Search results for: periphery stakeholder network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5168

Search results for: periphery stakeholder network

3428 Diagnostic Assessment for Mastery Learning of Engineering Students with a Bayesian Network Model

Authors: Zhidong Zhang, Yingchen Yang

Abstract:

In this study, a diagnostic assessment model for Mastery Engineering Learning was established based on a group of undergraduate students who studied in an engineering course. A diagnostic assessment model can examine both students' learning process and report achievement results. One very unique characteristic is that the diagnostic assessment model can recognize the errors and anything blocking students in their learning processes. The feedback is provided to help students to know how to solve the learning problems with alternative strategies and help the instructor to find alternative pedagogical strategies in the instructional designs. Dynamics is a core course in which is a common course being shared by several engineering programs. This course is a very challenging for engineering students to solve the problems. Thus knowledge acquisition and problem-solving skills are crucial for student success. Therefore, developing an effective and valid assessment model for student learning are of great importance. Diagnostic assessment is such a model which can provide effective feedback for both students and instructor in the mastery of engineering learning.

Keywords: diagnostic assessment, mastery learning, engineering, bayesian network model, learning processes

Procedia PDF Downloads 152
3427 Reclaiming Corporate Social Responsibility: A Research Agenda for Socio-Industrial Interdependence

Authors: Leah Ritchie

Abstract:

By many accounts, the most recent economic recession and subsequent lack-luster recovery has demonstrated that corporate social responsibility is in a state of crisis. This crisis represents an opportunity for CSR scholars to play a role in restoring long-term economic growth and consumer confidence. In its current state however, CSR may not be in a position to facilitate positive change. In an attempt to remain relevant, the field has shifted toward a performance-based agenda that demonstrates in practical terms, how CSR can positively affect the financial and strategic performance of the firm. This paper argues that if CSR is to play a central role in helping to create a more equitable balance of power between industry and society, it must demonstrate the symbiotic nature of the relationship between these two entities, not just in terms of compartmentalized strategic and financial gain for the firm, but also toward maintaining a 'do no harm' imperative. Given the evidence that harm done to society is ultimately turned back on the firm, this is not simply a moralistic imperative. In order to affect change, CSR must also create an activist agenda to raise consciousness among the general citizenry toward mobilizing, uncovering, and repairing breeches in the implicit social contract between business and society.

Keywords: corporate social responsibility, multiple stakeholder view, economic recession, housing crisis

Procedia PDF Downloads 214
3426 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.

Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan

Procedia PDF Downloads 37
3425 Climate Change and Tourism: A Scientometric Analysis Using Citespace

Authors: Yan Fang, Jie Yin, Bihu Wu

Abstract:

The interaction between climate change and tourism is one of the most promising research areas of recent decades. In this paper, a scientometric analysis of 976 academic publications between 1990 and 2015 related to climate change and tourism is presented in order to characterize the intellectual landscape by identifying and visualizing the evolution of the collaboration network, the co-citation network, and emerging trends of citation burst and keyword co-occurrence. The results show that the number of publications in this field has increased rapidly and it has become an interdisciplinary and multidisciplinary topic. The research areas are dominated by Australia, USA, Canada, New Zealand, and European countries, which have the most productive authors and institutions. The hot topics of climate change and tourism research in recent years are further identified, including the consequences of climate change for tourism, necessary adaptations, the vulnerability of the tourism industry, tourist behaviour and demand in response to climate change, and emission reductions in the tourism sector. The work includes an in-depth analysis of a major forum of climate change and tourism to help readers to better understand global trends in this field in the past 25 years.

