Search results for: optimization methods
16150 Strategy in Practice: Strategy Development, Strategic Error and Project Delivery
Authors: Nipun Agarwal, David Paul, Fareed Un Din
Abstract:
Strategy development and implementation is the key to an organization’s success in today’s competitive marketplace. Many organizations develop excellent strategy but are unable to implement this strategy in order to succeed. The difference between strategic goals and its implementation is called strategic error. Strategic error occurs when an organization does not have structures in place to implement their strategy. Strategy implementation happens through projects and having a project management method that provides certainty and agility will help an organization become more competitive in implementing strategy. Numerous project management methods exist in theory and practice. However, projects mainly used the Waterfall method in the past that provides certainty in terms of budget, delivery date and resourcing. It is common practice now to utilise Agile based methods. However, Agile based methods do not provide specific deadlines and budgets. But provide agility in product design and project delivery, which is useful to companies. Both Waterfall and Agile methods in some forms are the opposites of each other. Executive management prefer agility in delivery projects as the competitive landscape changes frequently. However, they also appreciate certainty in the projects being able to quantify budgets, deadlines and resources that is harder for an Agile based method to provide. This paper attempts to develop a hybrid project management method that attempts to merge these Waterfall and Agile methods to provide the positives from both these approaches.Keywords: strategy, project management, strategy implementation, agile
Procedia PDF Downloads 11616149 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 716148 Investigation into Varied Inspection Utilization for Mass Customization
Authors: Trishen Naidoo, Anthony Walker, Shaniel Davrajh, Glen Bright
Abstract:
An investigation into on-line inspection was performed where research is focused on the use of varied inspection (as opposed to 100% inspection) for mass customization (MC). Manufacturers need new methods for quality control in mass customization, and these methods need to address some of the old problems such as over-inspection and bottlenecking. Due to the risks of varied inspection, many manufacturers do not implement it and rather opt for sampling methods. However, there are many advantages of varied inspection and can have applications in mass customization. A control system incorporating fuzzy logic (FL) control is used to perform the variations in inspection usage in a simulated environment. The proposed system can have a key impact in appraisal costs reduction and possibly work-in-process reduction in high variety environments.Keywords: appraisal costs, fuzzy logic, quality control, work-in-process
Procedia PDF Downloads 23116147 The Effect of Whole Word Method on Mean Length of Utterance (MLU) of 3 to 6 Years Old Children with Cochlear Implant Having Normal IQ
Authors: Elnaz Dabiri, Somayeh Hamidnezhad
Abstract:
Background and Objective: This study aims at investigating the effect of whole word method on Mean Length of Utterance (MLU) of 3 to 6 years old children with cochlear implants having normal IQ. Materials and Methods: In this quasi-experimental and interventional study, 20 children with cochlear implants, aged between 3and 6 years, and normal IQ were selected from Tabriz cochlear implants center using convenience sampling. Afterward, they were randomly bifurcated. The first group was educated by whole-word reading method along with traditional methods and the second group by traditional methods. Both groups had three sessions of 45-minutes each, every week continuously for a period of 3 months. Pre-test and post-test language abilities of both groups were assessed using the TOLD test. Results: Both groups before training have the same age, IQ, and MLU, but after training the first group shows a considerable improvement in MLU in comparison with the second group. Conclusions: Reading training by the whole word method have more effect on MLU of children with cochlear implants in comparison of the traditional method.Keywords: cochlear implants, reading training, traditional methods, language therapy, whole word method, Mean Length of Utterance (MLU)
Procedia PDF Downloads 33316146 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity
Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz
Abstract:
The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance
Procedia PDF Downloads 10816145 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 2216144 Technical Sustainable Management: An Instrument to Increase Energy Efficiency in Wastewater Treatment Plants, a Case Study in Jordan
Authors: Dirk Winkler, Leon Koevener, Lamees AlHayary
Abstract:
This paper contributes to the improvement of the municipal wastewater systems in Jordan. An important goal is increased energy efficiency in wastewater treatment plants and therefore lower expenses due to reduced electricity consumption. The chosen way to achieve this goal is through the implementation of Technical Sustainable Management adapted to the Jordanian context. Three wastewater treatment plants in Jordan have been chosen as a case study for the investigation. These choices were supported by the fact that the three treatment plants are suitable for average performance and size. Beyond that, an energy assessment has been recently conducted in those facilities. The project succeeded in proving the following hypothesis: Energy efficiency in wastewater treatment plants can be improved by implementing principles of Technical Sustainable Management adapted to the Jordanian context. With this case study, a significant increase in energy efficiency can be achieved by optimization of operational performance, identifying and eliminating shortcomings and appropriate plant management. Implementing Technical Sustainable Management as a low-cost tool with a comparable little workload, provides several additional benefits supplementing increased energy efficiency, including compliance with all legal and technical requirements, process optimization, but also increased work safety and convenient working conditions. The research in the chosen field continues because there are indications for possible integration of the adapted tool into other regions and sectors. The concept of Technical Sustainable Management adapted to the Jordanian context could be extended to other wastewater treatment plants in all regions of Jordan but also into other sectors including water treatment, water distribution, wastewater network, desalination, or chemical industry.Keywords: energy efficiency, quality management system, technical sustainable management, wastewater treatment
Procedia PDF Downloads 16216143 Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer
Authors: Choy Sonny Yip Hong
Abstract:
This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products.Keywords: additive manufacturing, 3D printing, eggshell PLA polymer, design innovation, carbon footprint reduction, supply chain optimization, collaborative potential
Procedia PDF Downloads 7216142 Reconnaissance Geophysical Study on the Southeastern Part of Al-Qashah Aera, Kingdom of Saudi Arabia
Authors: Ali Al-Bakri, Mohammed Sazid
Abstract:
The investigated study area locates about 72 km from Jeddah city, Makkah district, Kingdom of Saudi Arabia. The study mainly aimed to define only in detail the most significant zones of possible mineralization and outline their subsurface parameters (location and strike) in the southeast part of Jabal Al-Qashah. Several geophysical methods have been conducted to carry out the goal. Among these methods are the ground magnetic method, self-potential (SP) method, and induced polarization (IP) method. Integrating these methods aims to help in delineating the possible mineralization in the study area. The magnetic survey was conducted along 17 profiles where these profiles were chosen to be perpendicular to the strike of the quartz shear zone. Self-potential was applied along with five profiles covering the study area. At the same time, induced polarization was used along with one profile located at the western side of the study area corresponding to some magnetic and SP profiles. The most interesting zones of mineralization were successfully determined by comparing the results of residual magnetic profile (3), SP profile (1), and IP profile, where geological structures control some mineralization.Keywords: geophysical methods, magnetic method, self-potential, induced polarization, Jabal Al-Qashah
Procedia PDF Downloads 13216141 Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions
Authors: Edamana Krishnan, Khalil Al-Ghafri
Abstract:
In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed.Keywords: travelling wave solutions, solitary wave solutions, compactons, Jacobi elliptic functions, mapping methods
Procedia PDF Downloads 30516140 Investigation of the Morphology of SiO2 Nano-Particles Using Different Synthesis Techniques
Authors: E. Gandomkar, S. Sabbaghi
Abstract:
In this paper, the effects of variation synthesized methods on morphology and size of silica nanostructure via modifying sol-gel and precipitation method have been investigated. Meanwhile, resulting products have been characterized by particle size analyzer, scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Fourier transform infrared (FT-IR) spectra. As result, the shape of SiO2 with sol-gel and precipitation methods was spherical but with modifying sol-gel method we have been had nanolayer structure.Keywords: modified sol-gel, precipitation, nanolayer, Na2SiO3, nanoparticle
Procedia PDF Downloads 29216139 Optimization of Enzymatic Hydrolysis of Cooked Porcine Blood to Obtain Hydrolysates with Potential Biological Activities
