Search results for: resistance forces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4435

Search results for: resistance forces

2695 High-Temperature Corrosion of Aluminized and Chromized Fe-25.8%Cr-19.5%Ni Alloys in N2/H2S/H2O-mixed Gases

Authors: Min Jung Kim, Dong Bok Lee

Abstract:

Alloys of Fe-25.8%Cr-19.5%Ni (SUS310 stainless steel) were either chromized or aluminized via pack cementation, and corroded at 800 oC for 100 h in 1 atm of (0.9448 atm of N2+0.031 atm of H2O+0.0242 atm of H2S)-mixed gases. The chromized layer consisted primarily of Cr1.36Fe0.52 and some Cr23C6. Its corrosion resulted in the formation of Cr2S3 and some FeS and Fe5Ni4S8. The aluminized coating consisted primarily of FeAl. Its corrosion resulted in the formation of α-Al2O3, Al2S3, and Cr2S3. Aluminizing was more effective than chromizing in increasing the corrosion resistance of the substrate, due mainly to the formation of α-Al2O3.

Keywords: aluminizing, chromizing, corrosion, H2S gas

Procedia PDF Downloads 490
2694 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

Authors: Sami W. Tabsh

Abstract:

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety

Procedia PDF Downloads 430
2693 Realization and Characterization of TiN Coating and Metal Working Application

Authors: Nadjette Belhamra, Abdelouahed Chala, Ibrahim Guasmi

Abstract:

Titanium nitride coatings have been extensively used in industry, such as in cutting tools. TiN coating were deposited by chemical vapour deposition (CVD) on carbide insert at a temperature between 850°C and 1100°C, which often exceeds the hardening treatment temperature of the metals. The objective of this work is to realize, to characterize of TiN coating and to apply it in the turning of steel 42CrMo4 under lubrification. Various experimental techniques were employed for the microstructural characterization of the coatings, e. g., X-ray diffraction (XRD), scanning electron microscope (SEM) model JOEL JSM-5900 LV, equipped with energy dispersive X-ray (EDX). The results show that TiN-coated demonstrate a good wear resistance.

Keywords: hard coating TiN, carbide inserts, machining, turning, wear

Procedia PDF Downloads 553
2692 Wear Resistance in Dry and Lubricated Conditions of Hard-anodized EN AW-4006 Aluminum Alloy

Authors: C. Soffritti, A. Fortini, E. Baroni, M. Merlin, G. L. Garagnani

Abstract:

Aluminum alloys are widely used in many engineering applications due to their advantages such ashigh electrical and thermal conductivities, low density, high strength to weight ratio, and good corrosion resistance. However, their low hardness and poor tribological properties still limit their use in industrial fields requiring sliding contacts. Hard anodizing is one of the most common solution for overcoming issues concerning the insufficient friction resistance of aluminum alloys. In this work, the tribological behavior ofhard-anodized AW-4006 aluminum alloys in dry and lubricated conditions was evaluated. Three different hard-anodizing treatments were selected: a conventional one (HA) and two innovative golden hard-anodizing treatments (named G and GP, respectively), which involve the sealing of the porosity of anodic aluminum oxides (AAO) with silver ions at different temperatures. Before wear tests, all AAO layers were characterized by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, roughness (Ra and Rz), microhardness (HV0.01), nanoindentation, and scratch tests. Wear tests were carried out according to the ASTM G99-17 standard using a ball-on-disc tribometer. The tests were performed in triplicate under a 2 Hz constant frequency oscillatory motion, a maximum linear speed of 0.1 m/s, normal loads of 5, 10, and 15 N, and a sliding distance of 200 m. A 100Cr6 steel ball10 mm in diameter was used as counterpart material. All tests were conducted at room temperature, in dry and lubricated conditions. Considering the more recent regulations about the environmental hazard, four bio-lubricants were considered after assessing their chemical composition (in terms of Unsaturation Number, UN) and viscosity: olive, peanut, sunflower, and soybean oils. The friction coefficient was provided by the equipment. The wear rate of anodized surfaces was evaluated by measuring the cross-section area of the wear track with a non-contact 3D profilometer. Each area value, obtained as an average of four measurements of cross-section areas along the track, was used to determine the wear volume. The worn surfaces were analyzed by VPSEM/EDS. Finally, in agreement with DoE methodology, a statistical analysis was carried out to identify the most influencing factors on the friction coefficients and wear rates. In all conditions, results show that the friction coefficient increased with raising the normal load. Considering the wear tests in dry sliding conditions, irrespective of the type of anodizing treatments, metal transfer between the mating materials was observed over the anodic aluminum oxides. During sliding at higher loads, the detachment of the metallic film also caused the delamination of some regions of the wear track. For the wear tests in lubricated conditions, the natural oils with high percentages of oleic acid (i.e., olive and peanut oils) maintained high friction coefficients and low wear rates. Irrespective of the type of oil, smallmicrocraks were visible over the AAO layers. Based on the statistical analysis, the type of anodizing treatment and magnitude of applied load were the main factors of influence on the friction coefficient and wear rate values. Nevertheless, an interaction between bio-lubricants and load magnitude could occur during the tests.

