Search results for: hematopoietic stem cell transplant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4291

Search results for: hematopoietic stem cell transplant

2551 A New Optimization Algorithm for Operation of a Microgrid

Authors: Sirus Mohammadi, Rohala Moghimi

Abstract:

The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).

Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)

Procedia PDF Downloads 343
2550 Sustainable Manufacturing and Performance of Ceramic Membranes

Authors: Obsi Terfasa, Bhanupriya Das, Mithilish Passawan

Abstract:

The large-scale application of microbial fuel cell (MFC) technology is significantly hindered by the high cost of the commonly used proton exchange membrane, Nafion. This has led to the recent development of ceramic membranes using various clay minerals. This study evaluates the characteristics and potential use of a new ceramic membrane made from potter’s clay © mixed with different proportions (0, 5, 10 wt%) of fly ash (FA), labeled as CFA0, CFA5, CFA10, for cost-effective and sustainable MFC use. Among these, the CFA10 membrane demonstrated superior quality with a fine pore size distribution (average 0.41 μm), which supports higher water uptake and reduced oxygen diffusion. Its oxygen mass transfer coefficient was 4.13 ± 0.13 × 10⁻⁴ cm/s, about 40% lower than the control. X-ray diffraction analysis revealed that the CFA membrane is rich in quartz, which enhances proton conductance and water retention. Electrochemical kinetics studies, including cyclic voltammetry and electrochemical impedance spectroscopy (EIS), also confirmed the effectiveness of the CFA10 membrane in MFC, showing a peak current output of 15.35 mA and low ohmic resistance (78.2 Ω). The novel CFA10 ceramic membrane, incorporating coal fly ash, a waste material, shows promise for high MFC performance at a significantly reduced cost (96%), making it suitable for sustainable scaling up of the technology.

Keywords: ceramic membrane, Coulombic efficiency, electro-chemical kinetics, fly ash, proton conductivity, microbial fuel cell

Procedia PDF Downloads 42
2549 Grid Based Traffic Vulnerability Model Using Betweenness Centrality for Urban Disaster Management Information

Authors: Okyu Kwon, Dongho Kang, Byungsik Kim, Seungkwon Jung

Abstract:

We propose a technique to measure the impact of loss of traffic function in a particular area to surrounding areas. The proposed method is applied to the city of Seoul, which is the capital of South Korea, with a population of about ten million. Based on the actual road network in Seoul, we construct an abstract road network between 1kmx1km grid cells. The link weight of the abstract road network is re-adjusted considering traffic volume measured at several survey points. On the modified abstract road network, we evaluate the traffic vulnerability by calculating a network measure of betweenness centrality (BC) for every single grid cells. This study analyzes traffic impacts caused by road dysfunction due to heavy rainfall in urban areas. We could see the change of the BC value in all other grid cells by calculating the BC value once again when the specific grid cell lost its traffic function, that is, when the node disappeared on the grid-based road network. The results show that it is appropriate to use the sum of the BC variation of other cells as the influence index of each lattice cell on traffic. This research was supported by a grant (2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS).

Keywords: vulnerability, road network, beweenness centrality, heavy rainfall, road impact

Procedia PDF Downloads 98
2548 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields

Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek

Abstract:

Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.

Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity

Procedia PDF Downloads 271
2547 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 304
2546 Microencapsulation of Probiotic and Evaluation for Viability, Antimicrobial Property and Cytotoxic Activities of its Postbiotic Metabolites on MCF-7 Breast Cancer Cell Line

Authors: Nkechi V. Enwuru, Bullum Nkeki, Elizabeth A. Adekoya, Olumide A. Adebesin, Rebecca F. Peters, Victoria A. Aikhomu, Mendie E. U.