Authors: Miguel Pereira, Lígia Pimentel, Manuela Pintado
Abstract:
Animal blood is a major by-product of slaughterhouses and still represents a cost and environmental problem in some countries. To be eliminated, blood should be stabilised by cooking and afterwards the slaughterhouses must have to pay for its incineration. In order to reduce the elimination costs and valorise the high protein content the aim of this study was the optimization of hydrolysis conditions, in terms of enzyme ratio and time, in order to obtain hydrolysates with biological activity. Two enzymes were tested in this assay: pepsin and proteases from Cynara cardunculus (cardosins). The latter has the advantage to be largely used in the Portuguese Dairy Industry and has a low price. The screening assays were carried out in a range of time between 0 and 10 h and using a ratio of enzyme/reaction volume between 0 and 5%. The assays were performed at the optimal conditions of pH and temperature for each enzyme: 55 °C at pH 5.2 for cardosins and 37 °C at pH 2.0 for pepsin. After reaction, the hydrolysates were evaluated by FPLC (Fast Protein Liquid Chromatography) and tested for their antioxidant activity by ABTS method. FPLC chromatograms showed different profiles when comparing the enzymatic reactions with the control (no enzyme added). The chromatogram exhibited new peaks with lower MW that were not present in control samples, demonstrating the hydrolysis by both enzymes. Regarding to the antioxidant activity, the best results for both enzymes were obtained using a ratio enzyme/reactional volume of 5% during 5 h of hydrolysis. However, the extension of reaction did not affect significantly the antioxidant activity. This has an industrial relevant aspect in what concerns to the process cost. In conclusion, the enzymatic blood hydrolysis can be a better alternative to the current elimination process allowing to the industry the reuse of an ingredient with biological properties and economic value.Keywords: antioxidant activity, blood, by-products, enzymatic hydrolysis
Procedia PDF Downloads 50916138 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar
Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani
Abstract:
Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery proceduresKeywords: K-feldspar, grinding, automated mineralogy, impurity, leaching
Procedia PDF Downloads 7616137 Comparison of Prognostic Models in Different Scenarios of Shoreline Position on Ponta Negra Beach in Northeastern Brazil
Authors: Débora V. Busman, Venerando E. Amaro, Mattheus da C. Prudêncio
Abstract:
Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach.Keywords: coastal erosion, prognostic model, DSAS, environmental safety
Procedia PDF Downloads 33516136 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems
Authors: M. Beheshti, S. Saegrov, T. M. Muthanna
Abstract:
Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management
Procedia PDF Downloads 33316135 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid
Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan
Abstract:
In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.Keywords: acid treatment, chemical extraction, sludge, waste management
Procedia PDF Downloads 19816134 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods
Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah Abd Aznieta Aziz, Law Teik Hua
Abstract:
The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.Keywords: composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept
Procedia PDF Downloads 35516133 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 3316132 Auto Calibration and Optimization of Large-Scale Water Resources Systems
Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari
Abstract:
Water resource systems modelling have constantly been a challenge through history for human being. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.Keywords: auto-calibration, Gilan, large-scale water resources, simulation
Procedia PDF Downloads 33516131 Solving Optimal Control of Semilinear Elliptic Variational Inequalities Obstacle Problems using Smoothing Functions
Authors: El Hassene Osmani, Mounir Haddou, Naceurdine Bensalem
Abstract:
In this paper, we investigate optimal control problems governed by semilinear elliptic variational inequalities involving constraints on the state, and more precisely, the obstacle problem. We present a relaxed formulation for the problem using smoothing functions. Since we adopt a numerical point of view, we first relax the feasible domain of the problem, then using both mathematical programming methods and penalization methods, we get optimality conditions with smooth Lagrange multipliers. Some numerical experiments using IPOPT algorithm (Interior Point Optimizer) are presented to verify the efficiency of our approach.Keywords: complementarity problem, IPOPT, Lagrange multipliers, mathematical programming, optimal control, smoothing methods, variationally inequalities
