Search results for: vacuum assisted resin transfer molding (VARTM)
2666 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins
Authors: Haiyang Su, Kun Qian
Abstract:
We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins
Procedia PDF Downloads 2112665 Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon
Authors: M. Hadi Kusuma, Nandy Putra, Anhar Riza Antariksawan, Ficky Augusta Imawan
Abstract:
Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m2 - 3291.29 Watt/m2. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool.Keywords: two-phase closed term syphon, heat pipe, passive cooling, spent fuel storage pool
Procedia PDF Downloads 3302664 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid
Authors: Avdhesh K. Sharma
Abstract:
Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger
Procedia PDF Downloads 2132663 Robust Speed Sensorless Control to Estimated Error for PMa-SynRM
Authors: Kyoung-Jin Joo, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
Recently, the permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) that can be substituted for the induction motor has been studying because of the needs of the development of the premium high efficiency motor for the minimum energy performance standard (MEPS). PMa-SynRM is required to the speed and position information for motor speed and torque controls. However, to apply the sensors has many problems that are sensor mounting space shortage and additional cost, etc. Therefore, in this paper, speed-sensorless control based on model reference adaptive system (MRAS) is introduced to eliminate the sensor. The sensorless method is constructed in a reference model as standard and an adaptive model as the state observer. The proposed algorithm is verified by the simulation.Keywords: PMa-SynRM, sensorless control, robust estimation, MRAS method
Procedia PDF Downloads 4042662 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method
Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy
Abstract:
With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.Keywords: heat transfer, pde, taguchi optimization, SI/Ge
Procedia PDF Downloads 3392661 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM
Authors: Lana Migla
Abstract:
Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.Keywords: energy performance, PCM containers, solar thermal cooling, storage tank
Procedia PDF Downloads 1402660 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 1182659 Economic Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gas, fossil fuel power plants
Procedia PDF Downloads 3972658 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model
Authors: Bassim Shaheen Bachy, Jörg Franke
Abstract:
In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.Keywords: laser structuring, simulation, finite element analysis, thermal modeling
Procedia PDF Downloads 3492657 Brain-Motor Disablement: Using Virtual Reality-Based Therapeutic Simulations
Authors: Vince Macri, Jakub Petioky, Paul Zilber
Abstract:
Virtual-reality-based technology, i.e. video-game-like simulations (collectively, VRSims) are used in therapy for a variety of medical conditions. The purpose of this paper is to contribute to a discussion on criteria for selecting VRSims to augment treatment of survivors of acquired brain injury. Specifically, for treatments to improve or restore brain motor function in upper extremities affected by paresis or paralysis. Six uses of virtual reality are reviewed video games for entertainment, training simulations, unassisted or device-assisted movements of affected or unaffected extremities displayed in virtual environments and virtual anatomical interactivity.Keywords: acquired brain injury, brain-motor function, virtual anatomical interactivity, therapeutic simulations
Procedia PDF Downloads 5882656 The Duty of Sea Carrier to Transship the Cargo in Case of Vessel Breakdown
Authors: Mojtaba Eshraghi Arani
Abstract:
Concluding the contract for carriage of cargo with the shipper (through bill of lading or charterparty), the carrier must transport the cargo from loading port to the port of discharge and deliver it to the consignee. Unless otherwise agreed in the contract, the carrier must avoid from any deviation, transfer of cargo to another vessel or unreasonable stoppage of carriage in-transit. However, the vessel might break down in-transit for any reason and becomes unable to continue its voyage to the port of discharge. This is a frequent incident in the carriage of goods by sea which leads to important dispute between the carrier/owner and the shipper/charterer (hereinafter called “cargo interests”). It is a generally accepted rule that in such event, the carrier/owner must repair the vessel after which it will