Search results for: optimal functioning
2139 Design and Development of Hybrid Rocket Motor
Authors: Aniket Aaba Kadam, Manish Mangesh Panchal, Roushan Ashit Sharma
Abstract:
This project focuses on the design and development of a lab-scale hybrid rocket motor to accurately determine the regression rate of a fuel/oxidizer combination consisting of solid paraffin and gaseous oxygen (GOX). Hybrid motors offer the advantage of on-demand thrust control over both solid and liquid systems in certain applications. The thermodynamic properties of the propellant combination were calculated using NASA CEA at different chamber pressures and corresponding O/F values to determine initial operating conditions with suitable peak temperatures and optimal O/F values. The project also includes the design of the injector orifice and the determination of the final design configurations of the motor casing, pressure control setup, and valve configuration. This research will be valuable in advancing the understanding of paraffin-based propulsion and improving the performance of hybrid rocket motors.Keywords: hybrid rocket, NASA CEA, injector, thrust control
Procedia PDF Downloads 1032138 Temperature Control Improvement of Membrane Reactor
Authors: Pornsiri Kaewpradit, Chalisa Pourneaw
Abstract:
Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.Keywords: model predictive control, batch reactor, temperature control, membrane reactor
Procedia PDF Downloads 4682137 Validation of the Trait Emotional Intelligence Questionnaire: Adolescent Short Form (TEIQue-ASF) among Adolescents in Vietnam
Authors: Anh Nguyen, Jane Fisher, Thach Tran, Anh T. T. Tran
Abstract:
Trait Emotional Intelligence is the knowledge, beliefs, and attitudes an individual has about their own and other people’s emotions. It is believed that trait emotional intelligence is a component of personality. Petrides’ Trait Emotional Intelligence Questionnaire (TEIQue) is well regarded and well-established, with validation data about its functioning among adults from many countries. However, there is little data yet about its use among Asian populations, including adolescents. The aims were to translate and culturally verify the Trait Emotional Intelligence Adolescent Short Form (TEIQue-ASF) and investigate content validity, construct validity, and reliability among adolescents attending high schools in Vietnam. Content of the TEIQue-ASF was translated (English to Vietnamese) and back-translated (Vietnamese to English) in consultation with bilingual and bicultural health researchers and pilot tested among 51 potential respondents. Phraseology and wording were then adjusted and the final version is named the VN-TEIQue-ASF. The VN-TEIQue-ASF’s properties were investigated in a cross-sectional elf-report survey among high school students in Central Vietnam. In total 1,546 / 1,573 (98.3%) eligible students from nine high schools in rural, urban, and coastline areas completed the survey. Explanatory Factor Analysis yielded a four-factor solution, including some with facets that loaded differently compared to the original version: Well-being, Emotion in Relationships, Emotion Self-management, and Emotion Sensitivity. The Cronbach’s alpha of the global score for the VN-TEIQue-ASF was .77. The VN-TEIQue-ASF is comprehensible and has good content and construct validity and reliability among adolescents in Vietnam. The factor structure is only partly replicated the original version. The VN-TEIQue-ASF is recommended for use in school or community surveys and professional study in education, psychology, and public health to investigate the trait emotional intelligence of adolescents in Vietnam.Keywords: adolescents, construct validity, content validity, factor analysis, questionnaire validity, trait emotional intelligence, Vietnam
Procedia PDF Downloads 2682136 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network
Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour
Abstract:
Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network
Procedia PDF Downloads 1692135 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type
Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana
Abstract:
Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker
Procedia PDF Downloads 5742134 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization
Procedia PDF Downloads 1562133 Application of Response Surface Methodology (RSM) for Optimization of Fluoride Removal by Using Banana Peel
Authors: Pallavi N., Gayatri Jadhav
Abstract:
Good quality water is of prime importance for a healthy living. Fluoride is one such mineral present in water which causes many health problems in humans and specially children. Fluoride is said to be a double edge sword because lesser and higher concentration of fluoride in drinking water can cause both dental and skeletal fluorosis. Fluoride is one of the important mineral usually present at a higher concentration in ground water. There are many researches being carried out for defluoridation method. In the present research, fluoride removal is demonstrated using banana peel which is a biowaste as a biocoagulant. Response Surface Methodology (RSM) is a statistical design tool which is used to design the experiment. Central Composite Design (CCD) was used to determine the influence of the pH and dosage of the coagulant on the optimal removal of fluoride from a simulated water sample. 895 of fluoride removal were obtained in a acidic pH range of 4 – 9 and bio coagulant dosage of dosage of 18 – 20mg/L.Keywords: Fluoride, Response Surface Methodology, Dosage, banana peel