Keywords: hard anodizing treatment, silver ions, bio-lubricants, sliding wear, statistical analysis

Procedia PDF Downloads 151
2691 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 159
2690 Free Vibration Analysis of Conical Helicoidal Rods Having Elliptical Cross Sections Positioned in Different Orientation

Authors: Merve Ermis, Akif Kutlu, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

In this study, the free vibration analysis of conical helicoidal rods with two different elliptically oriented cross sections is investigated and the results are compared by the circular cross-section keeping the net area for all cases equal to each other. Problems are solved by using the mixed finite element formulation. Element matrices based on Timoshenko beam theory are employed. The finite element matrices are derived by directly inserting the analytical expressions (arc length, curvature, and torsion) defining helix geometry into the formulation. Helicoidal rod domain is discretized by a two-noded curvilinear element. Each node of the element has 12 DOFs, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. A parametric study is performed to investigate the influence of elliptical cross sectional geometry and its orientation over the natural frequencies of the conical type helicoidal rod.

Keywords: conical helix, elliptical cross section, finite element, free vibration

Procedia PDF Downloads 315
2689 Attitude to the Types of Organizational Change

Authors: O. Y. Yurieva, O. V. Yurieva, O. V. Kiselkina, A. V. Kamaseva

Abstract:

Since the early 2000s, there are some innovative changes in the civil service in Russia due to administrative reform. Perspectives of the reform of the civil service include a fundamental change in the personnel component, increasing the level of professionalism of officials, increasing their capacity for self-organization and self-regulation. In order to achieve this, the civil service must be able to continuously change. Organizational changes have long become the subject of scientific understanding; problems of research in the field of organizational change is presented by topics focused on the study of the methodological aspects of the implementation of the changes, the specifics of changes in different types of organizations (business, government, and so on), design changes in the organization, including based on the change in organizational culture. In this case, the organizational changes in the civil service are the least studied areas; research of problems of its transformation is carried out in fragments. According to the theory of resistance of Herbert Simon, the root of the opposition and rejection of change is in the person who will resist any change, if it threatens to undermine the degree of satisfaction as a member of the organization (regardless of the reasons for this change). Thus, the condition for successful adaptation to changes in the organization is the ability of its staff to perceive innovation. As part of the problem, the study sought to identify the innovation civil servants, to determine readiness for the development of proposals for the implementation of organizational change in the public service. To identify the relationship to organizational changes case study carried out by the method of "Attitudes to organizational change" of I. Motovilina, which allowed predicting the type of resistance to changes, to reveal the contradictions and hidden results. The advantage of the method of I. Motovilina is its brevity, simplicity, the analysis of the responses to each question, the use of "overlapping" issues potentially conflicting factors. Based on the study made by the authors, it was found that respondents have a positive attitude to change more local than those that take place in reality, such as "increase opportunities for professional growth", "increase the requirements for the level of professionalism of", "the emergence of possible manifestations initiatives from below". Implemented by the authors diagnostics related to organizational changes in the public service showed the presence of specific problem areas, with roots in the lack of understanding of the importance of innovation personnel in the process of bureaucratization of innovation in public service organizations.

