Search results for: PDF to story feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2148

Search results for: PDF to story feature

1998 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach

Authors: Munaf Rashid

Abstract:

For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.

Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook

Procedia PDF Downloads 475
1997 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 669
1996 Black Bodies Matter: The Contemporary Manifestation of Saartjie Baartman

Authors: Rokeshia Renné Ashley

Abstract:

The purpose of this study is to understand the perception of historical figure Saartjie 'Sara/Sarah' Baartman from a cross cultural perspective of black women in the United States and black women in South Africa. Semi-structured interviews (n = 30) uncover that many women in both countries did not have an accurate representation, recollection, or have been exposed to the story of Baartman. Nonetheless, those who were familiar with Baartman’s story, those participants compared her to modern examples of black women who are showcased in a contemporary familiarity. The women are described by participants as women who reveal their bodies in a sexualized manner and have the curves that are similar to Baartman’s historic figure. This comparison emphasized a connection to popular images of black women who represent the curvaceous ideal. Findings contribute to social comparison theory by providing a lens for examining black women’s body image.

Keywords: black women, body modification, media, South Africa

Procedia PDF Downloads 320
1995 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories

Authors: Claudio Díaz, Mabel Ortiz

Abstract:

An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.

Keywords: beliefs, digital stories, preservice teachers, practicum

Procedia PDF Downloads 442
1994 Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level

Authors: Tahir Mehmood, Pennung Warnitchai

Abstract:

Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure.

Keywords: higher mode effects, seismic evaluation procedure, tall buildings, component responses

Procedia PDF Downloads 343
1993 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers

Authors: C. V. Aravinda, H. N. Prakash

Abstract:

In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.

Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages

Procedia PDF Downloads 497
1992 Smart Transportation: Bringing Back Sunshine City Harare

Authors: R. Shayamapiki

Abstract:

This study explores the applicability of applying new urbanism principles in cities of developing countries as a panacea towards building sustainable cities through implementing smart transportation. Smart transportation approach to planning has been growing remarkably around the globe in the past decade. In conquest to curb traffic congestion and reducing automobile dependency in the inner-city Harare, Smart Transportation has been a strong drive towards building sustainable cities. Conceptually, Smart Transportation constitutes of principles which include walking, cycling and mass transit. The Smart Transportation approach has been a success story in the cities of developing world but its application in the cities of developing countries has been doubtful. Cities of developing countries being multifaceted with several urban sustainability challenges, the study consolidates that there are no robust policy, legislative and institutional frameworks to govern the application of Smart Transportation in urban planning hence no clear roadway towards its success story. Questions regarding this investigation proliferate to; how capable are cities of developing countries to transform Smart Transportation principles to a success story? What victory can Smart Transportation bring to sustainable urban development? What are constraints of embracing the principles and how can they be manipulated? Methodologically the case study of urban syntax in Harare Central Business District and arterial roads of the city, legislation and institutional settings underpins various research outcomes. The study finds out the hindrances of policy, legislative and institutional incapacities cooked with economic constraints, lack of political will and technically inflexible zoning regulations. The study also elucidates that there is need to adopt a localized approach to Smart Transportation. The paper then calls for strengthening of institutional and legal reform in conquest to embrace the concept, policy and legislative support, feasible financial mechanism, coordination of responsible stakeholders, planning standards and regulatory frameworks reform to celebrate the success story of Smart Transportation in the developing world.

Keywords: inner-city Harare, new urbanism, smart transportation, sustainable cities

Procedia PDF Downloads 469
1991 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis

Authors: Tawfik Thelaidjia, Salah Chenikher

Abstract:

Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach

Keywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement

Procedia PDF Downloads 439
1990 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories

Authors: Haj Najafi Leila, Tehranizadeh Mohsen

Abstract:

Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.

Keywords: dependency, story-cost, cost modes, engineering demand parameter

Procedia PDF Downloads 181
1989 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 152
1988 Automated User Story Driven Approach for Web-Based Functional Testing

Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam

Abstract:

Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors.  In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template.  We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE.  We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators.  Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.

Keywords: automated testing, natural language, restricted user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing

Procedia PDF Downloads 388
1987 Impact of Story-Telling through Indian Textiles: Mata Ni Pachedi and Pabuji Ki Phad

Authors: Lavina N. Bhaskar, Ashima Tiwari

Abstract:

In the endeavour of connecting culture to stories, textile to narratives and people to material, authors analyse the impact of narratives in two popular Indian textiles namely - Mata Ni Pachedi and Pabuji Ki Phad. These textiles narrate people’s tale or Folk tale. Each textile has a style or format in which the story is told (and it is visual). Mata Ni Pachedi, when translated into the English language literally means behind the mother goddess. Mata Ni Pachedi is an Indian textile from the province of Gujarat which constitutes an entire temple of the goddess, with the idol herself in it. On the other hand, Pabuji ki Phad is scroll painting of folk deities of Rajasthan, narrated by Bhopas (the Priest singers of Rajasthan). These textiles narrate stories of ordinary people with extraordinary courage, of social reform, and people’s belief in the divine. Authors take to task their years of craft-cluster study conducted in the past and use existing literature to map their journey in the preliminary phase of research. And then carried out an ethnographic study by visiting the origins of these textiles in Rajasthan and Gujrat (in India), met artisans and their families who are still practicing these dying art form, in order to understand the format and impact of textile story-telling. This research paper talks about the narrative in Indian textiles; the stories in them, artisans and their life as metaphorical representations of the People in Mata Ni Pachedi and Pabuji Ki Phad.

