Search results for: optimization of routes
1864 Engineering Optimization of Flexible Energy Absorbers
Authors: Reza Hedayati, Meysam Jahanbakhshi
Abstract:
Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)
Procedia PDF Downloads 3991863 Design and Analysis of Active Rocket Control Systems
Authors: Piotr Jerzy Rugor, Julia Wajoras
Abstract:
The presented work regards a single-stage aerodynamically controlled solid propulsion rocket. Steering a rocket to fly along a predetermined trajectory can be beneficial for minimizing aerodynamic losses and achieved by implementing an active control system on board. In this particular case, a canard configuration has been chosen, although other methods of control have been considered and preemptively analyzed, including non-aerodynamic ones. The objective of this work is to create a system capable of guiding the rocket, focusing on roll stabilization. The paper describes initial analysis of the problem, covers the main challenges of missile guidance and presents data acquired during the experimental study.Keywords: active canard control system, rocket design, numerical simulations, flight optimization
Procedia PDF Downloads 1951862 Review of Transportation Modeling Software
Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh
Abstract:
Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software
Procedia PDF Downloads 311861 Solving 94-Bit ECDLP with 70 Computers in Parallel
Authors: Shunsuke Miyoshi, Yasuyuki Nogami, Takuya Kusaka, Nariyoshi Yamai
Abstract:
Elliptic curve discrete logarithm problem (ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard's rho method to evaluate the security of ECDLP on Barreto-Naehrig (BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers.Keywords: Pollard's rho method, BN curve, Montgomery multiplication
Procedia PDF Downloads 2721860 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning
Authors: Andreas D. Jansson
Abstract:
The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.Keywords: autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation
Procedia PDF Downloads 1381859 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device
Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang
Abstract:
This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.Keywords: CFD modeling, validation, microsphere generation, modified T-junction
Procedia PDF Downloads 7071858 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1251857 Electric Vehicles Charging Stations: Strategies and Algorithms Integrated in a Power-Sharing Model
Authors: Riccardo Loggia, Francesca Pizzimenti, Francesco Lelli, Luigi Martirano
Abstract:
Recent air emission regulations point toward the complete electrification of road vehicles. An increasing number of users are beginning to prefer full electric or hybrid, plug-in vehicle solutions, incentivized by government subsidies and the lower cost of electricity compared to gasoline or diesel. However, it is necessary to optimize charging stations so that they can simultaneously satisfy as many users as possible. The purpose of this paper is to present optimization algorithms that enable simultaneous charging of multiple electric vehicles while ensuring maximum performance in relation to the type of charging station.Keywords: electric vehicles, charging stations, sharing model, fast charging, car park, power profiles
Procedia PDF Downloads 1541856 An Approximation Algorithm for the Non Orthogonal Cutting Problem
Abstract:
We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern.Keywords: combinatorial optimization, cutting problem, heuristic
Procedia PDF Downloads 5411855 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices
Authors: S. Srinivasan, E. Cretu
Abstract:
The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape
Procedia PDF Downloads 1351854 Drug Delivery Nanoparticles of Amino Acid Based Biodegradable Polymers
Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava
Abstract:
Nanosized environmentally responsive materials are of special interest for various applications, including targeted drug to a considerable potential for treatment of many human diseases. The important technological advantages of nanoparticles (NPs) usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic (water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. As the next step of this research an evaluation of biocompatibility and bioavailability of the synthesized NPs has been performed, using two stable human cell culture lines – HeLa and A549. This part of study is still in progress now.Keywords: amino acids, biodegradable polymers, nanoparticles (NPs), non-toxic building blocks
Procedia PDF Downloads 4321853 Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers
Authors: Y.Galerkin, O. Solovieva
Abstract:
Flow parameters are calculated in vaneless diffusers with relative width 0,014 – 0,10 constant along radii. Inlet flow angles and similarity criteria were varied. Information about flow structure is presented – meridian streamlines configuration, information on flow full development, flow separation. Polytrophic efficiency, loss and recovery coefficient are used to compare diffusers’ effectiveness. The sample of narrow diffuser optimization by conical walls application is presented. Three tampered variants of a wide diffuser are compared too. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb.Keywords: vaneless diffuser, relative width, flow angle, flow separation, loss coefficient, similarity criteria
Procedia PDF Downloads 4901852 Optimization and Evaluation of 177lu-Dotatoc as a Potential Agent for Peptide Receptor Radionuclide Therapy
Authors: H. Yousefnia, MS. Mousavi-Daramoroudi, S. Zolghadri, F. Abbasi-Davani
Abstract:
High expression of somatostatin receptors on a wide range of human tumours makes them as potential targets for peptide receptor radionuclide tomography. A series of octreotide analogues were synthesized while [DOTA-DPhe1, Tyr3]octreotide (DOTATOC) indicated advantageous properties in tumour models. In this study, 177Lu-DOTATOC was prepared with the radiochemical purity of higher than 99% in 30 min at the optimized condition. Biological behavior of the complex was studied after intravenous injection into the Syrian rats. Major difference uptake was observed compared to 177LuCl3 solution especially in somatostatin receptor-positive tissues such as pancreas and adrenal.Keywords: Biodistribution, 177Lu, Octreotide, Syrian rats
Procedia PDF Downloads 4481851 Split Monotone Inclusion and Fixed Point Problems in Real Hilbert Spaces
Authors: Francis O. Nwawuru
Abstract:
The convergence analysis of split monotone inclusion problems and fixed point problems of certain nonlinear mappings are investigated in the setting of real Hilbert spaces. Inertial extrapolation term in the spirit of Polyak is incorporated to speed up the rate of convergence. Under standard assumptions, a strong convergence of the proposed algorithm is established without computing the resolvent operator or involving Yosida approximation method. The stepsize involved in the algorithm does not depend on the spectral radius of the linear operator. Furthermore, applications of the proposed algorithm in solving some related optimization problems are also considered. Our result complements and extends numerous results in the literature.Keywords: fixedpoint, hilbertspace, monotonemapping, resolventoperators
Procedia PDF Downloads 521850 Tuned Mass Damper Vibration Control of Pedestrian Bridge
Authors: Qinglin Shu
Abstract:
Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe.Keywords: pedestrian bridges, human-induced vibration, comfort, tuned mass dampers
Procedia PDF Downloads 1141849 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System
Authors: A. S. Walkey, N. P. Patidar
Abstract:
It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices
Procedia PDF Downloads 5061848 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters
Authors: Shaban Guma, Naim Bajcinca
Abstract:
We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless
Procedia PDF Downloads 3311847 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1501846 Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm
Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii
Abstract:
This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions.Keywords: optimization problems, traveling salesman problem, heuristic algorithms, “onion husk” algorithm, pseudo-geometric version
Procedia PDF Downloads 2061845 CO2 Emissions Quantification of the Modular Bridge Superstructure
Authors: Chanhyuck Jeon, Jongho Park, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park
Abstract:
Many industries put emphasis on environmentally-friendliness as environmental problems are on the rise all over the world. Among themselves, the Modular Bridge research is going on. Also performing cross-section optimization and duration reducing, this research aims at developing the modular bridge with Environment-Friendliness and economic feasibility. However, the difficulty lies in verifying environmental effectiveness because there are no field applications of the modular bridge until now. Therefore, this thesis is categorized according to the form of the modular bridge superstructure and assessed CO₂ emission quantification per work types and materials according to each form to verify the environmental effectiveness of the modular bridge.Keywords: modular bridge, CO2 emission, environmentally friendly, quantification, carbon emission factor, LCA (Life Cycle Assessment)
Procedia PDF Downloads 5551844 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides
Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac
Abstract:
The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.Keywords: grained cutting materials difficult to machine materials, optimum utilization, mechanic, manufacturing
Procedia PDF Downloads 2991843 Multi Objective Near-Optimal Trajectory Planning of Mobile Robot
Authors: Amar Khoukhi, Mohamed Shahab
Abstract:
This paper presents the optimal control problem of mobile robot motion as a nonlinear programming problem (NLP) and solved using a direct method of numerical optimal control. The NLP is initialized with a B-Spline for which node locations are optimized using a genetic search. The system acceleration inputs and sampling periods are considered as optimization variables. Different scenarios with different objectives weights are implemented and investigated. Interesting results are found in terms of complying with the expected behavior of a mobile robot system and time-energy minimization.Keywords: multi-objective control, non-holonomic systems, mobile robots, nonlinear programming, motion planning, B-spline, genetic algorithm
Procedia PDF Downloads 3691842 Nanoparticles Made of Amino Acid Derived Biodegradable Polymers as Promising Drug Delivery Containers
Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava
Abstract:
Polymeric disperse systems such as nanoparticles (NPs) are of high interest for numerous applications in contemporary medicine and nanobiotechnology to a considerable potential for treatment of many human diseases. The important technological advantages of NPs usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic(water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. At the next step of this research was carried out an evaluation of biocompability and bioavailability of the synthesized NPs using a stable human cell culture line – A549. It was established that the obtained NPs are not only biocompatible but they stimulate the cell growth.Keywords: amino acids, biodegradable polymers, bioavailability, nanoparticles
Procedia PDF Downloads 2981841 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles
Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien
Abstract:
The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface
Procedia PDF Downloads 4591840 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 1031839 Principal Component Analysis Applied to the Electric Power Systems – Practical Guide; Practical Guide for Algorithms
Authors: John Morales, Eduardo Orduña
Abstract:
Currently the Principal Component Analysis (PCA) theory has been used to develop algorithms regarding to Electric Power Systems (EPS). In this context, this paper presents a practical tutorial of this technique detailed their concept, on-line and off-line mathematical foundations, which are necessary and desirables in EPS algorithms. Thus, features of their eigenvectors which are very useful to real-time process are explained, showing how it is possible to select these parameters through a direct optimization. On the other hand, in this work in order to show the application of PCA to off-line and on-line signals, an example step to step using Matlab commands is presented. Finally, a list of different approaches using PCA is presented, and some works which could be analyzed using this tutorial are presented.Keywords: practical guide; on-line; off-line, algorithms, faults
Procedia PDF Downloads 5631838 Human Health Risk Assessment of Mercury-Contaminated Soils in Alebediah Mining Community, Sudan
Authors: Ahmed Elwaleed, Huiho Jeong, Ali H. Abdelbagi, Nguyen Thi Quynh, Koji Arizono, Yasuhiro Ishibashi
Abstract:
Artisanal and small-scale gold mining (ASGM) poses substantial risks to both human health and the environment, particularly through contamination of soil, water, and air. Prolonged exposure to ASGM-contaminated soils can lead to acute or chronic mercury toxicity. This study assesses the human health risks associated with mercury-contaminated soils and tailings in the Alebediah mining community in Sudan. Soil samples were collected from various locations within Alebediah, including ASGM areas, farmlands, and residential areas, along with tailings samples commonly found within ASGM sites. The evaluation of potential health risks to humans included the computation of the estimated daily intake (AvDI), the hazard quotient (HQ), and the hazard index (HI) for both adults and children. The primary exposure route identified as potentially posing a significant health risk was the volatilization of mercury from tailings samples, where mercury concentrations reached up to 25.5 mg/kg. In contrast, other samples within the ASGM area showed elevated mercury levels but did not present significant health risks, with HI values below 1. However, all