Keywords: innovative changes, self-organization, self-regulation, civil service

Procedia PDF Downloads 460
2688 Biomechanical Analysis on Skin and Jejunum of Chemically Prepared Cat Cadavers Used in Surgery Training

Authors: Raphael C. Zero, Thiago A. S. S. Rocha, Marita V. Cardozo, Caio C. C. Santos, Alisson D. S. Fechis, Antonio C. Shimano, FabríCio S. Oliveira

Abstract:

Biomechanical analysis is an important factor in tissue studies. The objective of this study was to determine the feasibility of a new anatomical technique and quantify the changes in skin and the jejunum resistance of cats’ corpses throughout the process. Eight adult cat cadavers were used. For every kilogram of weight, 120ml of fixative solution (95% 96GL ethyl alcohol and 5% pure glycerin) was applied via the external common carotid artery. Next, the carcasses were placed in a container with 96 GL ethyl alcohol for 60 days. After fixing, all carcasses were preserved in a 30% sodium chloride solution for 60 days. Before fixation, control samples were collected from fresh cadavers and after fixation, three skin and jejunum fragments from each cadaver were tested monthly for strength and displacement until complete rupture in a universal testing machine. All results were analyzed by F-test (P <0.05). In the jejunum, the force required to rupture the fresh samples and the samples fixed in alcohol for 60 days was 31.27±19.14N and 29.25±11.69N, respectively. For the samples preserved in the sodium chloride solution for 30 and 60 days, the strength was 26.17±16.18N and 30.57±13.77N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days was 2.79±0.73mm and 2.80±1.13mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 2.53±1.03mm and 2.83±1.27mm, respectively. There was no statistical difference between the samples (P=0.68 with respect to strength, and P=0.75 with respect to displacement). In the skin, the force needed to rupture the fresh samples and the samples fixed for 60 days in alcohol was 223.86±131.5N and 211.86±137.53N respectively. For the samples preserved in sodium chloride solution for 30 and 60 days, the force was 227.73±129.06 and 224.78±143.83N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days were 3.67±1.03mm and 4.11±0.87mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 4.21±0.93mm and 3.93±0.71mm, respectively. There was no statistical difference between the samples (P=0.65 with respect to strength, and P=0.98 with respect to displacement). The resistance of the skin and intestines of the cat carcasses suffered little change when subjected to alcohol fixation and preservation in sodium chloride solution, each for 60 days, which is promising for use in surgery training. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, conservation, fixation, small animal

Procedia PDF Downloads 296
2687 Study of Mechanical Behavior of Unidirectional Composite Laminates According

Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem

Abstract:

Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.

Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope

Procedia PDF Downloads 88
2686 Multicellular Cancer Spheroids as an in Vitro Model for Localized Hyperthermia Study

Authors: Kamila Dus-Szachniewicz, Artur Bednarkiewicz, Katarzyna Gdesz-Birula, Slawomir Drobczynski

Abstract:

In modern oncology hyperthermia (HT) is defined as a controlled tumor heating. HT treatment temperatures range between 40–48 °C and can selectively damage heat-sensitive cancer cells or limit their further growth, usually with minimal injury to healthy tissues. Despite many advantages, conventional whole-body and regional hyperthermia have clinically relevant side effects, including cardiac and vascular disorders. Additionally, the lack of accessibility of deep-seated tumor sites and impaired targeting micrometastases renders HT less effective. It is believed that above disadvantages can significantly overcome by the application of biofunctionalized microparticles, which can specifically target tumor sites and become activated by an external stimulus to provide a sufficient cellular response. In our research, the unique optical tweezers system have enabled capturing the silica microparticles, primary cells and tumor spheroids in highly controllable and reproducible environment to study the impact of localized heat stimulation on normal and pathological cell and within multicellular tumor spheroid. High throughput spheroid model was introduced to better mimic the response to HT treatment on tumors in vivo. Additionally, application of local heating of tumor spheroids was performed in strictly controlled conditions resembling tumor microenvironment (temperature, pH, hypoxia, etc.), in response to localized and nonhomogeneous hyperthermia in the extracellular matrix, which promotes tumor progression and metastatic spread. The lack of precise control over these well- defined parameters in basic research leads to discrepancies in the response of tumor cells to the new treatment strategy in preclinical animal testing. The developed approach enables also sorting out subclasses of cells, which exhibit partial or total resistance to therapy, in order to understand fundamental aspects of the resistance shown by given tumor cells in response to given therapy mode and conditions. This work was funded by the National Science Centre (NCN, Poland) under grant no. UMO-2017/27/B/ST7/01255.

