higher in the farms that did not comply with hygiene and non-conventional feeding and watering. However, the prevalence of Giardia spp. was significant in rabbits kept in poor conditions of rearing. In conclusion, this study showed that the prevalence of these two parasites in rabbits from the local population is relevant and may have important implications for the rabbit industry and public health, especially in rural areas.Keywords: Algeria, digestive parasites, prevalence, rabbits, risk factors
Procedia PDF Downloads 171