continue its voyage to the destination port. The dispute will arise in the case that temporary repair of the vessel cannot be done in the short or reasonable term. There are two options for the contract parties in such a case: First, the carrier/owner is entitled to repair the vessel while having the cargo onboard or discharged in the port of refugee, and the cargo interests must wait till the breakdown is rectified at any time, whenever. Second, the carrier/owner will be responsible to charter another vessel and transfer the entirety of cargo to the substitute vessel. In fact, the main question revolves around the duty of carrier/owner to perform transfer of cargo to another vessel. Such operation which is called “trans-shipment” or “transhipment” (in terms of the oil industry it is usually called “ship-to-ship” or “STS”) needs to be done carefully and with due diligence. In fact, the transshipment operation for various cargoes might be different as each cargo requires its own suitable equipment for transfer to another vessel, so this operation is often costly. Moreover, there is a considerable risk of collision between two vessels in particular in bulk carriers. Bulk cargo is also exposed to the shortage and partial loss in the process of transshipment especially during bad weather. Concerning tankers which carry oil and petrochemical products, transshipment, is most probably followed by sea pollution. On the grounds of the above consequences, the owners are afraid of being held responsible for such operation and are reluctant to perform in the relevant disputes. The main argument raised by them is that no regulation has recognized such duty upon their shoulders so any such operation must be done under the auspices of the cargo interests and all costs must be reimbursed by themselves. Unfortunately, not only the international conventions including Hague rules, Hague-Visby Rules, Hamburg rules and Rotterdam rules but also most domestic laws are silent in this regard. The doctrine has yet to analyse the issue and no legal researches was found out in this regard. A qualitative method with the concept of interpretation of data collection has been used in this paper. The source of the data is the analysis of regulations and cases. It is argued in this article that the paramount rule in the maritime law is “the accomplishment of the voyage” by the carrier/owner in view of which, if the voyage can only be finished by transshipment, then the carrier/owner will be responsible to carry out this operation. The duty of carrier/owner to apply “due diligence” will strengthen this reasoning. Any and all costs and expenses will also be on the account pf the owner/carrier, unless the incident is attributable to any cause arising from the cargo interests’ negligence.Keywords: cargo, STS, transshipment, vessel, voyage
Procedia PDF Downloads 1192655 Risk Factors and Outcome of Free Tissue Transfer at a Tertiary Care Referral Center
Authors: Majid Khan
Abstract:
Introduction: In this era of microsurgery, free flap holds a remarkable spot in reconstructive surgery. A free flap is well suited for composite defects as it provides sufficient and well-vascularized tissue for coverage. We report our experience with the use of the free flaps for the reconstruction of composite defects. Methods: This is a retrospective case series (chart review) of patients who underwent reconstruction of composite defects with a free flap at Aga Khan University Hospital, Karachi (Pakistan) from January 01, 2015, to December 31, 2019. Data were collected for patient demographics, size of the defect, size of flap, recipient vessels, postoperative complications, and outcome of the free flap. Results: Over this period, 532 free flaps are included in this study. The overall success rate is 95.5%. The mean age of the patient was 44.86 years. In 532 procedures, there were 448 defects from tumor ablation of head and neck cancer. The most frequent free flap was the anterolateral thigh flap in 232 procedures. In this study, the risk factor hypertension (p=0.004) was found significant for wound dehiscence, preop radiation/chemotherapy (p=0.003), and malnutrition (p=0.005) were found significant for fistula formation. Malnutrition (p=0.02) and use of vein grafts (p=0.025) were significant factors for flap failure. Conclusion: Free tissue transfer is a reliable option for the reconstruction of large and composite defects. Hypertension, malnutrition, and preoperative radiotherapy can cause significant morbidity.Keywords: free flap, free flap failure, risk factors for flap failure, free flap outcome
Procedia PDF Downloads 1132654 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor
Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho
Abstract:
In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system
Procedia PDF Downloads 1972653 Energy Conservation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis
Procedia PDF Downloads 2882652 Technology, Music Education, and Social-Emotional Learning in Latin America
Authors: Jinan Laurentia Woo
Abstract:
This paper explores the intersection of technology, music education, and social-emotional learning (SEL) with a focus on Latin America. It delves into the impact of music education on social-emotional skills development, highlighting the universal significance of music across various life stages. The integration of artificial intelligence (AI) in music education is discussed, emphasizing its potential to enhance learning experiences. The paper also examines the implementation of SEL strategies in Latin American public schools, emphasizing the importance of fostering social-emotional well-being in educational settings. Challenges such as unequal access to technology and education in the region are addressed, calling for further research and investment in tech-assisted music education.Keywords: music education, social emotional learning, educational technology, Latin America, artificial intelligence, music
Procedia PDF Downloads 592651 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station
Procedia PDF Downloads 3862650 Assessment of Lipid Lowering Effect of Shilajit in Adult Male Rats
Authors: U. P. Rathnakar, Sejpal Jaykumar, Shenoy K. Ashok
Abstract:
The effect of Shilajit was investigated for lipid lowering activity and its effect on weight gain in Wistar albino rats. Shilajit, semi-hard brownish black resin formed through long-term humidification of several plant types, mainly bryophytes, can be obtained from steep rocks of the Himalayas at altitudes between 1000 to 5000 meters. Hyperlipidemia was produced by feeding the rats with the cholesterol-rich high-fat diet (HFD) for 2 months. This diet contained deoxycholic acid, cholesterol and warm coconut oil in powdered rat chow diet. At the end of study, Shilajit treated rats showed significant decrease in serum LDL, triglyceride and total cholesterol level as well as increase in serum HDL level, in comparison to rats fed on high-fat diet with no treatment. Also during study period, increase in weight in Shilajit treated group was significantly less than in the other group of rats fed on high-fat diet with no treatment. Thus, Shilajit has significantly controlled the development of hyperlipidemia and weight gain in high-fat diet fed rats in the present study.Keywords: Shilajit, hyperlipidemia, weight control, cholesterol-rich high-fat diet
Procedia PDF Downloads 1882649 Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete
Authors: Ezgi Yurdakul, Klaus-Alexander Rieder, Richard Sibbick
Abstract:
Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators.Keywords: accelerators, chemical admixtures, shotcrete, sprayed concrete
Procedia PDF Downloads 1702648 Pragmatic Competence of Jordanian EFL Learners
Authors: Dina Mahmoud Hammouri
Abstract:
The study investigates the Jordanian EFL learners’ pragmatic competence through their production of the speech acts of responding to requests, making suggestions, making threats and expressing farewells. The sample of the study consists of 130 Jordanian EFL learners and native speakers. 2600 responses were collected through a Discourse Completion Test (DCT). The findings of the study revealed that the tested students showed similarities and differences in performing the strategies of four speech acts. Differences in the students’ performances led to pragmatic failure instances. The pragmatic failure committed by students refers to a lack of linguistic competence (i.e., pragmalinguistic failure), sociocultural differences and pragmatic transfer (i.e., sociopragmatic failure). EFL learners employed many mechanisms to maintain their communicative competence; the analysis of the test on speech acts showed learners’ tendency towards using particular strategies, resorting to modify strategies and relating them to their grammatical competence, prefabrication, performing long forms, buffing and transfer. The results were also suggestive of the learners’ lack of pragmalinguistic and sociopragmatic knowledge. The implications of this study are for language teachers to teach interlanguage pragmatics explicitly in EFL contexts to draw learners’ attention to both pragmalinguistic and sociopragmatic features, pay more attention to these areas and allocate more time and practice to solve learners’ problems in these areas. The implication of this study is also for pedagogical material designers to provide sufficient and well-organized pragmatic input.Keywords: pragmatic failure, Jordanian EFL learner, sociopragmatic competence, pragmalinguistic competence