Keywords: climate change, tourism, scientometrics, CiteSpace

Procedia PDF Downloads 415
3424 Structural Balance and Creative Tensions in New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

New Product Development involves team members coming together and working in teams to come up with innovative solutions to problems, resulting in new products. Thus, a core attribute of a successful NPD team is their creativity and innovation. They need to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas, resulting in a POC (proof-of-concept) implementation or a prototype of the product. There are two distinctive traits that the teams need to have, one is ideational creativity, and the other is effective and efficient teamworking. There are multiple types of tensions that each of these traits cause in the teams, and these tensions reflect in the team dynamics. Ideational conflicts arising out of debates and deliberations increase the collective knowledge and affect the team creativity positively. However, the same trait of challenging each other’s viewpoints might lead the team members to be disruptive, resulting in interpersonal tensions, which in turn lead to less than efficient teamwork. Teams that foster and effectively manage these creative tensions are successful, and teams that are not able to manage these tensions show poor team performance. In this paper, it explore these tensions as they result in the team communication social network and propose a Creative Tension Balance index along the lines of Degree of Balance in social networks that has the potential to highlight the successful (and unsuccessful) NPD teams. Team communication reflects the team dynamics among team members and is the data set for analysis. The emails between the members of the NPD teams are processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. This social network is subjected to traditional social network analysis methods to arrive at some established metrics and structural balance analysis metrics. Traditional structural balance is extended to include team interaction pattern metrics to arrive at a creative tension balance metric that effectively captures the creative tensions and tension balance in teams. This CTB (Creative Tension Balance) metric truly captures the signatures of successful and unsuccessful (dissonant) NPD teams. The dataset for this research study includes 23 NPD teams spread out over multiple semesters and computes this CTB metric and uses it to identify the most successful and unsuccessful teams by classifying these teams into low, high and medium performing teams. The results are correlated to the team reflections (for team dynamics and interaction patterns), the team self-evaluation feedback surveys (for teamwork metrics) and team performance through a comprehensive team grade (for high and low performing team signatures).

Keywords: team dynamics, social network analysis, new product development teamwork, structural balance, NPD teams

Procedia PDF Downloads 79
3423 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations

Authors: Tushar K. Routh

Abstract:

If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.

Keywords: DNN robustness, decision boundary, local curvature, network complexity

Procedia PDF Downloads 75
3422 Optimization of the Dam Management to Satisfy the Irrigation Demand: A Case Study in Algeria

Authors: Merouane Boudjerda, Bénina Touaibia, Mustapha K Mihoubi

Abstract:

In Algeria, water resources play a crucial role in economic development. But over the last decades, they are relatively limited and gradually decreasing to the detriment of agriculture. The agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Boukerdane dam’s reservoir system in North of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 34% to 60%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: water management, agricultural demand, Boukerdane dam, dynamic programming, artificial neural network

Procedia PDF Downloads 131
3421 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression

Procedia PDF Downloads 428
3420 In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites

Authors: Aiswarea Mathew, Smita Mohanty, Jr., S. K. Nayak

Abstract:

Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B.

Keywords: castor oil, epoxy, montmorillonite, polyurethane

Procedia PDF Downloads 400
3419 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 320
3418 Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays

Authors: Anca Maria Cimpean, Serban Comsa

Abstract:

Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays.

Keywords: chick embryo chorioallantoic membrane, collagen scaffolds, blood vessels, vascular microenvironment

Procedia PDF Downloads 193
3417 Using Pump as Turbine in Drinking Water Networks to Monitor and Control Water Processes Remotely

Authors: Sara Bahariderakhshan, Morteza Ahmadifar

Abstract:

Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. In the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PaT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and, therefore, more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore due to increasing the area of the network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PaT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.

Keywords: new energies, pump as turbine, drinking water, distribution network, remote control equipments

Procedia PDF Downloads 463
3416 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation

Authors: Li Hui, Riyadh Hindi

Abstract:

In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.

Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis

Procedia PDF Downloads 62
3415 Deregulation of Turkish State Railways Based on Public-Private Partnership Approaches

Authors: S. Shakibaei, P. Alpkokin

Abstract:

The railway network is one of the major components of a transportation system in a country which may be an indicator of the country’s level of economic improvement. Since 2000s on, revival of national railways and development of High Speed Rail (HSR) lines are one of the most remarkable policies of Turkish government in railway sector. Within this trend, the railway age is to be revived and coming decades will be a golden opportunity. Indubitably, major infrastructures such as road and railway networks require sizeable investment capital, precise maintenance and reparation. Traditionally, governments are held responsible for funding, operating and maintaining these infrastructures. However, lack or shortage of financial resources, risk responsibilities (particularly cost and time overrun), and in some cases inefficacy in constructional, operational and management phases persuade governments to find alternative options. Financial power, efficient experiences and background of private sector are the factors convincing the governments to make a collaboration with private parties to develop infrastructures. Public-Private Partnerships (PPP or 3P or P3) and related regulatory issues are born considering these collaborations. In Turkey, PPP approaches have attracted attention particularly during last decade and these types of investments have been accelerated by government to overcome budget limitations and cope with inefficacy of public sector in improving transportation network and its operation. This study mainly tends to present a comprehensive overview of PPP concept, evaluate the regulatory procedure in Europe and propose a general framework for Turkish State Railways (TCDD) as an outlook on privatization, liberalization and deregulation of railway network.

Keywords: deregulation, high-speed railway, liberalization, privatization, public-private partnership

Procedia PDF Downloads 171
3414 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 129
3413 Using Pump as Turbine in Urban Water Networks to Control, Monitor, and Simulate Water Processes Remotely

Authors: Morteza Ahmadifar, Sarah Bahari Derakhshan

Abstract:

Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. On the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables, therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PAT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and therefore more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore, due to increasing the area of network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PAT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.

Keywords: clean energies, pump as turbine, remote control, urban water distribution network

Procedia PDF Downloads 394
3412 Secure Optimized Ingress Filtering in Future Internet Communication

Authors: Bander Alzahrani, Mohammed Alreshoodi

Abstract:

Information-centric networking (ICN) using architectures such as the Publish-Subscribe Internet Technology (PURSUIT) has been proposed as a new networking model that aims at replacing the current used end-centric networking model of the Internet. This emerged model focuses on what is being exchanged rather than which network entities are exchanging information, which gives the control plane functions such as routing and host location the ability to be specified according to the content items. The forwarding plane of the PURSUIT ICN architecture uses a simple and light mechanism based on Bloom filter technologies to forward the packets. Although this forwarding scheme solve many problems of the today’s Internet such as the growth of the routing table and the scalability issues, it is vulnerable to brute force attacks which are starting point to distributed- denial-of-service (DDoS) attacks. In this work, we design and analyze a novel source-routing and information delivery technique that keeps the simplicity of using Bloom filter-based forwarding while being able to deter different attacks such as denial of service attacks at the ingress of the network. To achieve this, special forwarding nodes called Edge-FW are directly attached to end user nodes and used to perform a security test for malicious injected random packets at the ingress of the path to prevent any possible attack brute force attacks at early stage. In this technique, a core entity of the PURSUIT ICN architecture called topology manager, that is responsible for finding shortest path and creating a forwarding identifiers (FId), uses a cryptographically secure hash function to create a 64-bit hash, h, over the formed FId for authentication purpose to be included in the packet. Our proposal restricts the attacker from injecting packets carrying random FIds with a high amount of filling factor ρ, by optimizing and reducing the maximum allowed filling factor ρm in the network. We optimize the FId to the minimum possible filling factor where ρ ≤ ρm, while it supports longer delivery trees, so the network scalability is not affected by the chosen ρm. With this scheme, the filling factor of any legitimate FId never exceeds the ρm while the filling factor of illegitimate FIds cannot exceed the chosen small value of ρm. Therefore, injecting a packet containing an FId with a large value of filling factor, to achieve higher attack probability, is not possible anymore. The preliminary analysis of this proposal indicates that with the designed scheme, the forwarding function can detect and prevent malicious activities such DDoS attacks at early stage and with very high probability.

