Search results for: High-Speed Railway Traffic
1252 Early Detection of Damages in Railway Steel Truss Bridges from Measured Dynamic Responses
Authors: Dinesh Gundavaram
Abstract:
This paper presents an investigation on bridge damage detection based on the dynamic responses estimated from a passing vehicle. A numerical simulation of steel truss bridge for railway was used in this investigation. The bridge response at different locations is measured using CSI-Bridge software. Several damage scenarios are considered including different locations and severities. The possibilities of dynamic properties of global modes in the identification of structural changes in truss bridges were discussed based on the results of measurement.Keywords: bridge, damage, dynamic responses, detection
Procedia PDF Downloads 2711251 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition
Authors: Ramesh Chandra Majhi
Abstract:
Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.Keywords: optimization, passenger car unit, saturation flow, signalized intersection
Procedia PDF Downloads 3271250 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail
Authors: A. Shebani, S. Iwnicki
Abstract:
Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.Keywords: railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer
Procedia PDF Downloads 3521249 Design and Assessment of Traffic Management Strategies for Improved Mobility on Major Arterial Roads in Lahore City
Authors: N. Ali, S. Nakayama, H. Yamaguchi, M. Nadeem
Abstract:
Traffic congestion is a matter of prime concern in developing countries. This can be primarily attributed due to poor design practices and biased allocation of resources based on political will neglecting the technical feasibilities in infrastructure design. During the last decade, Lahore has expanded at an unprecedented rate as compared to surrounding cities due to more funding and resource allocation by the previous governments. As a result of this, people from surrounding cities and areas moved to the Lahore city for better opportunities and quality of life. This migration inflow inherited the city with an increased population yielding the inefficiency of the existing infrastructure to accommodate enhanced traffic demand. This leads to traffic congestion on major arterial roads of the city. In this simulation study, a major arterial road was selected to evaluate the performance of the five intersections by changing the geometry of the intersections or signal control type. Simulations were done in two software; Highway Capacity Software (HCS) and Synchro Studio and Sim Traffic Software. Some of the traffic management strategies that were employed include actuated-signal control, semi-actuated signal control, fixed-time signal control, and roundabout. The most feasible solution for each intersection in the above-mentioned traffic management techniques was selected with the least delay time (seconds) and improved Level of Service (LOS). The results showed that Jinnah Hospital Intersection and Akbar Chowk Intersection improved 92.97% and 92.67% in delay time reduction, respectively. These results can be used by traffic planners and policy makers for decision making for the expansion of these intersections keeping in mind the traffic demand in future years.Keywords: traffic congestion, traffic simulation, traffic management, congestion problems
Procedia PDF Downloads 4701248 Road Traffic Noise Mapping for Riyadh City Using GIS and Lima
Authors: Khalid A. Alsaif, Mosaad A. Foda
Abstract:
The primary objective of this study is to develop the first round of road traffic noise maps for Riyadh City using Geographical Information Systems (GIS) and software LimA 7810 predictor. The road traffic data were measured or estimated as accurate as possible in order to obtain reliable noise maps. Meanwhile, the attributes of the roads and buildings are automatically exported from GIS. The simulation results at some chosen locations are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The results show that the average error between the predicted and measured noise levels is below 3.0 dB.Keywords: noise pollution, road traffic noise, LimA predictor, GIS
Procedia PDF Downloads 4061247 Using Traffic Micro-Simulation to Assess the Benefits of Accelerated Pavement Construction for Reducing Traffic Emissions
Authors: Sudipta Ghorai, Ossama Salem
Abstract:
Pavement maintenance, repair, and rehabilitation (MRR) processes may have considerable environmental impacts due to traffic disruptions associated with work zones. The simulation models in use to predict the emission of work zones were mostly static emission factor models (SEFD). SEFD calculates emissions based on average operation conditions e.g. average speed and type of vehicles. Although these models produce accurate results for large-scale planning studies, they are not suitable for analyzing driving conditions at the micro level such as acceleration, deceleration, idling, cruising, and queuing in a work zone. The purpose of this study is to prepare a comprehensive work zone environmental assessment (WEA) framework to calculate the emissions caused due to disrupted traffic; by integrating traffic microsimulation tools with emission models. This will help highway officials to assess the benefits of accelerated construction and opt for the most suitable TMP not only economically but also from an environmental point of view.Keywords: accelerated construction, pavement MRR, traffic microsimulation, congestion, emissions
Procedia PDF Downloads 4491246 Sourcing and Compiling a Maltese Traffic Dataset MalTra
Authors: Gabriele Borg, Alexei De Bono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns
Procedia PDF Downloads 1091245 Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City
Authors: Adinarayana Badveeti, Mohammad Shafi Mir
Abstract:
In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network.Keywords: traffic congestion, modeling, traffic management, travel time index
Procedia PDF Downloads 3191244 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1221243 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences
Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal
Abstract:
Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles
Procedia PDF Downloads 5101242 Performance Comparison of Reactive, Proactive and Hybrid Routing Protocols in Wireless Ad Hoc Networks
Authors: Kumar Manoj, Ramesh Kumar, Kumari Arti, Kumar Prashant
