Search results for: early Alzheimer’s recognition
5199 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach
Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed
Abstract:
Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model
Procedia PDF Downloads 4625198 Fine Grained Action Recognition of Skateboarding Tricks
Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli
Abstract:
In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling
Procedia PDF Downloads 2315197 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 525196 Serum Levels of Plasminogen Activator Inhibitor-1 (PAI-1) Are Increased in Alzheimer’s Disease and MCI Patients and Correlate With Cognitive Deficits
Authors: Francesco Angelucci, Katerina Veverova, Alžbeta Katonová, Lydia Piendel, Martin Vyhnalek, Jakub Hort
Abstract:
Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by loss of memory, cognitive functions and neurodegeneration. Plasmin is an enzyme degrading many plasma proteins. In the CNS, plasmin may reduce the accumulation of A, and have other actions relevant to AD pathophysiology. Brain plasmin synthesis is regulated by two enzymes: one activating, the tissue plasminogen activator (tPA), and the other inhibiting, the plasminogen activator inhibitor-1 (PAI-1). We investigated whether tPA and PAI-1 serum levels in AD and amnestic mild cognitive impairment (aMCI) patients are altered compared to cognitively healthy controls. Moreover, we examined the PAI-1/tPA ratio in these patient groups. 40 AD, 40 aMCI and 10 healthy controls were recruited. Venous blood was collected and PAI-1 and tPA serum concentrations were quantified by sandwich ELISAs. The results showed that PAI-1 levels increased in AD and aMCI patients. This increase negatively correlated with cognitive deficit measured by MMSE. Similarly, the ratio between tPA and PAI-1 gradually increases in aMCI and AD patients. This study demonstrates that AD and aMCI patients have altered PAI-1 serum levels and PAI-1/tPA ratio. Since these enzymes are CNS regulators of plasmin, PAI-1 serum levels could be a marker reflecting a cognitive decline in AD.Keywords: Alzheimer disease, amnestic mild cognitive impairment, plasmin, tissue-type plasminogen activator
Procedia PDF Downloads 765195 Exploring 'Attachment Theory' in the Context of Early Childhood Education
Authors: Wendy Lee
Abstract:
From the mid-twentieth century onward, the notion of ‘attachment’ has been used to define the optimum relationship between young children and their carers; first applied to parents and young children and more recently with early childhood educators and children in their care. However, it is seldom, if ever, asked whether the notion of ‘attachment’ and more especially so-called Attachment Theory, as propounded by John Bowlby and others, provides a sound basis for conceptualising child-adult relationships in early years. Even if appropriate in the context of family, the use of the term raises a number of questions when used in early childhood education. Research has shown that our youngest children (infants) in early childhood centre based care settings, are given the utmost priority to build 'attachments' with their educators. But exactly when, how and why does this priority diminish - and should it (for preschoolers)? This presentation will elaborate on such issues and will argue that there is a need to reconceptualise and redefine how 'quality relationships' should be measured and implemented in the daily practices and pedagogical methods adopted by early childhood educators. Moreover, this presentation will include data collected from the empirical study conducted, that observed various early childhood educators and children in Australian early childhood centres. Lastly, the thoughts, feelings and desires of parents of children in early childhood centre-based care, regarding the term 'attachment' and 'quality relationships' will be shared in the hope that we can take one step closer in bridging the needs of families, children, early childhood centres, educators, and the wider community.Keywords: attachment, early childhood education, pedagogy, relationships
Procedia PDF Downloads 1935194 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.Keywords: chain code frequency, character recognition, feature extraction, features matching, segmentation
Procedia PDF Downloads 3205193 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model
Authors: Si Chen, Quanhong Jiang
Abstract:
In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics
Procedia PDF Downloads 795192 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors
Authors: João Filipe Papel, Tatsuji Munaka
Abstract:
With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living
Procedia PDF Downloads 1045191 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 1445190 Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer's Disease
Authors: Huafeng Wei
Abstract:
Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs.Keywords: alzheimer, calcium, cognitive dysfunction, dementia, neurodegeneration, neurogenesis
Procedia PDF Downloads 1825189 Muscle Relaxant Dantrolene Repurposed to Treat Alzheimer's Disease
Authors: Huafeng Wei
Abstract:
Failures of developing new drugs primarily based on the amyloid pathology hypothesis after decades of efforts internationally lead to changes of focus targeting alternative pathways of pathology in Alzheimer’s disease (AD). Disruption of intracellular Ca2+ homeostasis, especially the pathological and excessive Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) Ca2+ channels, has been considered an upstream pathology resulting in major AD pathologies, such as amyloid and Tau pathology, mitochondria damage and inflammation, etc. Therefore, dantrolene, an inhibitor of RyRs that reduces the pathological Ca2+ release from ER and a clinically available drug for the treatment of malignant hyperthermia and muscle spasm, is expected to ameliorate AD multiple pathologies synapse and cognitive dysfunction. Our own studies indicated that dantrolene ameliorated impairment of neurogenesis and synaptogenesis in neurons developed from induced pluripotent stem cells (iPSCs) originated from skin fibroblasts of either familiar (FAD) or sporadic (SAD) AD by restoring intracellular Ca2+ homeostasis. Intranasal administration of dantrolene significantly increased its passage across the blood-brain barrier (BBB) and, therefore its brain concentrations and durations. This can render dantrolene a more effective therapeutic drug with fewer side effects for chronic AD treatment. This review summarizes the potential therapeutic and side effects of dantrolene and repurposes intranasal dantrolene as a disease-modifying drug for future AD treatment.Keywords: Alzheimer's disease, calcium, drug development, dementia, neurodegeneration, neurogenesis
Procedia PDF Downloads 2085188 Analysis of NMDA Receptor 2B Subunit Gene (GRIN2B) mRNA Expression in the Peripheral Blood Mononuclear Cells of Alzheimer's Disease Patients
Authors: Ali̇ Bayram, Semih Dalkilic, Remzi Yigiter
Abstract:
N-methyl-D-aspartate (NMDA) receptor is a subtype of glutamate receptor and plays a pivotal role in learning, memory, neuronal plasticity, neurotoxicity and synaptic mechanisms. Animal experiments were suggested that glutamate-induced excitotoxic injuriy and NMDA receptor blockage lead to amnesia and other neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral sclerosis. Aim of this study is to investigate association between NMDA receptor coding gene GRIN2B expression level and Alzheimer disease. The study was approved by the local ethics committees, and it was conducted according to the principles of the Declaration of Helsinki and guidelines for the Good Clinical Practice. Peripheral blood was collected 50 patients who diagnosed AD and 49 healthy control individuals. Total RNA was isolated with RNeasy midi kit (Qiagen) according to manufacturer’s instructions. After checked RNA quality and quantity with spectrophotometer, GRIN2B expression levels were detected by quantitative real time PCR (QRT-PCR). Statistical analyses were performed, variance between two groups were compared with Mann Whitney U test in GraphpadInstat algorithm with 95 % confidence interval and p < 0.05. After statistical analyses, we have determined that GRIN2B expression levels were down regulated in AD patients group with respect to control group. But expression level of this gene in each group was showed high variability. İn this study, we have determined that NMDA receptor coding gene GRIN2B expression level was down regulated in AD patients when compared with healthy control individuals. According to our results, we have speculated that GRIN2B expression level was associated with AD. But it is necessary to validate these results with bigger sample size.Keywords: Alzheimer’s disease, N-methyl-d-aspartate receptor, NR2B, GRIN2B, mRNA expression, RT-PCR
Procedia PDF Downloads 3945187 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 1555186 Human Gait Recognition Using Moment with Fuzzy
Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain
Abstract:
A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments
Procedia PDF Downloads 7575185 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand
Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk
Abstract:
Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment
Procedia PDF Downloads 1295184 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction
Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar
Abstract:
Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation
Procedia PDF Downloads 1435183 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 205182 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)
Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss
Abstract:
In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.Keywords: recognition, handwriting, Arabic text, HMMs, embedded training
Procedia PDF Downloads 3545181 Fitness Action Recognition Based on MediaPipe
Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin
Abstract:
MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize the human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.Keywords: computer vision, MediaPipe, adaptive boosting, fast dynamic time warping
Procedia PDF Downloads 1185180 Words Spotting in the Images Handwritten Historical Documents
Authors: Issam Ben Jami
Abstract:
Information retrieval in digital libraries is very important because most famous historical documents occupy a significant value. The word spotting in historical documents is a very difficult notion, because automatic recognition of such documents is naturally cursive, it represents a wide variability in the level scale and translation words in the same documents. We first present a system for the automatic recognition, based on the extraction of interest points words from the image model. The extraction phase of the key points is chosen from the representation of the image as a synthetic description of the shape recognition in a multidimensional space. As a result, we use advanced methods that can find and describe interesting points invariant to scale, rotation and lighting which are linked to local configurations of pixels. We test this approach on documents of the 15th century. Our experiments give important results.Keywords: feature matching, historical documents, pattern recognition, word spotting