Keywords: cultural derivatives, folk-tale, Indo-Narratives, Indology

Procedia PDF Downloads 408
1986 Statistical Analysis of Natural Images after Applying ICA and ISA

Authors: Peyman Sheikholharam Mashhadi

Abstract:

Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.

Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images

Procedia PDF Downloads 339
1985 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 410
1984 An Automatic Feature Extraction Technique for 2D Punch Shapes

Authors: Awais Ahmad Khan, Emad Abouel Nasr, H. M. A. Hussein, Abdulrahman Al-Ahmari

Abstract:

Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning.

Keywords: feature extraction, internal features, punch shapes, sheet metal

Procedia PDF Downloads 617
1983 Comprehensive Interpretation of Leadership from the Narratives in Literature

Authors: Nidhi Kaushal, Sanjit Mishra

Abstract:

Narrative writings in literature are ample source of knowledge and easily understandable. In every old tradition, we found that people learn ethics from oral tales. They had their leaders and lessons of leadership in their stories. In India, we have sufficient amount of stories of leaders. Whether the story is of an ordinary person or a corporate leader of large firm, it always has a unique message of motivation. The objective of this paper is to elaborate the story lines in literature and get the leadership lessons from them, so that we can set up a new concept of leadership based on scholarship of literature. This is our hypothesis that leadership lessons can be learned from the study of literary writings and it can also act an innovative way of learning the management skills through literature. The role of the leader can be familiarly communicated in the form of the tales. Describing a positive psychological narrative from the text is the best way to manifesting an idea into the minds of people. We accomplished this paper that leadership as an attribute can be learned from the folk psychological literary writings.

Keywords: leadership, literature, management, psychology

Procedia PDF Downloads 268
1982 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 177
1981 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 480
1980 Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval

Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje

Abstract:

Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.

Keywords: indexing, retrieval, multimedia, graph algorithm, graph code

Procedia PDF Downloads 162
1979 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
1978 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 426
1977 The Constructivist Approach to Teaching Second Language Writing

Authors: Andreea Cervatiuc

Abstract:

This study focuses on teaching second language writing through a constructivist approach. Unlike traditional approaches to teaching second language writing, which were product-oriented and emphasized surface features of writing, such as spelling and grammar, the constructivist approach to teaching second language writing is process-oriented and fosters discovery of meaning, creativity, collaboration, and writing for an audience. Educators who take a constructivist approach to teaching second language writing create communities of writers in their classrooms, emphasize that the goal of writing is to share ideas with others, and engage their students in collaborative, creative, and authentic writing activities, such as writing conferences, group story writing, finish the story, and chain writing. The constructivist approach to teaching second language writing combines a focus on genres, scaffolding, and treating writing as a process. Through constructivist writing, students co-create knowledge and engage in meaningful dialogue with various texts and their peers. The findings of this study can have implications for applied linguists, teachers, and language learners.

Keywords: constructivist second language, writing genres, process writing, scaffolding

Procedia PDF Downloads 18
1976 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 265
1975 Spiritual Warriors: Christian Testimony and Psychotherapy in Ritual Abuse Memoir

Authors: Jocelyn Cohen

Abstract:

This paper identifies a powerful synchronicity of two traditions of life-story writing in the autobiographies of ritual abuse (RA) survivors, the Christian conversion narrative and the memoir of healing from childhood sexual trauma. Using methodologies from literary studies, history, and psychology, a close reading of three RA memoirs sheds light on a taboo and deeply suspect form of violence. Treatment of RA survivors and the unique role of psychotherapists, in particular, deserve far greater attention from multi-disciplinary scholars. Each story reflects salient characteristics of the Christian conversion narrative, a genre which originated in the US in the early 19th century with the serendipitous confluence of the simultaneous emergence of print culture and the basic structures of evangelicalism during the Second Great Awakening. The impulse of writing is thus to give testimony against the sin they witnessed and endured as young children during ritual violence perpetrated within the church. Importantly, RA is seen as an inherent if obscure aspect of Christian discourse itself, not in opposition to it, and not as an aberration. In RA's memoir, healing comes in part from the Christian narrative praxis of personal redemption, framed as prevailing in a war between good and evil. In other words, storytelling itself affects the healing, much as it does by means of each writer’s 'talking cure,' in the relationship with a psychotherapist who guides her through a repair of the life-story through the excavation of traumatic memories and their integration into the writer’s psyche. Integrating literary techniques into the psychotherapeutic relationship, therapists leverage the deep linguistic structures that clients possess as a resource to aid in their healing.