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper we compare AODV, DSDV, DSR and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyses these routing protocols by extensive simulations in OPNET simulator and show that how pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, data traffic sent, throughput, retransmission attempts.Keywords: MANET, AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 6781241 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 891240 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion
Procedia PDF Downloads 5841239 A Longitudinal Survey Study of Izmir Commuter Rail System (IZBAN)
Authors: Samet Sen, Yalcin Alver
Abstract:
Before Izmir Commuter Rail System (IZBAN), most of the respondents along the railway were making their trips by city buses, minibuses or private cars. After IZBAN was put into service, some people changed their previous trip behaviors and they started travelling by IZBAN. Therefore a big travel demand in IZBAN occurred. In this study, the characteristics of passengers and their trip behaviors are found out based on the longitudinal data conducted via two wave trip surveys. Just after one year from IZBAN's opening, the first wave of the surveys was carried out among 539 passengers at six stations during morning peak hours between 07.00 am-09.30 am. The second wave was carried out among 669 passengers at the same six stations two years after the first wave during the same morning peak hours. As a result of this study, the respondents' socio-economic specifications, the distribution of trips by region, the impact of IZBAN on transport modes, the changes in travel time and travel cost and satisfaction data were obtained. These data enabled to compare two waves and explain the changes in socio-economic factors and trip behaviors. In both waves, 10 % of the respondents stopped driving their own cars and they started to take IZBAN. This is an important development in solving traffic problems. More public transportation means less traffic congestion.Keywords: commuter rail system, comparative study, longitudinal survey, public transportation
Procedia PDF Downloads 4341238 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction
Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage
Abstract:
Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention
Procedia PDF Downloads 721237 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 4171236 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast
Authors: Fernando M. Soto, Gaetano Di Mino
Abstract:
The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design
Procedia PDF Downloads 3681235 Traffic Noise Study at Intersection in Bangalore: A Case Study
Authors: Shiva Kumar G.
Abstract:
The present study is to know the level of noises emanated from vehicles in intersections located in urban areas using Sound Level Meter and the possibility of reducing noise levels through traffic flow optimization. The main objective is to study traffic noise level of the Intersections located at on-going metro construction activities and which are away from metro construction activities. To compare traffic noise level between stop phase, go phase and drive phase at the Intersections. To study the effect of traffic noise level of directional movement of traffic and variation in noise level during day and night times. The range of Noise level observed at intersections is between 60 to 105 decibel. The noise level of stop and drive phases were minimum and almost same where go phase had maximum noise level. By comparing noise level of directional movement of traffic, it has been noticed that Vijayanagar intersection has no significant difference in their noise level and all other intersection has a significant difference in their noise level. By comparing noise level of stop, go and drive phase it has been noticed that there was a significant difference in noise level during peak hours compared to off-peak hour. By comparing noise level between Metro and Non-Metro construction activity intersections it has been noticed that there was a significant difference in noise level. By comparing noise level during day and night times, significant differences in noise level were observed at all intersections.Keywords: noise, metro and non-metro intersections, traffic flow optimization, stop-go and drive phase
Procedia PDF Downloads 4681234 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example
Abstract:
With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation
Procedia PDF Downloads 1161233 Traffic Accident Risk Assessment on National Roads: A Case Study in East Aceh Regency
Authors: Muksalmina
Abstract:
Transportation plays an important role in people's daily activities but is often marred by traffic accidents. In Indonesia, traffic accidents are the third leading cause of death after coronary heart disease and tuberculosis, according to the World Health Organization (2013). Several roads in East Aceh District are strategic access points for economic growth in the Aceh region. There were 446 traffic accidents in 2023, which is the highest case in the last five years. This study aims to analyze black spot locations on national roads in East Aceh District and evaluate road safety deficiencies in the area. The research methodology began by selecting the locations with the highest accident rates based on data from East Aceh Police from 2019-2023. Next, Average Daily Traffic (ADT) was measured by projecting population growth data. The analysis of road safety deficiencies included measurements of road geometrics, traffic signs and markings, and traffic volumes at black spot locations. The study results showed deficiencies in lane width, shoulder width, and inadequate road safety facilities at several locations. Recommendations for improvements include increasing lane and shoulder widths and adding signs and markings to improve safety. This study is expected to serve as a reference for the government and relevant stakeholders in improving traffic safety in East Aceh District.Keywords: black spot, traffic accident, severity index, road safety
Procedia PDF Downloads 331232 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 1311231 Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles
Authors: Mikołaj Szyca
Abstract:
Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters.Keywords: composite materials, friction pair, X-ray computed microtomography, railway
Procedia PDF Downloads 771230 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 141229 The Asia-European Union (EU) Traffic Safety Benchmarking
Authors: Ghazwan Al-Haji
Abstract:
Traffic safety has become a major concern in Southeast Asia due to the increasing number of road accidents resulting in fatalities and injuries. Southeast Asia has one of the highest road traffic fatality rates in the world, in terms of both population and number of cars, nearly six times higher than the EU region. One of the reasons for this concerning trend is the increasing share of motorcycles as a form of transportation throughout Southeast Asia. The purpose of this study is to benchmark traffic safety situations and statistics in six countries in Asia and the EU, which Indonesia, Malaysia, Vietnam, Italy, Portugal and Sweden. The research will assess the priorities and causes of road accidents in the target nations. Further, the study will analyze the existing practices and promote best practices that can be implemented toward safer roads in Asian target countries. In order to achieve this goal, the study categorizes various factors contributing to traffic accidents and best practices into 4 pillars (Safer Behavior, Safer Roads, Safer Vehicles and Road Safety Management). The result of the study consists of a list of recommendations that can be applied by policymakers to promote safer roads in Asia towards 2030. The study is co-financed by the EU project ASIASAFE.Keywords: traffic safety, ASIASAFE, Southeast Asia, EU project
Procedia PDF Downloads 691228 Evaluation of Traffic Noise Level: A Case Study in Residential Area of Ishbiliyah , Kuwait
Authors: Jamal Almatawah, Hamad Matar, Abdulsalam Altemeemi
Abstract:
The World Health Organization (WHO) has recognized environmental noise as harmful pollution that causes adverse psychosocial and physiologic effects on human health. The motor vehicle is considered to be one of the main source of noise pollution. It is a universal phenomenon, and it has grown to the point that it has become a major concern for both the public and policymakers. The aim of this paper, therefore, is to investigate the Traffic noise levels and the contributing factors that affect its level, such as traffic volume, heavy-vehicle Speed and other metrological factors in Ishbiliyah as a sample of a residential area in Kuwait. Three types of roads were selected in Ishbiliyah expressway, major arterial and collector street. The other source of noise that interferes the traffic noise has also been considered in this study. Traffic noise level is measured and analyzed using the Bruel & Kjaer outdoor sound level meter 2250-L (2250 Light). The Count-Cam2 Video Camera has been used to collect the peak and off-peak traffic count. Ambient Weather WM-5 Handheld Weather Station is used for metrological factors such as temperature, humidity and wind speed. Also, the spot speed was obtained using the radar speed: Decatur Genesis model GHD-KPH. All the measurement has been detected at the same time (simultaneously). The results showed that the traffic noise level is over the allowable limit on all types of roads. The average equivalent noise level (LAeq) for the Expressway, Major arterial and Collector Street was 74.3 dB(A), 70.47 dB(A) and 60.84 dB(A), respectively. In addition, a Positive Correlation coefficient between the traffic noise versus traffic volume and between traffic noise versus 85th percentile speed was obtained. However, there was no significant relation and Metrological factors. Abnormal vehicle noise due to poor maintenance or user-enhanced exhaust noise was found to be one of the highest factors that affected the overall traffic noise reading.Keywords: traffic noise, residential area, pollution, vehicle noise
Procedia PDF Downloads 661227 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation
Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton
Abstract:
Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication
Procedia PDF Downloads 1711226 Innovative Methods of Improving Train Formation in Freight Transport
Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova
Abstract:
The paper is focused on the operational model for transport the single wagon consignments on railway network by using two different models of train formation. The paper gives an overview of possibilities of improving the quality of transport services. Paper deals with two models used in problematic of train formatting - time continuously and time discrete. By applying these models in practice, the transport company can guarantee a higher quality of service and expect increasing of transport performance. The models are also applicable into others transport networks. The models supplement a theoretical problem of train formation by new ways of looking to affecting the organization of wagon flows.Keywords: train formation, wagon flows, marshalling yard, railway technology
Procedia PDF Downloads 4371225 Congestion Mitigation on an Urban Arterial through Infrastructure Intervention
Authors: Attiq Ur Rahman Dogar, Sohaib Ishaq
Abstract:
Pakistan had experienced rapid motorization in the last decade. Due to the soft leasing schemes of banks and increase in average household income, even the middle class can now afford cars. The public transit system is inadequate and sparse. Due to these reasons, traffic demand on urban arterials has increased manifold. Poor urban transit planning and aging transportation systems have resulted in traffic congestion. The focus of this study is to improve traffic flow on a section of N-5 passing through the Rawalpindi downtown. Present efforts aim to carry out the analysis of traffic conditions on this section and to investigate the impact of traffic signal co-ordination on travel time. In addition to signal co-ordination, we also examined the effect of different infrastructure improvements on the travel time. After the economic analysis of alternatives and discussions, the improvement plan for Rawalpindi downtown urban arterial section is proposed for implementation.Keywords: signal coordination, infrastructure intervention, infrastructure improvement, cycle length, fuel consumption cost, travel time cost, economic analysis, travel time, Rawalpindi, Pakistan, traffic signals
Procedia PDF Downloads 3151224 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions
Authors: Chaitanya Varma, Arpan Mehar
Abstract:
The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.Keywords: highway, mixed traffic flow, modeling, operating speed
Procedia PDF Downloads 4601223 Classification of IoT Traffic Security Attacks Using Deep Learning
Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem
Abstract:
The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.Keywords: IoT, traffic security, deep learning, classification
Procedia PDF Downloads 153