Keywords: cancer spheroids, hyperthermia, microparticles, optical tweezers

Procedia PDF Downloads 133
2685 Nanofiltration Membranes with Deposyted Polyelectrolytes: Caracterisation and Antifouling Potential

Authors: Viktor Kochkodan

Abstract:

The main problem arising upon water treatment and desalination using pressure driven membrane processes such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis is membrane fouling that seriously hampers the application of the membrane technologies. One of the main approaches to mitigate membrane fouling is to minimize adhesion interactions between a foulant and a membrane and the surface coating of the membranes with polyelectrolytes seems to be a simple and flexible technique to improve the membrane fouling resistance. In this study composite polyamide membranes NF-90, NF-270, and BW-30 were modified using electrostatic deposition of polyelectrolyte multilayers made from various polycationic and polyanionic polymers of different molecular weights. Different anionic polyelectrolytes such as: poly(sodium 4-styrene sulfonate), poly(vinyl sulfonic acid, sodium salt), poly(4-styrene sulfonic acid-co-maleic acid) sodium salt, poly(acrylic acid) sodium salt (PA) and cationic polyelectrolytes such as poly(diallyldimethylammonium chloride), poly(ethylenimine) and poly(hexamethylene biguanide were used for membrane modification. An effect of deposition time and a number of polyelectrolyte layers on the membrane modification has been evaluated. It was found that degree of membrane modification depends on chemical nature and molecular weight of polyelectrolytes used. The surface morphology of the prepared composite membranes was studied using atomic force microscopy. It was shown that the surface membrane roughness decreases significantly as a number of the polyelectrolyte layers on the membrane surface increases. This smoothening of the membrane surface might contribute to the reduction of membrane fouling as lower roughness most often associated with a decrease in surface fouling. Zeta potentials and water contact angles on the membrane surface before and after modification have also been evaluated to provide addition information regarding membrane fouling issues. It was shown that the surface charge of the membranes modified with polyelectrolytes could be switched between positive and negative after coating with a cationic or an anionic polyelectrolyte. On the other hand, the water contact angle was strongly affected when the outermost polyelectrolyte layer was changed. Finally, a distinct difference in the performance of the noncoated membranes and the polyelectrolyte modified membranes was found during treatment of seawater in the non-continuous regime. A possible mechanism of the higher fouling resistance of the modified membranes has been discussed.

Keywords: contact angle, membrane fouling, polyelectrolytes, surface modification

Procedia PDF Downloads 251
2684 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method

Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria

Abstract:

This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.

Keywords: rocker, suspension, the finite element method, mechatronics engineering

Procedia PDF Downloads 541
2683 A Simple Approach for the Analysis of First Vibration Mode of Layered Soil Profiles

Authors: Haizhong Zhang, Yan-Gang Zhao

Abstract:

Fundamental period, mode shape, and participation factor are important basic information for the understanding of earthquake response of ground. In this study, a simple approach is presented to calculate these basic information of layered soil profiles. To develop this method, closed form equations are derived for analysis of free vibration of layered soil profiles firstly, based on equilibrium between inertia and elastic forces. Then, by further associating with the Madera procedure developed for estimation of fundamental period, a simple method that can directly determine the fundamental period, mode shape and participation factor is proposed. The proposed approach can be conveniently implemented in simple spreadsheets and easily used by practicing engineers. In addition, the accuracy of the proposed approach is investigated by analyzing first vibration mode of 67 representative layered soil profiles, it is found that results by the proposed method agree very well with accurate results.