Procedia PDF Downloads 1602132 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems
Authors: Elham Kazemi
Abstract:
Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms
Procedia PDF Downloads 5172131 Experts' Opinions of Considerations for Competition Landings in Gymnastics
Authors: Helmut Geiblinger
Abstract:
Dismounts performed by elite gymnasts during competition require great courage and virtuoso displays of precisely organized movements and skills. The dismount and landing leave the final impression in a routine and are often the key to a successful evaluation by the judges. Landings require precise body control and the skillful dissipation of substantial body momentum. The aim of this research study was to investigate landing techniques and strategies used by elite male gymnasts through the eyes of gymnastics experts. It drew from the accrued knowledge and experience of 21 male expert participants who were elite coaches, elite gymnasts, international judges or combinations of these. The experts made a number of subtle points, many of which are not in the extant literature. The experts highlighted concerns about safety and the study concluded that on-going monitoring of the rules on competition landings within the Code of Points would be beneficial to the sport.Keywords: controlled competition landings, landing technique, landing strategies, optimal body segment coordination
Procedia PDF Downloads 2122130 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing
Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong
Abstract:
Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe
Procedia PDF Downloads 3082129 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: flow path, latency, middlebox, network
Procedia PDF Downloads 2072128 Moved by Music: The Impact of Music on Fatigue, Arousal and Motivation During Conditioning for High to Elite Level Female Artistic Gymnasts
Authors: Chante J. De Klerk
Abstract:
The potential of music to facilitate superior performance during high to elite level gymnastics conditioning instigated this research. A team of seven gymnasts completed a fixed conditioning programme eight times, alternating the two variable conditions. Four sessions of each condition were conducted: without music (session 1), with music (session 2), without music (3), with music (4), without music (5), and so forth. Quantitative data were collected in both conditions through physiological monitoring of the gymnasts, and administration of the Situational Motivation Scale (SIMS). Statistical analysis of the physiological data made it possible to quantify the presence as well as the magnitude of the musical intervention’s impact on various aspects of the gymnasts' physiological functioning during conditioning. The SIMS questionnaire results were used to evaluate if their motivation towards conditioning was altered by the intervention. Thematic analysis of qualitative data collected through semi-structured interviews revealed themes reflecting the gymnasts’ sentiments towards the data collection process. Gymnast-specific descriptions and experiences of the team as a whole were integrated with the quantitative data to facilitate greater dimension in establishing the impact of the intervention. The results showed positive physiological, motivational, and emotional effects. In the presence of music, superior sympathetic nervous activation, and energy efficiency, with more economic breathing, dominated the physiological data. Fatigue and arousal levels (emotional and physiological) were also conducive to improved conditioning outcomes compared to conventional conditioning (without music). Greater levels of positive affect and motivation emerged in analysis of both the SIMS and interview data sets. Overall, the intervention was found to promote psychophysiological coherence during the physical activity. In conclusion, a strategically constructed musical intervention, designed to accompany a gymnastics conditioning session for high to elite level gymnasts, has ergogenic potential.Keywords: arousal, fatigue, gymnastics conditioning, motivation, musical intervention, psychophysiological coherence
Procedia PDF Downloads 942127 Testing the Capital Structure Behavior of Malaysian Firms: Shariah vs. Non-Shariah Compliant
Authors: Asyraf Abdul Halim, Mohd Edil Abd Sukor, Obiyathulla Ismath Bacha
Abstract:
This paper attempts to investigate the capital structure behavior of Shariah compliant firms of various levels as well those firms who are consistently Shariah non-compliant in Malaysia. The paper utilizes a unique dataset of firms of the heterogeneous level of Shariah-compliancy status over a 20 year period from the year 1997 to 2016. The paper focuses on the effects of dynamic forces behind capital structure variation such as the optimal capital structure behavior based on the trade-off, pecking order, market timing and firmly fixed effect models of capital structure. This study documents significant evidence in support of the trade-off theory with a high speed of adjustment (SOA) as well as for the time-invariant firm fixed effects across all Shariah compliance group.Keywords: capital structure, market timing, trade-off theory, equity risk premium, Shariah-compliant firms
Procedia PDF Downloads 3122126 Synthesis of Bismuth-Hyaluronic Acid Nanoparticles Containing Melittin Coated with Chitosan for Treating Eye Cancer Cells with Radiotherapy
Authors: Akbar Esmaeili, Fateme Dadashi
Abstract:
Bismuth can increase radiation and reduce the dose of radiotherapy. On the other hand, hyaluronic acid plays a role in healing damaged cells, and melittin has been used to destroy cancer cells. This research aims to destroy eye cancer cells and accelerate the recovery of damaged healthy cells during treatment. In this research, we used this nanoparticle, the sol-gel method. According to the optimization process that was carried out, we obtained the optimal value of the desired variables for the manufacture of nanoparticles. The advantage of doing this is reducing the amount of medicine used, as a result of reducing the number of side effects during the treatment and using melittin as an anti-eye cancer drug and the presence of hyaluronic acid to accelerate the recovery of cells, as well as coating the bismuth nanoparticle with chitosan to increase the half-life of the nanoparticle and prevent its adhesion.Keywords: synthesis, nanoparticles, coated, cancer
Procedia PDF Downloads 622125 Transfer of Electrical Energy by Magnetic Induction
Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa
Abstract:
Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor
Procedia PDF Downloads 5182124 Graph Planning Based Composition for Adaptable Semantic Web Services
Authors: Rihab Ben Lamine, Raoudha Ben Jemaa, Ikram Amous Ben Amor
Abstract:
This paper proposes a graph planning technique for semantic adaptable Web Services composition. First, we use an ontology based context model for extending Web Services descriptions with information about the most suitable context for its use. Then, we transform the composition problem into a semantic context aware graph planning problem to build the optimal service composition based on user's context. The construction of the planning graph is based on semantic context aware Web Service discovery that allows for each step to add most suitable Web Services in terms of semantic compatibility between the services parameters and their context similarity with the user's context. In the backward search step, semantic and contextual similarity scores are used to find best composed Web Services list. Finally, in the ranking step, a score is calculated for each best solution and a set of ranked solutions is returned to the user.Keywords: semantic web service, web service composition, adaptation, context, graph planning
Procedia PDF Downloads 5212123 Perceived Effects of Alcohol Abuse on Ordinary Level Students at Gatsi Secondary School
Authors: Chimeri Muzano Leonard
Abstract:
The study was carried out to investigate the perceptions of male and female Ordinary Level students on the effects of alcohol abuse at Gatsi Secondary School. The study showed that alcohol abuse has academic, social, psychological and health effects on Ordinary Level students. The negative effects comprises of death, dropping out, poor grades, poor concentration, risky behaviors, impairment of the brain and central nervous system , risky behaviors and Impairment of reproductive functioning Only students who enrolled for Ordinary Level in the 2014 academic year participated in this study. Fifty students (25 males and 25 females) were randomly selected to participate in the study. A formal survey questionnaire was used to collect data. The respondents were asked to use a scale of 0 (totally disagree) to 10 (completely agree) to indicate the extent to which they agreed with each perception. The Statistical Package for Social Sciences (SPSS) version 19.0 was used for data analysis. The Mann Whitney U test was used to test for the significance of differences in the perceptions of male and female students. No statistically significant differences were detected between males and females in most of their perceptions regarding the effects of alcohol abuse on Ordinary Level students. However, there were three perceptions found to be significantly different between male and female. They comprises of “Peers influence one to drink alcohol”, “Alcohol abuse is a major problem among male students compared to their female peers” and “ Female students should not drink beer”.It was evident from this study that Gatsi Secondary School needs to implement more effective interventions that combat alcohol abuse. A deeper analysis of the issues that predispose Ordinary Level students to alcohol abuse should inform the interventions. Consequently, unravelling the problem of negative effects of alcohol abuse was desirable because of its potential usefulness in developing strategies that might help curb the problem and presumably improve the performance of Ordinary Level students and above all the quality of education at Gatsi Secondary School.Keywords: perceived effects, alcohol, Gatsi Secondary School, alcohol abuse