areas indicated HI values above 1 for the remaining exposure routes. The study observed a decrease in mercury concentration with increasing distance from the ASGM community. Additionally, soil samples revealed elevated mercury levels exceeding background values, prompting an assessment of contamination levels using the enrichment factor (EF). The findings indicated that farmlands and residential areas exhibited depleted EF, while areas surrounding the ASGM community showed none to moderate pollution. In contrast, ASGM areas exhibited significant to extreme pollution. A GIS map was generated to visually depict the extent of mercury pollution, facilitating communication with stakeholders and decision-makers.Keywords: mercury pollution, artisanal and small-scale gold mining, health risk assessment, hazard index, soil and tailings, enrichment factor
Procedia PDF Downloads 831837 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste
Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura
Abstract:
As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.Keywords: condensation, radioactive liquid waste, solidification, STRAD project
Procedia PDF Downloads 1581836 Intelligent and Optimized Placement for CPLD Devices
Authors: Abdelkader Hadjoudja, Hajar Bouazza
Abstract:
The PLD/CPLD devices are widely used for logic synthesis since several decades. Based on sum of product terms (PTs) architecture, the PLD/CPLD offer a high degree of flexibility to support various application requirements. They are suitable for large combinational logic, finite state machines as well as intensive I/O designs. CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. This paper describes how the logic synthesis techniques, such as 1) XOR detection, 2) logic doubling, 3) complement of a Boolean function are combined, applied and used to optimize the CPLDs devices architecture that is based on PAL-like macrocells. Our goal is to use these techniques for minimizing the number of macrocells required to implement a circuit and minimize the delay of mapped circuit.Keywords: CPLD, doubling, optimization, XOR
Procedia PDF Downloads 2821835 Medical Authorizations for Cannabis-Based Products in Canada: Sante Cannabis Data on Patient’s Safety and Treatment Profiles
Authors: Rihab Gamaoun, Cynthia El Hage, Laura Ruiz, Erin Prosk, Antonio Vigano
Abstract:
Introduction: Santé Cannabis (SC), a Canadian medical cannabis-specialized group of clinics based in Montreal and in the province of Québec, has served more than 5000 patients seeking cannabis-based treatment prescription for medical indications over the past five years. Within a research frame, data on the use of medical cannabis products from all the above patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to gather information on the profiles of both patients and prescribed medical cannabis products at SC clinics and to assess the safety of medical cannabis among Canadian patients. Methods: Using a retrospective analysis of the database, records of 2585 patients who were prescribed medical cannabis products for therapeutic purposes between 01-November 2017 and 04-September 2019 were included. Patients’ demographics, primary diagnosis, route of administration, and chemovars recorded at the initial visits were investigated. Results: At baseline: 9% of SC patients were female, with a mean age of 57 (SD= 15.8, range= [18-96]); Cannabis products were prescribed mainly for patients with a diagnosis of chronic pain (65.9% of patients), cancer (9.4%), neurological disorders (6.5%), mood disorders (5.8 %) and inflammatory diseases (4.1%). Route of administration and chemovars of prescribed cannabis products were the following: 96% of patients received cannabis oil (51% CBD rich, 42.5% CBD:THC); 32.1% dried cannabis (21.3% CBD:THC, 7.4% THC rich, 3.4 CBD rich), and 2.1% oral spray cannabis (1.1% CBD:THC, 0.8% CBD rich, 0.2% THC rich). Most patients were prescribed simultaneously, a combination of products with different administration routes and chemovars. Safety analysis is undergoing. Conclusion: Our results provided initial information on the profile of medical cannabis products prescribed in a Canadian population and the experienced adverse events over the past three years. The Santé Cannabis database represents a unique opportunity for comparing clinical practices in prescribing and titrating cannabis-based medications across different centers. Ultimately real-world data, including information about safety and effectiveness, will help to create standardized and validated guidelines for choosing dose, route of administration, and chemovars types for the cannabis-based medication in different diseases and indications.Keywords: medical cannabis, real-world data, safety, pharmacovigilance
Procedia PDF Downloads 108