Keywords: layered soil profile, natural vibration, fundamental period, fundamental mode shape

Procedia PDF Downloads 326
2682 The Ameliorative Effects of Nanoencapsulated Triterpenoids from Petri-Dish Cultured Antrodia cinnamomea on Reproductive Function of Diabetic Male Rats

Authors: Sabri Sudirman, Yuan-Hua Hsu, Zwe-Ling Kong

Abstract:

Male reproductive dysfunction is predominantly due to insulin resistance and hyperglycemia result in inflammation and oxidative stress. Furthermore, nanotechnology provides an alternative approach to improve the bioavailability of natural active food ingredients. Therefore, the aim of this study were to investigate nanoencapsulated triterpenoids from petri-dish cultured Antrodia cinnamomea (PAC) nanoparticles whether it could increase the bioavailability; in addition, the anti-inflammatory and anti-oxidative effects could more effectively ameliorate the reproductive function of diabetic male rats. First, PAC encapsulated in chitosan-silica nanoparticles (Nano-PAC) were prepared by biosilicification method. Scanning electron micrographs confirm the average particle size is about 30 nm, and the encapsulation efficiency is 83.7% by HPLC. Diabetic male Sprague-Dawley rats were induced by high fat diet (40% kcal from fat) and streptozotocin (35 mg/kg). Nano-PAC was administered by oral gavage in three doses (4, 8 and 20 mg/kg) for 6 weeks. Besides, metformin (300 mg/kg) and nanoparticles (Nano) were treated as the positive and negative control respectively. Results indicated that 4 mg/kg Nano-PAC administration for 6 weeks improved hyperglycemia, insulin resistance, and also reduced advanced glycation end products in plasma. In addition, 8 mg/kg Nano-PAC ameliorated morphological of testicular seminiferous tubules, sperm morphology and motility, reactive oxygen species production and mitochondrial membrane potential. Moreover, 20 mg/kg Nano-PAC restored reproductive endocrine system function and increased KiSS-1 level in plasma. In plasma or testis anti-oxidant superoxide dismutase, glutathione peroxidase and catalase were increased whereas malondialdehyde, as well as pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, and interferon-gamma, decreased. Most importantly, 8 mg/kg Nano-PAC down-regulated the oxidative stress induced c-Jun N-terminal kinase (JNK) signaling pathway. Our study successfully nanoencapsulated PAC to form nanoparticles and low-dose Nano-PAC improved diabetes-induced hyperglycemia, inflammation and oxidative stress to ameliorate the reproductive function of diabetic male rats.

Keywords: Antrodia cinnamomea, diabetes mellitus, male reproduction, nanoparticles

Procedia PDF Downloads 222
2681 Autonomous Rendezvous for Underactuated Spacecraft

Authors: Espen Oland

Abstract:

This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.

Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body

Procedia PDF Downloads 292
2680 Investigation of Dynamic Characteristic of Planetary Gear Set Based On Three-Axes Torque Measurement

Authors: Masao Nakagawa, Toshiki Hirogaki, Eiichi Aoyama, Mohamed Ali Ben Abbes

Abstract:

A planetary gear set is widely used in hybrid vehicles as the power distribution system or in electric vehicles as the high reduction system, but due to its complexity with planet gears, its dynamic characteristic is not fully understood. There are many reports on two-axes driving or displacement of the planet gears under these conditions, but only few reports deal with three-axes driving. A three-axes driving condition is tested using three-axes torque measurement and focuses on the dynamic characteristic around the planet gears in this report. From experimental result, it was confirmed that the transition forces around the planet gears were balanced and the torques were also balanced around the instantaneous rotation center. The meshing frequency under these conditions was revealed to be the harmonics of two meshing frequencies; meshing frequency of the ring gear and that of the planet gears. The input power of the ring gear is distributed to the carrier and the sun gear in the dynamic sequential change of three fixed conditions; planet, star and solar modes.

Keywords: dynamic characteristic, gear, planetary gear set, torque measuring

Procedia PDF Downloads 381
2679 Intellectual Capital Disclosure: A Study of Australia and Sri Lanka

Authors: Puwanenthiren Pratheepkanth

Abstract:

This study considers whether national development level influences a firm’s voluntary intellectual capital disclosure (ICD) provided by a sample of 100 Australian and 100 Sri Lankan firms in terms of a two-years during 2015-16. This two-nation study uses a content analysis and literature-review analysis to provide an understanding of the underlying forces and issues. It was found that Australian firms tend to rely heavily on external structure disclosures (with particular attention to brands, customer loyalty, and research collaborations), but Sri Lankan relatively larger firms prefer intellectual property disclosures and the smaller firms tend to be as adept at external structure as their Australian counterparts. It was also found that the nature of a firm tends to trump the nurture of the development level of the country in which the firm is embedded. While a wider diffusion of better ICD methodology under International Financial Reporting Standard (IFRS) could improve the cost-effectiveness of financial reporting and generally increase efficiency, this is unlikely to occur until competition is more of a spur.