Keywords: forwarding identifier, filling factor, information centric network, topology manager

Procedia PDF Downloads 154
3411 The Contribution of Community Involvement in Heritage Management

Authors: Esraa Alhadad

Abstract:

Recently, there has been considerable debate surrounding the definition, conservation, and management of heritage. Over the past few years, there has been a growing call for the inclusion of local communities in heritage management. However, the perspectives on involvement, especially concerning key stakeholders like community members, often diverge significantly. While the theoretical foundation for community involvement is reasonably established, the application of this approach in heritage management has been sluggish. Achieving a balance to fulfill the diverse goals of stakeholders in any involvement project proves challenging in practice. Consequently, there is a dearth of empirical studies exploring the practical implications of effective tools in heritage management, and limited indication exists to persuade current authorities, such as governmental organizations, to share their influence with local community members. This research project delves into community involvement within heritage management as a potent means of constructing a robust management framework. Its objective is to assess both the extent and caliber of involvement within the management of heritage sites overall, utilizing a cultural mapping-centered methodology. The findings of this study underscore the significance of engaging the local community in both heritage management and planning endeavors. Ultimately, this investigation furnishes crucial empirical evidence and extrapolates valuable theoretical and practical insights that advance understanding of cultural mapping in pivotal areas, including the catalysts for involvement and collaborative decision-making processes.

Keywords: community involvement, heritage management, cultural mapping, stakeholder mangement

Procedia PDF Downloads 131
3410 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level

Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil

Abstract:

This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.

Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing

Procedia PDF Downloads 373
3409 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter

Authors: Dehini Rachid, Ferdi Brahim

Abstract:

The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.

Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion

Procedia PDF Downloads 386
3408 A New Reliability based Channel Allocation Model in Mobile Networks

Authors: Anujendra, Parag Kumar Guha Thakurta

Abstract:

The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. Thus, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non-dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.

Keywords: base station, channel, GA, pareto-optimal, reliability

Procedia PDF Downloads 408
3407 Evolution of Bombings against Transportation Infrastructure

Authors: Jonathan K. Hill

Abstract:

The transportation networks throughout Africa remain the only transportation infrastructure system in the world that is attacked by terrorists at a high frequency, so the international community can learn from each attack. The targeting of transportation should be recognized as a direct attack against a civilian population, so the international community should work to better understand the types of attacks utilized, the types of improvised explosive device designs adapted to transportation targets, and the ways the various modes of transportation have been attacked throughout the continent. Some countries have seen grenade attacks that have resulted in only injuries, while some countries have experienced large vehicle bombings that have resulted in hundreds of injuries and numerous deaths. With insurgencies, explosive devices have been small, complex, and generally target an enemy of the insurgency. With terrorist bombings, the explosive devices have been large, brazen, and targeted at civilian populations. And, these civilian populations are easily targeted within the transportation system. The presentation provided by Assess Africa LLC is titled ‘Evolution of Bombings Against Transportation Infrastructure’ and covers improvised explosive device characteristics, how improvised explosive devices have been adapted to transportation targets in Africa, analyses recent incidents, and provides some advice for effective protective measures. A main component of the improvised explosive device characteristics portion of the presentation focuses on the link between explosive device components, the intelligence network, and the bomb-builder’s network. By understanding the components, how the use of various components can be linked to a terrorist group’s capabilities, and how the bomb-builder acquires materials, the analysis of improvised explosive device attacks takes on a new direction – one that focuses on defeating the network instead of merely reviewing incidents of the past.

Keywords: Africa, bombings, critical infrastructure protection, transportation security

Procedia PDF Downloads 426
3406 Urban Gamification: Analyzing the Effects of UFLab’s Tangible Gamified Tools in Four Hungarian Urban Public Participation Processes

Authors: Olivia Kurucz

Abstract:

Gamification is one of the outstanding new methodological possibilities of urban public participation processes to make the most informed decision possible for the future steps of urban development. This paper examines four Hungarian experimental projects in which gamified tools were applied during the public participation progresses by the Urban Future Laboratory (UFLab) research workshop of Budapest University of Technology and Economics (BUTE). The recently implemented future planning projects (in the cities of Pécel, Kistarcsa, Budapest, and Salgótarján) were initiated by various motives, but the multi-stakeholder dialogues were facilitated through physical gamified tools in all cases. Based on the urban gamification hypothesis, the use of gamified tools supported certain steps of participatory processes in several aspects: it helped to increase the attractiveness of public events, to create a more informal atmosphere, to ensure equal conditions for actors, to recall a design mindset, to bridge contrasting social or cultural differences, to fix opinions and to assist dialogue between city actors, designers, and residents. This statement is confirmed by assessing the applied tools, analyzing the case studies, and comparing them to perceive their effects and interrelations.