Procedia PDF Downloads 802647 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling
Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva
Abstract:
Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.Keywords: energy saving, inverse problem, heat transfer, multilayer walling
Procedia PDF Downloads 3972646 Host Preference, Impact of Host Transfer and Insecticide Susceptibility among Aphis gossypii Group (Order: Hemiptera) in Jamaica
Authors: Desireina Delancy, Tannice Hall, Eric Garraway, Dwight Robinson
Abstract:
Aphis gossypii, as a pest, directly damages its host plant by extracting phloem sap (sucking) and indirectly damages it by the transmission of viruses, ultimately affecting the yield of the host. Due to its polyphagous nature, this species affects a wide range of host plants, some of which may serve as a reservoir for colonisation of important crops. In Jamaica, there have been outbreaks of viral plant pathogens that were transmitted by Aphis gossypii. Three such examples are Citrus tristeza virus, the Watermelon mosaic virus, and Papaya ringspot virus. Aphis gossypii also heavily colonized economically significant host plants, including pepper, eggplant, watermelon, cucumber, and hibiscus. To facilitate integrated pest management, it is imperative to understand the biology of the aphid and its host preference. Preliminary work in Jamaica has indicated differences in biology and host preference, as well as host variety within the species. However, specific details of fecundity, colony growth, host preference, distribution, and insecticide resistance of Aphis gossypii were unknown to the best of our knowledge. The aim was to investigate the following in relation to Aphis gossypii: influence of the host plant on colonization, life span, fecundity, population size, and morphology; the impact of host transfer on fecundity and population size as a measure of host preference and host transfer success and susceptibility to four commonly used insecticides. Fecundity and colony size were documented daily from aphids acclimatized on Capsicum chinense Jacquin 1776, Cucumis sativus Linnaeus 1630, Gossypium hirsutum Linnaeus 1751 and Abelmoschus esculentus (L.) Moench 1794 for three generations. The same measures were used after third instar aphids were transferred among the hosts as a measure of suitability and success. Mortality, and fecundity of survivors, were determined after aphids were exposed to varying concentrations of Actara®, Diazinon™, Karate Zeon®, and Pegasus®. Host preference results indicated that, over a 24-day period, Aphis gossypii reached its largest colony size on G. hirsutum (x̄ 381.80), with January – February being the most fecund period. Host transfer experiments were all significantly different, with the most significant occurring between transfers from C. chinense to C. sativus (p < 0.05). Colony sizes were found to increase significantly every 5 days, which has implications for regimes implemented to monitor and evaluate plots. Insecticides ranked on lethality are Karate Zeon®> Actara®> Pegasus® > Diazinon™. The highest LC50 values were obtained for aphids on G. hirsutum and C. chinense was with Pegasus® and for those on C. sativus with Diazinon™. Survivors of insecticide treatments had colony sizes on average that were 98 % less than untreated aphids. Cotton was preferred both in the field and in the glasshouse. It is on cotton the aphids settled first, had the highest fecundity, and the lowest mortality. Cotton can serve as reservoir for (re)populating other cotton or different host species based on migration due to overcrowding, heavy showers, high wind, or ant attendance. Host transfer success between all three hosts is highly probable within an intercropping system. Survivors of insecticide treatments can successfully repopulate host plants.Keywords: Aphis gossypii, host-plant preference, colonization sequence, host transfers, insecticide susceptibility
Procedia PDF Downloads 952645 Low-Temperature Catalytic Incineration of Acetone over MnCeOx Catalysts Supported on Mesoporous Aluminosilicate: The Mn-Ce Bimetallic Effect
Authors: Liang-Yi Lin, Hsunling Bai
Abstract:
In this work, transition metal (metal= Co, Fe, Ni, Cu, and Mn) modified cerium oxide catalysts supported on mesoporous aluminosilicate particles (Ce/Al-MSPs) were prepared using waste silicate as the precursors through aerosol-assisted flow process, and their catalytic performances were investigated for acetone incineration. Tests on the bimetallic Ce/Al-MSPs and Mn/Al-MSPs and trimetallic Mn-Ce, Fe-Ce, Co-Ce, Ni-Ce, and Cu-Ce/Al-MSPs in the temperature range of 100-300 oC demonstrated that Ce was the main active metal while Mn acted as a suitable promoter in acetone incineration reactions. Among tested catalysts, Mn-Ce/Al-MSPs with a Mn/Ce molar ratio of 2/1 exhibited the highest acetone catalytic activity. Moreover, the synergetic effect was observed for trimetallic Mn-Ce/Al-MSPs on the acetone removal as compared to the bimetallic Ce/Al-MSPs or Mn/Al-MSPs catalysts.Keywords: acetone, catalytic oxidation, cerium oxide, mesoporous silica
Procedia PDF Downloads 4312644 Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.Keywords: casson nanofluid, boundary layer flow, internal heat generation/absorption, exponentially stretching cylinder, heat transfer, brownian motion, thermophoresis
Procedia PDF Downloads 3892643 Constrained RGBD SLAM with a Prior Knowledge of the Environment
Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome
Abstract:
In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model
Procedia PDF Downloads 4142642 Determination of LS-DYNA MAT162 Material input Parameters for Low Velocity Impact Analysis of Layered Composites
Authors: Mustafa Albayrak, Mete Onur Kaman, Ilyas Bozkurt
Abstract:
In this study, the necessary material parameters were determined to be able to conduct progressive damage analysis of layered composites under low velocity impact by using the MAT162 material module in the LS-DYNA program. The material module MAT162 based on Hashin failure criterion requires 34 parameters in total. Some of these parameters were obtained directly as a result of dynamic and quasi-static mechanical tests, and the remaining part was calibrated and determined by comparing numerical and experimental results. Woven glass/epoxy was used as the composite material and it was produced by vacuum infusion method. In the numerical model, composites are modeled as three-dimensional and layered. As a result, the acquisition of MAT162 material module parameters, which will enable progressive damage analysis, is given in detail and step by step, and the selection methods of the parameters are explained. Numerical data consistent with the experimental results are given in graphics.Keywords: Composite Impact, Finite Element Simulation, Progressive Damage Analyze, LS-DYNA, MAT162
Procedia PDF Downloads 1062641 Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils
Authors: Aarti Singh, Anees Ahmad
Abstract:
Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods.Keywords: cymbopogon martini, essential oil, FT-IR, GC-MS, HPTLC, SC-CO2
Procedia PDF Downloads 4622640 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment
Authors: G. Kabir, A. M. Mohammed, M. A. Bawa
Abstract:
The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss
Procedia PDF Downloads 3022639 Monte Carlo Risk Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gases, power plants
Procedia PDF Downloads 4712638 An Experimental Investigation on Mechanical Behaviour of Fiber Reinforced Polymer (FRP) Composite Laminates Used for Pipe Applications
Authors: Tasnim Kallel, Rim Taktak
Abstract:
In this experimental work, fiber reinforced polymer (FRP) composite laminates were manufactured using hand lay-up technique. The unsaturated polyester (UP) and vinylester (VE) were considered as resins reinforced with different woven fabrics (bidirectional and quadriaxial rovings). The mechanical behaviour of the resulting composites was studied and then compared. A focus was essentially done on the evaluation of the effect of E-Glass fiber and ply orientation on the mechanical properties such as tensile strength, flexural strength, and hardness of the studied composite laminates. Also, crack paths and fracture surfaces were examined, and failure mechanisms were analyzed. From the main results, it was found that the quadriaxial composite laminates (QA/VE and QA/UP) with stacking sequences of [0°, +45°, 90°, -45°] present a very ductile tensile behaviour. The other laminate samples (R500/VE, RM/VE, R500/UP and RM/UP) show a very brittle behaviour whatever the used resin. The intrinsic toughness KIC of QA/VE laminate, obtained in fracture tests, are found more important than that of RM/VE composite. Thus, the QA/VE samples, as multidirectional laminate, presents the highest interlaminar fracture resistance.Keywords: crack growth, fiber orientation, fracture behavior, e-glass fiber fabric, laminate composite, mechanical behavior
Procedia PDF Downloads 2502637 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag
Authors: Pravat Ranjan Pati, Alok Satapathy
Abstract:
Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.Keywords: characterization, glass-epoxy composites, LD slag, waste utilization
Procedia PDF Downloads 392