Keywords: developed countries, developing countries, content analysis, intellectual capital disclosure

Procedia PDF Downloads 170
2678 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method

Authors: M. Najafi

Abstract:

In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.

Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram

Procedia PDF Downloads 136
2677 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 123
2676 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods

Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz

Abstract:

Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.

Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure

Procedia PDF Downloads 80
2675 Wind Interference Effects on Various Plan Shape Buildings Under Wind Load

Authors: Ritu Raj, Hrishikesh Dubey

Abstract:

This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively.

Keywords: interference factor, tall buildings, wind direction, mean pressure-coefficients

Procedia PDF Downloads 128
2674 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens

Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian

Abstract:

Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.

Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate

Procedia PDF Downloads 175
2673 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process

Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel

Abstract:

In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.

Keywords: discrete element method, physical properties of materials, calibration, granular flow

Procedia PDF Downloads 482
2672 Solar Photovoltaic Foundation Design

Authors: Daniel John Avutia

Abstract:

Solar Photovoltaic (PV) development is reliant on the sunlight hours available in a particular region to generate electricity. A potential area is assessed through its inherent solar radiation intensity measured in watts per square meter. Solar energy development involves the feasibility, design, construction, operation and maintenance of the relevant infrastructure, but this paper will focus on the design and construction aspects. Africa and Australasia have the longest sunlight hours per day and the highest solar radiation per square meter, 7 sunlight hours/day and 5 kWh/day respectively. Solar PV support configurations consist of fixed-tilt support and tracker system structures, the differentiation being that the latter was introduced to improve the power generation efficiency of the former due to the sun tracking movement capabilities. The installation of Solar PV foundations involves rammed piles, drilling/grout piles and shallow raft reinforced concrete structures. This paper presents a case study of 2 solar PV projects in Africa and Australia, discussing the foundation design consideration and associated construction cost implications of the selected foundations systems. Solar PV foundations represent up to one fifth of the civil works costs in a project. Therefore, the selection of the most structurally sound and feasible foundation for the prevailing ground conditions is critical towards solar PV development. The design wind speed measured by anemometers govern the pile embedment depth for rammed and drill/grout foundation systems. The lateral pile deflection and vertical pull out resistance of piles increase proportionally with the embedment depth for uniform pile geometry and geology. The pile driving rate may also be used to anticipate the lateral resistance and skin friction restraining the pile. Rammed pile foundations are the most structurally suitable due to the pile skin friction and ease of installation in various geological conditions. The competitiveness of solar PV projects within the renewable energy mix is governed by lowering capital expenditure, improving power generation efficiency and power storage technological advances. The power generation reliability and efficiency are areas for further research within the renewable energy niche.

Keywords: design, foundations, piles, solar

Procedia PDF Downloads 192
2671 Effect of the Fluid Temperature on the Crude Oil Fouling in the Heat Exchangers of Algiers Refinery

Authors: Rima Harche, Abdelkader Mouheb

Abstract:

The Algiers refinery as all the other refineries always suffers from the problem of stopping of the tubes of heat exchanger. For that a study experimental of this phenomenon was undertaken in site on the cell of heat exchangers E101 (E101 CBA and E101 EDF) intended for the heating of the crude before its fractionation, which are exposed to the problem of the fouling on the side tubes exchangers. It is of tube-calenders type with head floating. Each cell is made up of three heat exchangers, laid out in series.

Keywords: fouling, fluid temperatue , oil, tubular heat exchanger, fouling resistance, modeling, heat transfer coefficient

Procedia PDF Downloads 432
2670 Free-Standing Pd-Based Metallic Glass Membranes for MEMS Applications

Authors: Wei-Shan Wang, Klaus Vogel, Felix Gabler, Maik Wiemer, Thomas Gessner

Abstract:

Metallic glasses, which are free of grain boundaries, have superior properties including large elastic limits, high strength, and excellent wear and corrosion resistance. Therefore, bulk metallic glasses (BMG) and thin film metallic glasses (TFMG) have been widely developed and investigated. Among various kinds of metallic glasses, Pd-Cu-Si TFMG, which has lower elastic modulus and better resistance of oxidation and corrosions compared to Zr- and Fe-based TFMGs, can be a promising candidate for MEMS applications. However, the study of Pd-TFMG membrane is still limited. This paper presents free-standing Pd-based metallic glass membranes with large area fabricated on wafer level for the first time. Properties of Pd-Cu-Si thin film metallic glass (TFMG) with various deposition parameters are investigated first. When deposited at 25°C, compressive stress occurs in the Pd76Cu6Si18 thin film regardless of Ar pressure. When substrate temperature is increased to 275°C, the stress state changes from compressive to tensile. Thin film stresses are slightly decreased when Ar pressure is higher. To show the influence of temperature on Pd-TFMGs, thin films without and with post annealing below (275°C) and within (370°C) supercooled liquid region are investigated. Results of XRD and TEM analysis indicate that Pd-TFMGs remain amorphous structure with well-controlled parameters. After verification of amorphous structure of the Pd-TFMGs, free-standing Pd-Cu-Si membranes were fabricated by depositing Pd-Cu-Si thin films directly on 200nm-thick silicon nitride membranes, followed by post annealing and dry etching of silicon nitride layer. Post annealing before SiNx removal is used to further release internal stress of Pd-TFMGs. The edge length of the square membrane ranges from 5 to 8mm. The effect of post annealing on Pd-Cu-Si membranes are discussed as well. With annealing at 370°C for 5 min, Pd-MG membranes are fully distortion-free after removal of SiNx layer. Results show that, by introducing annealing process, the stress-relief, distortion-free Pd-TFMG membranes with large area can be a promising candidate for sensing applications such as pressure and gas sensors.

Keywords: amorphous alloy, annealing, metallic glasses, TFMG membrane

Procedia PDF Downloads 352
2669 Effect of Weave on Cotton Fabric to Improve the Durable Press Finish Rating

Authors: Mayur Kudale, Priyanka Panchal

Abstract:

Cellulose fibres, mainly cotton, are the most important kind of fibre used for manufacturing shirting fabric. However, to overcome its main disadvantage, that is it gets wrinkled after washing, is to use special kind of finish which is resin finish. This finish provides a resistance against shrinkage along with improved wet and dry wrinkle recovery to cellulosic textiles. The Durable Press (DP) finish uses a mechanism of cross-linking with polymers or resin to inhibit the easy movement of the cellulose chains. The purpose of these experimentations on the weave is to observe and compare the variations in properties after DP finish without adverse effect on strength of the fabric. In this work, we have prepared three types of fabric weaves viz. Plain, Twill and Sateen with their construction parameters intact. To get the projected results, this work uses three types of variables viz. concentration of Resin, Temperature and Time. Resultant of these variables is only change in weave or construction on DP finish which further opens the possibilities of improvement of DP either of mentioned weaves. The combined effect of such various parametric resin finish methodology will give the best method to improve the DP. However, the DP finish can cause a side effect of reduction in elasticity and flexibility of cellulosic fibres. The natural cellulose could loss abrasion resistance along with tear and tensile strength by applying DP finish. In this work, it is taken care that the tear strength of fabric will not drop below certain limit otherwise the fabric will tear down easily. In this work, it is found that there is a significant drop in tearing and tensile strength with the improvement of DP finish. Later on, it is also found that the twill weave has more percentage drop in tearing strength as compared to plain and sateen weave. There is major kind of observations obtained after this work. First, the mixing of cotton should be done properly to achieve the higher DP rating in plain weave. Second, the careful combination of warp, weft and fabric construction must be decided to avoid the high drop in tear and tensile strength in a twill weave. Third, the sateen weave has a good sheen and DP rating hence it can be used in shirting of gents and ladies dress materials. This concludes that to achieve higher DP ratings, use plain weave construction than twill and sateen because it has the lowest tear and tensile strength drop.

Keywords: concentration of resin, cross-linking, durable press (DP) finish, sheen, tear and tensile strength, weave

Procedia PDF Downloads 301
2668 Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation

Authors: Krishna Mohana Rao Gurram, R. Padmini, P. Vamsi Krishna

Abstract:

As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining.