Keywords: experimental projects, future planning, gamification, gamified tools, Hungary, public participation, UFLab, urban gamification

Procedia PDF Downloads 138
3405 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
3404 Translating the Australian National Health and Medical Research Council Obesity Guidelines into Practice into a Rural/Regional Setting in Tasmania, Australia

Authors: Giuliana Murfet, Heidi Behrens

Abstract:

Chronic disease is Australia’s biggest health concern and obesity the leading risk factor for many. Obesity and chronic disease have a higher representation in rural Tasmania, where levels of socio-disadvantage are also higher. People living outside major cities have less access to health services and poorer health outcomes. To help primary healthcare professionals manage obesity, the Australian NHMRC evidence-based clinical practice guidelines for management of overweight and obesity in adults were developed. They include recommendations for practice and models for obesity management. To our knowledge there has been no research conducted that investigates translation of these guidelines into practice in rural-regional areas; where implementation can be complicated by limited financial and staffing resources. Also, the systematic review that informed the guidelines revealed a lack of evidence for chronic disease models of obesity care. The aim was to establish and evaluate a multidisciplinary model for obesity management in a group of adult people with type 2 diabetes in a dispersed rural population in Australia. Extensive stakeholder engagement was undertaken to both garner support for an obesity clinic and develop a sustainable model of care. A comprehensive nurse practitioner-led outpatient model for obesity care was designed. Multidisciplinary obesity clinics for adults with type 2 diabetes including a dietitian, psychologist, physiotherapist and nurse practitioner were set up in the north-west of Tasmania at two geographically-rural towns. Implementation was underpinned by the NHMRC guidelines and recommendations focused on: assessment approaches; promotion of health benefits of weight loss; identification of relevant programs for individualising care; medication and bariatric surgery options for obesity management; and, the importance of long-term weight management. A clinical pathway for adult weight management is delivered by the multidisciplinary team with recognition of the impact of and adjustments needed for other comorbidities. The model allowed for intensification of intervention such as bariatric surgery according to recommendations, patient desires and suitability. A randomised controlled trial is ongoing, with the aim to evaluate standard care (diabetes-focused management) compared with an obesity-related approach with additional dietetic, physiotherapy, psychology and lifestyle advice. Key barriers and enablers to guideline implementation were identified that fall under the following themes: 1) health care delivery changes and the project framework development; 2) capacity and team-building; 3) stakeholder engagement; and, 4) the research project and partnerships. Engagement of not only local hospital but also state-wide health executives and surgical services committee were paramount to the success of the project. Staff training and collective development of the framework allowed for shared understanding. Staff capacity was increased with most taking on other activities (e.g., surgery coordination). Barriers were often related to differences of opinions in focus of the project; a desire to remain evidenced based (e.g., exercise prescription) without adjusting the model to allow for consideration of comorbidities. While barriers did exist and challenges overcome; the development of critical partnerships did enable the capacity for a potential model of obesity care for rural regional areas. Importantly, the findings contribute to the evidence base for models of diabetes and obesity care that coordinate limited resources.