Procedia PDF Downloads 2402122 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem
Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly
Abstract:
We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard
Procedia PDF Downloads 5252121 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony
Procedia PDF Downloads 3792120 The MCNP Simulation of Prompt Gamma-Ray Neutron Activation Analysis at TRR-1/M1
Authors: S. Sangaroon, W. Ratanatongchai, S. Khaweerat, R. Picha, J. Channuie
Abstract:
The prompt gamma-ray neutron activation analysis system (PGNAA) has been constructed and installed at a 6 inch diameter neutron beam port of the Thai Research Reactor-1/ Modification 1 (TRR-1/M1) since 1989. It was designed for the reactor operating power at 1.2 MW. The purpose of the system is for an elemental and isotopic analytical. In 2016, the PGNAA facility will be developed to reduce the leakage and background of neutrons and gamma radiation at the sample and detector position. In this work, the designed condition of these facilities is carried out based on the Monte Carlo method using MCNP5 computer code. The conditions with different modification materials, thicknesses and structure of the PGNAA facility, including gamma collimator and radiation shields of the detector, are simulated, and then the optimal structure parameters with a significantly improved performance of the facility are obtained.Keywords: MCNP simulation, PGNAA, Thai research reactor (TRR-1/M1), radiation shielding
Procedia PDF Downloads 3832119 WHSS: A Platform for Designing Water Harvesting Systems for Multiple Purposes
Authors: Ignacio Sanchez Cohen, Aurelio Pedroza Sandoval, Ricardo Trejo Calzada
Abstract:
Water harvesting systems (WHS) has become the unique alternative that farmers in dry areas accounts for surviving dry periods. Nevertheless, technicians, agronomists, and users, in general, have to cope with the difficulty of finding suitable technology for optimal design of WHS. In this paper, we describe a user-friendly computer program that uses readily available information for the design of multiple WHS depending upon the water final use (agriculture, household, conservation, etc). The application (APP) itself contains several links to help the user complete the input requirements. It is not a prerequisite to have any computer skills for the use of the APP. Outputs of the APP are the dimensions of the WHS named terraces, micro-catchments, cisterns, and small household cisterns for roof water catchment. The APP also provides guidance on crops for backyard agriculture. We believe that this tool may guide users to better optimize WHS for multiple purposes and to widen the possibility of copping with dry spells in arid lands.Keywords: rainfall-catchment, models, computer aid, arid lands
Procedia PDF Downloads 1772118 Ethiopia as a Tourist Destination, An Exploration of German Tourists' Market Demand
Authors: Dagnew Dessie Mengie
Abstract:
The purpose of this study was to investigate German tourists' demand for Ethiopian tourism destinations. The author has made every effort to identify the differences in the preferences of German visitors’ demand in Ethiopia comparing with Egypt, Kenya, Tanzania, and South African tourism sectors if they are invited to visit at the same time. However, the demand of international tourism for Ethiopia currently lags behind these African countries. Therefore, to offer demand-driven tourism products, the Ethiopian government, Tour & Travel operators need to understand the important factors that affect international tourists’ decision to visit Ethiopian tourist destinations. The aim of this study was intended to analyze German Tourists’ Demand towards Ethiopian destination. The researcher aimed to identify the demand for German tourists’ preference to Ethiopian tourist destinations comparing to the above-mentioned African countries. For collecting and analysing data for this study, both quantitative and qualitative methods of research are being used in this study. The most significant data are collected by using the primary data collection method i.e. survey and interviews which are the most and large number of potential responses and feedback from nine German active tourists,12 Ethiopian tourism officials, four African embassies, and four well functioning private tour companies and secondary data collected from books, journals, previous research and electronic websites. based on the data analysis of the information gathered from interviews and questionnaires, the study disclosed that majority of German tourists have not that much high demand on Ethiopian Tourist destinations due to the following reasons; Many Germans are fascinated by adventures, safari and simply want to lie on the beach and relax. These interests have leaded them to look for other African countries which have these accesses. Uncomfortable infrastructure and transport problems attributed for the decreasing the number of German tourists in the country. Inadequate marketing operation of Ethiopian Tourism Authority and its delegates in advertising and clarifying the above irregularities which are raised by the tourists.Keywords: environmental benefits of tourism, social benefits of tourism, economical benefits of tourism, political factors in tourism