Procedia PDF Downloads 17216130 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology
Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal
Abstract:
Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.Keywords: chloramine decay, modelling, response surface methodology, water quality parameters
Procedia PDF Downloads 22516129 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry
Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal
Abstract:
The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.Keywords: automotive industry, FMEA, control plan, automotive technology
Procedia PDF Downloads 40616128 Hardware-In-The-Loop Relative Motion Control: Theory, Simulation and Experimentation
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper presents a Guidance and Control (G&C) strategy to address spacecraft maneuvering problem for future Rendezvous and Docking (RVD) missions. The proposed strategy allows safe and propellant efficient trajectories for space servicing missions including tasks such as approaching, inspecting and capturing. This work provides the validation test results of the G&C laws using a Hardware-In-the-Loop (HIL) setup with two robotic mockups representing the chaser and the target spacecraft. Through this paper, the challenges of the relative motion control in space are first summarized, and in particular, the constraints imposed by the mission, spacecraft and, onboard processing capabilities. Second, the proposed algorithm is introduced by presenting the formulation of constrained Model Predictive Control (MPC) to optimize the fuel consumption and explicitly handle the physical and geometric constraints in the system, e.g. thruster or Line-Of-Sight (LOS) constraints. Additionally, the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description and accordingly explained. The resulting convex optimization problem allows real-time implementation capability based on a detailed discussion on the computational time requirements and the obtained results with respect to the onboard computer and future trends of space processors capabilities. Finally, the performance of the algorithm is presented in the scope of a potential future mission and of the available equipment. The results also cover a comparison between the proposed algorithms with Linear–quadratic regulator (LQR) based control law to highlight the clear advantages of the MPC formulation.Keywords: autonomous vehicles, embedded optimization, real-time experiment, rendezvous and docking, space robotics
Procedia PDF Downloads 12416127 The Biochemical and Radiographic Evaluation of the Non-Metastatic Bone Disease in Patients with Renal Cell Carcinoma Undergoing Hemodialysis
Authors: Aliakbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi
Abstract:
Background: Bones are commonly affected by renal cell carcinoma (RCC) (primarily or secondary), and this condition causes bone fragility. The aim of this study was to evaluate the diagnostic value of noninvasive methods for the diagnosis of ROD in RCC patients on hemodialysis (HD) in northern Iran. Methods: In this cross-sectional study, 50 RCC patients with ESRD referred to dialysis units in northern Iran during 2021-2024 were randomly selected and investigated. The biochemical and radiographic evaluation of ROD and its subtypes was performed, and then all patients underwent bone biopsy and histopathological study, and finally, the diagnostic value of the noninvasive methods was assessed. Results: The mean age of patients was 58.9 ± 11.7 years, and 27 cases (54.0%) were female. 38 (76.0%) of RCC patients with ESRD had ROD, and 12 patients (24.0%) had no evidence of bone disorders. The sensitivity, specificity, positive and predictive values and accuracy of the noninvasive methods for the diagnosis of ROD were 92%, 82%, 95%, 75% and 90%, respectively. Conclusion: This study showed that the frequency of ROD in RCC patients with ESRD in northern Iran was high and the biochemical and radiographic markers have a high diagnostic value for ROD as well as histopathological assessment.Keywords: renal cell carcinoma, renal osteodystrophy, hemodialysis, non-metastatic
Procedia PDF Downloads 916126 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium
Authors: Binbin Chen, Dennis Y. C. Leung
Abstract:
Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge
Procedia PDF Downloads 28316125 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel
Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar
Abstract:
Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.Keywords: microalgae, organic media, optimization, transesterification, characterization
Procedia PDF Downloads 23416124 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems
Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer
Abstract:
This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control
Procedia PDF Downloads 15316123 Robust ANOVA: An Illustrative Study in Horticultural Crop Research
Authors: Dinesh Inamadar, R. Venugopalan, K. Padmini
Abstract:
An attempt has been made in the present communication to elucidate the efficacy of robust ANOVA methods to analyze horticultural field experimental data in the presence of outliers. Results obtained fortify the use of robust ANOVA methods as there was substantiate reduction in error mean square, and hence the probability of committing Type I error, as compared to the regular approach.Keywords: outliers, robust ANOVA, horticulture, cook distance, type I error
Procedia PDF Downloads 39016122 Analysis of Organizational Hybrid Agile Methods Environments: Frameworks, Benefits, and Challenges
Authors: Majid Alsubaie, Hamed Sarbazhosseini
Abstract:
Many working environments have experienced increased uncertainty due to the fast-moving and unpredictable world. IT systems development projects, in particular, face several challenges because of their rapidly changing environments and emerging technologies. Information technology organizations within these contexts adapt systems development methodology and new software approaches to address this issue. One of these methodologies is the Agile method, which has gained huge attention in recent years. However, due to failure rates in IT projects, there is an increasing demand for the use of hybrid Agile methods among organizations. The scarce research in the area means that organizations do not have solid evidence-based knowledge for the use of hybrid Agile. This research was designed to provide further insights into the development of hybrid Agile methods within systems development projects, including how frameworks and processes are used and what benefits and challenges are gained and faced as a result of hybrid Agile methods. This paper presents how three organizations (two government and one private) use hybrid Agile methods in their Agile environments. The data was collected through interviews and a review of relevant documents. The results indicate that these organizations do not predominantly use pure Agile. Instead, they are waterfall organizations by virtue of systems nature and complexity, and Agile is used underneath as the delivery model. Prince2 Agile framework, SAFe, Scrum, and Kanban were the identified models and frameworks followed. This study also found that customer satisfaction and the ability to build quickly are the most frequently perceived benefits of using hybrid Agile methods. In addition, team resistance and scope changes are the common challenges identified by research participants in their working environments. The findings can help to understand Agile environmental conditions and projects that can help get better success rates and customer satisfaction.Keywords: agile, hybrid, IT systems, management, success rate, technology
Procedia PDF Downloads 10816121 A Photoredox (C)sp³-(C)sp² Coupling Method Comparison Study
Authors: Shasline Gedeon, Tiffany W. Ardley, Ying Wang, Nathan J. Gesmundo, Katarina A. Sarris, Ana L. Aguirre
Abstract:
Drug discovery and delivery involve drug targeting, an approach that helps find a drug against a chosen target through high throughput screening and other methods by way of identifying the physical properties of the potential lead compound. Physical properties of potential drug candidates have been an imperative focus since the unveiling of Lipinski's Rule of 5 for oral drugs. Throughout a compound's journey from discovery, clinical phase trials, then becoming a classified drug on the market, the desirable properties are optimized while minimizing/eliminating toxicity and undesirable properties. In the pharmaceutical industry, the ability to generate molecules in parallel with maximum efficiency is a substantial factor achieved through sp²-sp² carbon coupling reactions, e.g., Suzuki Coupling reactions. These reaction types allow for the increase of aromatic fragments onto a compound. More recent literature has found benefits to decreasing aromaticity, calling for more sp³-sp² carbon coupling reactions instead. The objective of this project is to provide a comparison between various sp³-sp² carbon coupling methods and reaction conditions, collecting data on production of the desired product. There were four different coupling methods being tested amongst three cores and 4-5 installation groups per method; each method ran under three distinct reaction conditions. The tested methods include the Photoredox Decarboxylative Coupling, the Photoredox Potassium Alkyl Trifluoroborate (BF3K) Coupling, the Photoredox Cross-Electrophile (PCE) Coupling, and the Weix Cross-Electrophile (WCE) Coupling. The results concluded that the Decarboxylative method was very difficult in yielding product despite the several literature conditions chosen. The BF3K and PCE methods produced competitive results. Amongst the two Cross-Electrophile coupling methods, the Photoredox method surpassed the Weix method on numerous accounts. The results will be used to build future libraries.Keywords: drug discovery, high throughput chemistry, photoredox chemistry, sp³-sp² carbon coupling methods
Procedia PDF Downloads 144