Keywords: diabetes, interdisciplinary, model of care, obesity, rural regional

Procedia PDF Downloads 228
3403 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 142
3402 Food Service Waste Management In Nigeria: Emerging Opportunities And Policy Initiatives For Mitigation

Authors: Victor Oyewumi Ogunbiyi

Abstract:

Food waste is recognised as one of the major global challenges in achieving a sustainable future. Currently, very little is known about the multi-stakeholder approach to food waste management downstream of the supply chain, particularly in the foodservice sector. In order to better understand and explain the complex issues of food waste, a qualitative study was conducted on the generation of food waste in food services (restaurants, catering, canteens, and local food vendors) and policy initiatives to mitigate it from the perspective of the stakeholders. A semi-structured interview approach and observation were used to collect data from some 32 selected stakeholders in Garki, Abuja, Nigeria. Thematic analysis was employed to analyse the data from the qualitative instrument adopted in this study. Results revealed that the attitude of stakeholders, poor environmental hygiene, poor food cooking skills and handling, and lack of communication are the major causes of food waste. This study identified seven policy initiatives: regulations, information and education campaigns, economic instruments, mobile applications, stakeholders’ collaboration, firm internal action, and training. Finally, we link policy initiatives to food waste mitigation to provide a response to the damaging shock of food waste.

Keywords: food waste, foodservices, emerging opportunities, policy initiatives, food waste prevention, multistakeholder. garki district-abuja

Procedia PDF Downloads 81
3401 Construction Strategy of Urban Public Space in Driverless Era

Authors: Yang Ye, Hongfei Qiu, Yaqi Li

Abstract:

The planning and construction of traditional cities are oriented by cars, which leads to the problems of insufficient urban public space, fragmentation, and low utilization efficiency. With the development of driverless technology, the urban structure will change from the traditional single-core grid structure to the multi-core model. In terms of traffic organization, with the release of land for traffic facilities, public space will become more continuous and integrated with traffic space. In the context of driverless technology, urban public reconstruction is characterized by modularization and high efficiency, and its planning and layout features accord with points (service facilities), lines (smart lines), surfaces (activity centers). The public space of driverless urban roads will provide diversified urban public facilities and services. The intensive urban layout makes the commercial public space realize the functions of central activities and style display, respectively, in the interior (building atrium) and the exterior (building periphery). In addition to recreation function, urban green space can also utilize underground parking space to realize efficient dispatching of shared cars. The roads inside the residential community will be integrated into the urban landscape, providing conditions for the community public activity space with changing time sequence and improving the efficiency of space utilization. The intervention of driverless technology will change the thinking of traditional urban construction and turn it into a human-oriented one. As a result, urban public space will be richer, more connected, more efficient, and the urban space justice will be optimized. By summarizing the frontier research, this paper discusses the impact of unmanned driving on cities, especially urban public space, which is beneficial for landscape architects to cope with the future development and changes of the industry and provides a reference for the related research and practice.

Keywords: driverless, urban public space, construction strategy, urban design

Procedia PDF Downloads 114
3400 Tehran Province Water and Wastewater Company Approach on Energy Efficiency by the Development of Renewable Energy to Achieving the Sustainable Development Legal Principle

Authors: Mohammad Parvaresh, Mahdi Babaee, Bahareh Arghand, Roushanak Fahimi Hanzaee, Davood Nourmohammadi

Abstract:

Today, the intelligent network of water and wastewater as one of the key steps in realizing the smart city in the world. Use of pressure relief valves in urban water networks in order to reduce the pressure is necessary in Tehran city. But use these pressure relief valves lead to waste water, more power consumption, and environmental pollution because Tehran Province Water and Wastewater Co. use a quarter of industry 's electricity. In this regard, Tehran Province Water and Wastewater Co. identified solutions to reduce direct and indirect costs in energy use in the process of production, transmission and distribution of water because this company has extensive facilities and high capacity to realize green economy and industry. The aim of this study is to analyze the new project in water and wastewater industry to reach sustainable development.

Keywords: Tehran Province Water and Wastewater Company, water network efficiency, sustainable development, International Environmental Law

Procedia PDF Downloads 291
3399 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

In this paper, a new concept of closed-loop design model is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Thus, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluation of forward design, reverse design, and green manufacturing models. A fuzzy analytic network process model is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In application, a super matrix can be created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.

Keywords: design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process

Procedia PDF Downloads 676