Procedia PDF Downloads 372117 Differentiated Ways of Supporting Social-Emotional Wellbeing and Mental Health of Children and Youth
Authors: Jolanta Jonak
Abstract:
Emotional wellbeing is crucial for healthy development of children, youth, and adolescence. Lack of healthy emotional development and functioning can lead to many challenges in academic, social, and physical domains. Unfortunately, mental health problems are steadily increasing over the past several years and significantly intensified during and after the Covid 19 pandemic. Some experts warn that globally, we are entering a mental health crisis pandemic. Prior to the Covid 19 pandemic in 2020, a considerable number of youth aged 6-17 experienced a mental health disorder each year, with half of all mental health conditions beginning by age 14. The most common mental health disorders in children are Attention-Deficit/Hyperactivity Disorder (ADHD), behavior problems, anxiety, and depression. In U.S. schools, youth with these diagnoses tend to be classified under the umbrella of Emotional Disability. Several concerning trends have been emerging about the mental health of U.S. high school students. These trends have been steadily increasing for the past decade, particularly having increasing numbers of high school students who experienced persistent feelings of sadness or hopelessness, seriously considered attempting suicide, made a suicide plan, and attempted suicide. The number of students who felt persistently sad or hopeless increased across every racial and ethnic group. Parents, educators, and mental health providers are key stakeholders that are responsible for actively and effectively supporting struggling youth. A commonly faced challenge is that mental wellbeing is not supported as effectively as it should be. When effective prevention is paired with enhanced treatment developed on a multidisciplinary approach, mental health and emotional wellbeing in young people can be positively enhanced. Major health organizations including the Center for Disease Control and the National Institutes of Health encourage health professionals and other stakeholders to focus on addressing emotional wellbeing and mental health of young people.Keywords: social emotional wellbeing, disability, learning, prevention
Procedia PDF Downloads 372116 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure
Procedia PDF Downloads 1302115 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 902114 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application
Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui
Abstract:
Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling
Procedia PDF Downloads 2832113 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant
Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar
Abstract:
This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration
Procedia PDF Downloads 822112 Dual Ion-Crosslinking Human Keratin Based Bioink for 3D Bioprinting
Authors: Jae Seo Lee, Il Keun Kwon
Abstract:
In the last decades, keratin-based on natural extracts has considerably increased interest as a skin tissue regeneration. However, most parts of keratin had a limitation to 3D scaffolds due to low biological affinity and general low mechanical properties. To create a 3D structure, a facile bioink was designed with a photocurable crosslinking stage system using natural polymer-based human keratin. Keratin-based bioink enables the crosslinking more quickly through two types of photo and ion crosslinking for module engineering assembly. Rheological results showed that keratin-based bioink with high concentration possessed superior mechanical rigidity for 3D bioprinting. Different 3D geometrically constructs were successfully fabricated with optimal bioprinting parameters through the 3D printer with X-Y-Z controlled UV laser system. The presented study has offered a distinct advantage for 3D printing of keratin-based hydrogel into 3D complex-shaped biomimetic constructs. Thus, keratin-based bioink opens up new avenues in bioprinting to directly substitute tissue or organs.Keywords: human keratin, hydrogel, ion-crosslinking, 3D bioprinting
Procedia PDF Downloads 1242111 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics
Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca
Abstract:
The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.Keywords: adulteration, multivariate analysis, potential functions, regression
Procedia PDF Downloads 1252110 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters
Authors: Dylan Santos De Pinho, Nabil Ouerhani
Abstract:
Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization
Procedia PDF Downloads 147