Keywords: nanoparticles, vegetable oil, machining, MQL, surface roughness

Procedia PDF Downloads 359
2667 Differential Expression Profile Analysis of DNA Repair Genes in Mycobacterium Leprae by qPCR

Authors: Mukul Sharma, Madhusmita Das, Sundeep Chaitanya Vedithi

Abstract:

Leprosy is a chronic human disease caused by Mycobacterium leprae, that cannot be cultured in vitro. Though treatable with multidrug therapy (MDT), recently, bacteria reported resistance to multiple antibiotics. Targeting DNA replication and repair pathways can serve as the foundation of developing new anti-leprosy drugs. Due to the absence of an axenic culture medium for the propagation of M. leprae, studying cellular processes, especially those belonging to DNA repair pathways, is challenging. Genomic understanding of M. Leprae harbors several protein-coding genes with no previously assigned function known as 'hypothetical proteins'. Here, we report identification and expression of known and hypothetical DNA repair genes from a human skin biopsy and mouse footpads that are involved in base excision repair, direct reversal repair, and SOS response. Initially, a bioinformatics approach was employed based on sequence similarity, identification of known protein domains to screen the hypothetical proteins in the genome of M. leprae, that are potentially related to DNA repair mechanisms. Before testing on clinical samples, pure stocks of bacterial reference DNA of M. leprae (NHDP63 strain) was used to construct standard graphs to validate and identify lower detection limit in the qPCR experiments. Primers were designed to amplify the respective transcripts, and PCR products of the predicted size were obtained. Later, excisional skin biopsies of newly diagnosed untreated, treated, and drug resistance leprosy cases from SIHR & LC hospital, Vellore, India were taken for the extraction of RNA. To determine the presence of the predicted transcripts, cDNA was generated from M. leprae mRNA isolated from clinically confirmed leprosy skin biopsy specimen across all the study groups. Melting curve analysis was performed to determine the integrity of the amplification and to rule out primer‑dimer formation. The Ct values obtained from qPCR were fitted to standard curve to determine transcript copy number. Same procedure was applied for M. leprae extracted after processing a footpad of nude mice of drug sensitive and drug resistant strains. 16S rRNA was used as positive control. Of all the 16 genes involved in BER, DR, and SOS, differential expression pattern of the genes was observed in terms of Ct values when compared to human samples; this was because of the different host and its immune response. However, no drastic variation in gene expression levels was observed in human samples except the nth gene. The higher expression of nth gene could be because of the mutations that may be associated with sequence diversity and drug resistance which suggests an important role in the repair mechanism and remains to be explored. In both human and mouse samples, SOS system – lexA and RecA, and BER genes AlkB and Ogt were expressing efficiently to deal with possible DNA damage. Together, the results of the present study suggest that DNA repair genes are constitutively expressed and may provide a reference for molecular diagnosis, therapeutic target selection, determination of treatment and prognostic judgment in M. leprae pathogenesis.

Keywords: DNA repair, human biopsy, hypothetical proteins, mouse footpads, Mycobacterium leprae, qPCR

Procedia PDF Downloads 103
2666 The Characteristcs and Amino Acid Profile of Edible Coating Extracted from Pigskin Gelatin

Authors: Meity Sompie, Agnes Triasih, Wisje Ponto

Abstract:

Edible coating is thin layers that act as a barrier to the external factors and protect the food products. The addition of the plasticizer to the edible coating is required to overcome film caused by extensive intermolecular forces. The potential development of pigskin with different ages as a raw material for the manufacture of edible films had not been widely publicized. This research was aimed to determine the influence of gelatin concentration and different type of plasticizer on the edible coating characteristics extracted from pigskin gelatin. This study used Completely Randomized Design (CRD) with two factors and three replicates of treatments. The first factor was consisted of pigskin gelatin concentration ( 10, 20, and 30 %) and the second factor was different type of plasticizer (glycerol, sorbitol and PEG). The results show that the interaction between the use of gelatin concentrations and type of plasticizer had significant effect (P< 0.05) on the thickness, tensile strength, elongation, water vapor transmission rate (WVTR), water content and amino acid profile of edible coating. It was concluded that the edible coating from pigskin gelatin with plasticizer gliserol had the best film characteristics, and it can be applied as an edible coating.

Keywords: edible coating, edible film, pigskin gelatin, plasticizer

Procedia PDF Downloads 214