Keywords: memoir, psychotherapy, religion, trauma

Procedia PDF Downloads 127
1974 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method

Authors: Arwa Alzughaibi

Abstract:

Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.

Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization

Procedia PDF Downloads 258
1973 Video Text Information Detection and Localization in Lecture Videos Using Moments

Authors: Belkacem Soundes, Guezouli Larbi

Abstract:

This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.

Keywords: text detection, text localization, lecture videos, pseudo zernike moments

Procedia PDF Downloads 152
1972 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 480
1971 Evaluating Probable Bending of Frames for Near-Field and Far-Field Records

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

Most reinforced concrete structures are designed only under heavy loads have large transverse reinforcement spacing values, and therefore suffer severe failure after intense ground movements. The main goal of this paper is to compare the shear- and axial failure of concrete bending frames available in Tehran using incremental dynamic analysis under near- and far-field records. For this purpose, IDA analyses of 5, 10, and 15-story concrete structures were done under seven far-fault records and five near-faults records. The results show that in two-dimensional models of short-rise, mid-rise and high-rise reinforced concrete frames located on Type-3 soil, increasing the distance of the transverse reinforcement can increase the maximum inter-story drift ratio values up to 37%. According to the existing results on 5, 10, and 15-story reinforced concrete models located on Type-3 soil, records with characteristics such as fling-step and directivity create maximum drift values between floors more than far-fault earthquakes. The results indicated that in the case of seismic excitation modes under earthquake encompassing directivity or fling-step, the probability values of failure and failure possibility increasing rate values are much smaller than the corresponding values of far-fault earthquakes. However, in near-fault frame records, the probability of exceedance occurs at lower seismic intensities compared to far-fault records.

Keywords: IDA, failure curve, directivity, maximum floor drift, fling step, evaluating probable bending of frames, near-field and far-field earthquake records

Procedia PDF Downloads 109
1970 Numerical Investigation of Seismic Behaviour of Building

Authors: Tinebeb Tefera Ashene

Abstract:

Glass facade systems have gained popularity in recent times. During an earthquake, building frames suffer large inter-story drifts, causing racking of building facade systems. A facade system is highly vulnerable and fails more frequently than a building with significant devastating effects. The usage of Metallic yield damper connections (Added Damping Stiffness) is proposed in this study to mitigate the aforementioned problems. Results showed as compared to control, usage of Metallic yield damper connections (Added-Damping-And-Stiffness) exhibited a reduction of connection deformation and axial force; differential displacement between frame and facade; and facade distortion by 44.35%, 43.33%, and 51.45% respectively. Also, employing proposed energy-absorbing connections reduced inter-story link joint drift by 71.11% and mitigated detrimental seismic effects on the entire building facade system.

Keywords: damper, energy dissipation, metallic yield, facades

Procedia PDF Downloads 53
1969 Changing MBA Identities: Using Critical Reflection inside and out in Finding a New Narrative

Authors: Keith Schofield, Leigh Morland

Abstract:

Storytelling is an established means of leadership and management development and is also considered a form of leadership of self and others in its own right. This study focuses on the utility of storytelling in the development of management narratives in an MBA programme; sources include programme participants as well as international recruiters, whose voices are often only heard in terms of economic contribution and globalisation. For many MBA candidates, the return to study requires the development of a new identity which complements their professional identity; each candidate has their own journey and expectations, the use of story can enable candidates to explore their aspirations and assumptions and give voice to previously unspoken ideas. For international recruitment, the story of market development and change must be captured if MBAs are to remain fit for purpose. If used effectively, story acts as a form of critical reflection that can inform the learning journeys of individuals, emerging identities as well as the ongoing design and development of programmes. The landscape of management education is shifting; the MBA begins to attract a different kind of candidate, some are younger than before, others are seeking validation for their existing work practices, yet more are entrepreneurial and wish to capitalise on an institutional experience to further their career. There is a shift in context, creating uncertainty and ambiguity for programme managers and recruiters, thus requiring institutions to create a new MBA narrative. This study utilises Lego SeriousPlay as the means to engaging programme participants and international agents in telling the story of their MBA. We asked MBA participants to tell the story of their leadership and management aspirations and compare these to stories of their development journeys, allowing for critical reflection of their respective development gaps. We asked international recruiters, who act as university agents and promote courses in the student’s country of origin, to explore their mental models of MBA candidates and their learning agenda. The purpose of this process was to explore the agent’s perception of the MBA programme and to articulate the student journey from a recruitment perspective. The paper’s unique contribution is in combining these stories in order to explore the assumptions that determine programme design. Data drawn from reflective statements together with images of Lego ‘builds’ created the opportunity for reflection between the mental models of these groups. Findings will inform the design of the MBA journey and experience; we review the extent to which the changing identities of learners are congruent with programme design. Data from international recruiters also determines the extent to which marketing and recruitment strategies identify with would be candidates.

Keywords: critical reflection, programme management, recruitment, storytelling

Procedia PDF Downloads 226