Procedia PDF Downloads 2745179 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3345178 Finding the Association Rule between Nursing Interventions and Early Evaluation Results of In-Hospital Cardiac Arrest to Improve Patient Safety
Authors: Wei-Chih Huang, Pei-Lung Chung, Ching-Heng Lin, Hsuan-Chia Yang, Der-Ming Liou
Abstract:
Background: In-Hospital Cardiac Arrest (IHCA) threaten life of the inpatients, cause serious effect to patient safety, quality of inpatients care and hospital service. Health providers must identify the signs of IHCA early to avoid the occurrence of IHCA. This study will consider the potential association between early signs of IHCA and the essence of patient care provided by nurses and other professionals before an IHCA occurs. The aim of this study is to identify significant associations between nursing interventions and abnormal early evaluation results of IHCA that can assist health care providers in monitoring inpatients at risk of IHCA to increase opportunities of IHCA early detection and prevention. Materials and Methods: This study used one of the data mining techniques called association rules mining to compute associations between nursing interventions and abnormal early evaluation results of IHCA. The nursing interventions and abnormal early evaluation results of IHCA were considered to be co-occurring if nursing interventions were provided within 24 hours of last being observed in abnormal early evaluation results of IHCA. The rule based methods were utilized 23.6 million electronic medical records (EMR) from a medical center in Taipei, Taiwan. This dataset includes 733 concepts of nursing interventions that coded by clinical care classification (CCC) codes and 13 early evaluation results of IHCA with binary codes. The values of interestingness and lift were computed as Q values to measure the co-occurrence and associations’ strength between all in-hospital patient care measures and abnormal early evaluation results of IHCA. The associations were evaluated by comparing the results of Q values and verified by medical experts. Results and Conclusions: The results show that there are 4195 pairs of associations between nursing interventions and abnormal early evaluation results of IHCA with their Q values. The indication of positive association is 203 pairs with Q values greater than 5. Inpatients with high blood sugar level (hyperglycemia) have positive association with having heart rate lower than 50 beats per minute or higher than 120 beats per minute, Q value is 6.636. Inpatients with temporary pacemaker (TPM) have significant association with high risk of IHCA, Q value is 47.403. There is significant positive correlation between inpatients with hypovolemia and happened abnormal heart rhythms (arrhythmias), Q value is 127.49. The results of this study can help to prevent IHCA from occurring by making health care providers early recognition of inpatients at risk of IHCA, assist with monitoring patients for providing quality of care to patients, improve IHCA surveillance and quality of in-hospital care.Keywords: in-hospital cardiac arrest, patient safety, nursing intervention, association rule mining
Procedia PDF Downloads 2715177 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1505176 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 2185175 The Effects of Early Maternal Separation on Risky Choice in Rats
Authors: Osvaldo Collazo, Cristiano Valerio Dos Santos
Abstract:
Early maternal separation has been shown to bring about many negative effects on behavior in rats. In the present study, we evaluated the effects of early maternal separation on risky choice in rats. One group of male and female Wistar rats was exposed to an early maternal separation protocol while a control group was left undisturbed. Then both groups were exposed to a series of behavioral tests, including a test of risky choice, where one alternative offered a constant reward while the other offered a variable reward. There was a difference between groups when they chose between a variable and a constant reward delay, but no other difference was significant. These results suggest that early maternal separation may be related to a greater preference for shorter delays, which is characteristic of more impulsive choices.Keywords: early maternal separation, impulsivity, risky choice, variability
Procedia PDF Downloads 2565174 Incidence of Cancer in Patients with Alzheimer's Disease: A 11-Year Nationwide Population-Based Study
Authors: Jun Hong Lee
Abstract:
Background: Alzheimer`s disease (AD) I: creases with age and is characterized by the premature progressive loss of neuronal cell. In contrast, cancer cells have inappropriate cell proliferation and resistance to cell death. Objective: We evaluated the association between cancer and AD and also examined the specific types of cancer. Patients and Methods/Material and Methods: This retrospective, nationwide, longitudinal study used National Health Insurance Service – Senior cohort (NHIS-Senior) 2002-2013, which was released by the KNHIS in 2016, comprising 550,000 random subjects who were selected from over than 60. The study included a cohort of 4,408 patients who were first diagnoses as AD between 2003 and 2005. To match each dementia patient, 19,150 subjects were selected from the database by Propensity Score Matching. Results: We enrolled 4,790 patients for analysis in this cohort and the prevalence of AD was higher in female (19.29%) than in male (17.71%). A higher prevalence of AD was observed in the 70-84 year age group and in the higher income status group. A total of 540 cancers occurred within the observation interval. Overall cancer was less frequent in those with AD (12.25%) than in the control (18.46%), with HR 0.704 (95% Confidence Intervals (CIs)=0.0.64-0.775, p-Value < 0.0001). Conclusion: Our data showed a decreased incidence of overall cancers in patients with AD similar to previous studies. Patients with AD had a significantly decreased risk of colon & rectum, lung and stomach cancer. This finding lower than but consistent with Western countries. We need further investigation of genetic evidence linking AD to cancer.Keywords: Alzheimer, cancer, nationwide, longitudinal study
Procedia PDF Downloads 1785173 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 1565172 Effects of Recognition of Customer Feedback on Relationships between Emotional Labor and Job Satisfaction: Focusing On Call Centers That Offer Professional Services
Authors: Kiyoko Yoshimura, Yasunobu Kino
Abstract:
Focusing on professional call centers where workers with expertise perform services, this study aims to clarify the relationships between emotional labor and job satisfaction and the effects of recognition of customer feedback. Since the professional call center operators consist of professional license holders (qualification holders) and those who do not (non-holders), the following three points are analyzed in the two groups by using covariance structure analysis and simultaneous multi-population analysis: 1) The relationship between emotional labor and job satisfaction, 2) customer feedback and job satisfaction, and 3) The intermediation effect between the emotional labor of customer feedback and job satisfaction. The following results are obtained: i) no direct effect is found between job satisfaction and emotional labor for qualification holders and non-holders, ii) for qualification holders and non-holders, recognition of positive feedback and recognition of negative feedback had positive and negative effects on job satisfaction, respectively, iii) for qualification and non-holders, "consideration for colleagues" influences job satisfaction by recognizing positive feedback, and iv) only for qualification holders, the factors "customer-oriented emotional expression" and "emotional disharmony" have a positive and negative effect on job satisfaction, respectively, through recognition of positive feedback and recognition of negative feedback.Keywords: call center, emotional labor, professional service, job satisfaction, customer feedback
Procedia PDF Downloads 1135171 Distorted Document Images Dataset for Text Detection and Recognition
Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan
Abstract:
With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.Keywords: document analysis, open dataset, optical character recognition, text detection
Procedia PDF Downloads 1735170 Recognition and Enforcement of Foreign Decree Divorces in India with Special Reference to the Hindu Marriage Act, 1955
Authors: Poonamdeep kaur
Abstract:
With the increase in number of Non-Resident Indian marriages there is also increase in foreign decree divorces which inevitably causes the problem of recognition and enforcement of foreign judgments in India. The Hindus in India are governed by the Hindu Marriage Act, 1956. According to the said Act the courts in India have jurisdiction to try the matrimonial dispute if the marriage is performed in India or the parties to the marriage have domicile in India irrespective of their nationality status. But, sometimes one of the parties to the marriage whose marriage is solemnized in India obtains divorce in foreign courts and prays for the recognition and enforcement of such divorce in India. In such case section 13 of the Indian Civil Procedure Code, 1908, comes into play for the recognition and enforcement of foreign divorces in India. The section makes a foreign judgment conclusive in India subject to the fulfilment of certain conditions. Even if a foreign decree divorce is given on personal connecting factors of the parties to the matrimonial dispute like domicile, such divorce may still be refused recognition in India by virtue of section 13 of the Indian Civil Procedure Code, 1908. It is a universal truth that municipal law of countries is not the same throughout the world. Comity plays an important role in recognition and enforcing a foreign judgment, but, now in India the principle is not applied mechanically as the divorce matter is dealt strictly with regard to Indian Law. So in this paper there will be deep analysis of Indian case laws relating to recognition and enforcement of foreign divorces and based on this a comparative study will be made with the laws of Canada and England on the same subject to find out whether the Indian law on recognition and Enforcement of foreign judgment are in line with the laws of Canada and England and whether in recent years the Indian courts have evolved some new principles of private international law to deal with limping marriages. At last conclusions will be drawn out from the comparative study and suggestions would be given to make the rules of recognition and enforcement of foreign judgments on divorce more certain.Keywords: divorce, foreign decree, private international law, recognition and enforcement of foreign judgment
Procedia PDF Downloads 191