Abstract:

Background: Probiotics are live microbial feed supplement beneficial for host. Probiotics and their postbiotic products have been used to prevent or treat various health conditions. However, the products cell viability is often low due to harsh conditions subjected during processing, handling, storage, and gastrointestinal transit. These strongly influence probiotics’ benefits; thus, viability is essential for probiotics to produce health benefits for the host. Microencapsulation is a promising technique with considerable effects on probiotic survival. The study is aimed to formulate a microencapsulated probiotic and evaluate its viability, antimicrobial efficacy, and cytotoxic activity of its postbiotic on the MCF-7 breast cancer cell line. Method: Human and animal raw milk were sampled for lactic acid bacteria. The isolated bacteria were identified using conventional and VITEK 2 systems. The identified lactic acid bacterium was encapsulated using spray-dried and extrusion methods. The free, encapsulated, and chitosan-coated encapsulated probiotics were tested for viability in simulated-gastric intestinal (SGI) fluid and different storage conditions at refrigerated (4oC) and room (25oC) temperatures. The disintegration time and weight uniformity of the spray-dried hard gelatin capsules were tested. The antimicrobial property of free and encapsulated probiotics was tested against enteric pathogenic isolates from antiretroviral therapy (ART) treated HIV-positive patients. The postbiotic of the free cells was extracted, and its cytotoxic effect on the MCF-7 breast cancer cell line was tested through an MTT assay. Result: The Lactobacillus plantarum was isolated from animal raw milk. Zero-size hard gelatin L. plantarum capsules with granules within a size range of 0.71–1.00 mm diameter was formulated. The disintegration time ranges from 2.14±0.045 to 2.91±0.293 minutes, while the average weight is 502.1mg. Simulated gastric solution significantly affected viability of both free and microcapsules. However, the encapsulated cells were more protected and viable due to impermeability in the microcapsules. Furthermore, the viability of free cells stored at 4oC and 25oC were less than 4 log CFU/g and 6 log CFU/g respectively after 12 weeks. However, the microcapsules stored at 4oC achieved the highest viability among the free and microcapsules stored at 25oC and the free cells stored at 4oC. Encapsulated cells were released in the simulated gastric fluid, viable and effective against the enteric pathogens tested. However, chitosan-coated calcium alginate encapsulated probiotics significantly inhibited Shigella flexneri, Candida albicans, and Escherichia coli. The Postbiotic Metabolites (PM) of L. plantarum produced a cytotoxic effect on the MCF-7 breast cancer cell line. The postbiotic showed significant cytotoxic activity similar to 5FU, a standard antineoplastic agent. The inhibition concentration of 50% growth (IC50) of postbiotic metabolite K3 is low and consistent with the IC50 of the positive control (Cisplatin). Conclusions: Lactobacillus plantarum postbiotic exhibited a cytotoxic effect on the MCF-7 breast cancer cell line and could be used as combined adjuvant therapy in breast cancer management. The microencapsulation technique protects the probiotics, improving their viability and delivery to the gastrointestinal tract. Chitosan enhances antibacterial efficacy; thus, chitosan-coated microencapsulated L. plantarum probiotics could be more effective and used as a combined therapy in HIV management of opportunistic enteric infection.

Keywords: probiotics, encapsulation, gastrointestinal conditions, antimicrobial effect, postbiotic, cytotoxicity effect

Procedia PDF Downloads 130
2545 A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows

Authors: Yanni Chang, Dezhi Dai, Albert Y. Tong

Abstract:

Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones.

Keywords: interpolation scheme, multiphase flows, overset meshes, PLIC-VOF method

Procedia PDF Downloads 183
2544 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation

Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi

Abstract:

Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.

Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing

Procedia PDF Downloads 364
2543 Dengue Virus Serotype-specific Inhibition of T Cell Responses Is Due to a Single Amino Acid Polymorphism in the Envelope Protein

Authors: Xiang Jinhua, Mclinden James, Chang Qing, Fosdick Micaela, Ploss Alexander, Bhattarai Nirjal, Houtman Jon, Stapleton Jack

Abstract:

Background: Clinical outcomes differ among dengue virus (DENV) serotypes though few serotype-specific differences are identified. We previously found that ZIKV and DENV-2 envelope proteins do not inhibit T cell receptor (TCR) signaling. Here, we investigated the effect of DENV-1-4 infection and env expression on T cell functions. Methods: DENV-1 though 4 were added to PBMCs or Jurkat T cells prior to TCR stimulation. Signaling was measured by IL-2 release. The effect of DENV env (1-4) expression in primary and Jurkat T cells on TCR was measured. DENV env regions required for TCR inhibition were mapped by chimera, deletions, and point mutagenesis. Results were confirmed by reverse genetics using replication competent DENV generated by CPER. Results: DENV-1-4 caused abortive infection in T cells, yet DENV-1 and -4 inhibited TCR signaling measured by IL-2 release in primary and transformed T cells while DENV-2 and -3 did not. This was not due to differences in binding, entry or RNA production. DENV-1 and -4 env expression in Jurkat or exposure in primary T cells recapitulated TCR inhibition. The Env sequences in volved were mapped and mutation of Env a.a V55 to the T present in DENV-2 and -3 abolished TCR inhibition in replicating viruses. Substituting the DENV-1 55V into DENV 2, 3 led to partial TCR inhibition; however, addition T66S into the V55T DENV-2 and -3 rescued the TCR inhibition found in DENV-1 and -4. Preliminary data suggest that the envelope substitutions may reduce replication kinetics in different mammalian or insect cells, and this is under further study. Conclusions: Epidemiological data suggest that DENV 2 and 3 are more often associated with severe dengue including hemorrhagic fever and shock. Since DENV-1 and -4 interfere with TCR, it is possible that this TCR effect blunts host immunologic responses during infection, mitigating immune-mediated pathogenic effects of DENV. Recombinant viruses demonstrate that DENV1 V55T substitution is sufficient to remove the TCR inhibitory phenotype, and that changing DENV-2, -3 aa 55 and 66 to that seen in DENV-1 mimics TCR inhibition observed in DENV-1 and -4. These findings may provide an approach to safer live-attenuated DENV vaccines.

Keywords: dengue Viruses, TCR signaling, CPER, dengue viral envelope protein

Procedia PDF Downloads 5
2542 Determination of Biomolecular Interactions Using Microscale Thermophoresis

Authors: Lynn Lehmann, Dinorah Leyva, Ana Lazic, Stefan Duhr, Philipp Baaske

Abstract:

Characterization of biomolecular interactions, such as protein-protein, protein-nucleic acid or protein-small molecule, provides critical insights into cellular processes and is essential for the development of drug diagnostics and therapeutics. Here we present a novel, label-free, and tether-free technology to analyze picomolar to millimolar affinities of biomolecular interactions by Microscale Thermophoresis (MST). The entropy of the hydration shell surrounding molecules determines thermophoretic movement. MST exploits this principle by measuring interactions using optically generated temperature gradients. MST detects changes in the size, charge and hydration shell of molecules and measures biomolecule interactions under close-to-native conditions: immobilization-free and in bioliquids of choice, including cell lysates and blood serum. Thus, MST measures interactions under close-to-native conditions, and without laborious sample purification. We demonstrate how MST determines the picomolar affinities of antibody::antigen interactions, and protein::protein interactions measured from directly from cell lysates. MST assays are highly adaptable to fit to the diverse requirements of different and complex biomolecules. NanoTemper´s unique technology is ideal for studies requiring flexibility and sensitivity at the experimental scale, making MST suitable for basic research investigations and pharmaceutical applications.

Keywords: biochemistry, biophysics, molecular interactions, quantitative techniques

Procedia PDF Downloads 530
2541 Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women

Authors: Carmela Nardelli, Laura Iaffaldano, Valentina Capobianco, Antonietta Tafuto, Maddalena Ferrigno, Angela Capone, Giuseppe Maria Maruotti, Maddalena Raia, Rosa Di Noto, Luigi Del Vecchio, Pasquale Martinelli, Lucio Pastore, Lucia Sacchetti

Abstract:

Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life.

Keywords: hA-MSCs, obesity, miRNA, biosystem

Procedia PDF Downloads 530
2540 Impact of Helicobacter pylori Infection on Colorectal Adenoma-Colorectal Carcinoma Sequence

Authors: Jannis Kountouras, Nikolaos Kapetanakis, Stergios A. Polyzos, Apostolis Papaeftymiou, Panagiotis Katsinelos, Ioannis Venizelos, Christina Nikolaidou, Christos Zavos, Iordanis Romiopoulos, Elena Tsiaousi, Evangelos Kazakos, Michael Doulberis

Abstract:

Background & Aims: Helicobacter pylori infection (Hp-I) has been recognized as a substantial risk agent involved in gastrointestinal (GI) tract oncogenesis by stimulating cancer stem cells (CSCs), oncogenes, immune surveillance processes, and triggering GI microbiota dysbiosis. We aimed to investigate the possible involvement of active Hp-I in the sequence: chronic inflammation–adenoma–colorectal cancer (CRC) development. Methods: Four pillars were investigated: (i) endoscopic and conventional histological examinations of patients with CRC, colorectal adenomas (CRA) versus controls to detect the presence of active Hp-I; (ii) immunohistochemical determination of the presence of Hp; expression of CD44, an indicator of CSCs and/or bone marrow-derived stem cells (BMDSCs); expressions of oncogene Ki67 and anti-apoptotic Bcl-2 protein; (iii) expression of CD45, indicator of immune surveillance locally (assessing mainly T and B lymphocytes locally); and (iv) correlation of the studied parameters with the presence or absence of Hp-I. Results: Among 50 patients with CRC, 25 with CRA, and 10 controls, a significantly higher presence of Hp-I in the CRA (68%) and CRC group (84%) were found compared with controls (30%). The presence of Hp-I with accompanying immunohistochemical expression of CD44 in biopsy specimens was revealed in a high proportion of patients with CRA associated with moderate/severe dysplasia (88%) and CRC patients with moderate/severe degree of malignancy (91%). Comparable results were also obtained for Ki67, Bcl-2, and CD45 immunohistochemical expressions. Concluding Remarks: Hp-I seems to be involved in the sequence: CRA – dysplasia – CRC, similarly to the upper GI tract oncogenesis, by several pathways such as the following: Beyond Hp-I associated insulin resistance, the major underlying mechanism responsible for the metabolic syndrome (MetS) that increase the risk of colorectal neoplasms, as implied by other Hp-I related MetS pathologies, such as non-alcoholic fatty liver disease and upper GI cancer, the disturbance of the normal GI microbiota (i.e., dysbiosis) and the formation of an irritative biofilm could contribute to a perpetual inflammatory upper GIT and colon mucosal damage, stimulating CSCs or recruiting BMDSCs and affecting oncogenes and immune surveillance processes. Further large-scale relative studies with a pathophysiological perspective are necessary to demonstrate in-depth this relationship.

Keywords: Helicobacter pylori, colorectal cancer, colorectal adenomas, gastrointestinal oncogenesis

Procedia PDF Downloads 149
2539 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 185
2538 Pterygium Recurrence Rate and Influencing Factors for Recurrence of Pterygium after Pterygium Surgery at an Eastern Thai University Hospital

Authors: Luksanaporn Krungkraipetch

Abstract:

Pterygium is a frequent ocular surface lesion that begins in the limbal conjunctiva within the palpebral fissure and spreads to the cornea. The lesion is more common in the nasal limbus than in the temporal, and it has a wing-like aspect. Indications for surgery, in decreasing order of significance, are growth over the corneal center, decreased vision due to corneal deformation, documented growth, sensations of discomfort, and esthetic concerns. The aim of this study is twofold: first, to determine the frequency of pterygium recurrence after surgery at the mentioned hospital, and second, to identify the factors that influence the recurrence of pterygium. The research design is a retrospective examination of 164 patient samples in an eastern Thai university hospital (Code 13766). Data analysis is descriptive statistics analysis, i.e., basic data details about pterygium surgery and the risk of recurrent pterygium, and for factor analysis, the inferential statistics chi-square and ANOVA are utilized. Twenty-four of the 164 patients who underwent surgery exhibited recurrent pterygium. Consequently, the incidence of recurrent pterygium after surgery was 14.6%. There were an equal number of men and women present. The participants' ages ranged from 41 to 60 years (62, 8 percent). According to the findings, the majority of patients were female (60.4%), over the age of 60 (51.2%), did not live near the beach (83.5%), did not have an underlying disease (92.1%), and 95.7% did not have any other eye problems. Gender (X² = 1.26, p = .289), age (X² = 5.86, p = .119), an address near the sea (X² = 3.30, p = .081)), underlying disease (X² = 0.54, p = .694), and eye disease (X² = 0.00, p = 1.00) had no effect on pterygium recurrence. Recurrences occurred in 79.1% of all surgical procedures and 11.6% of all patients using the bare sclera technique. The recurrence rate for conjunctival autografts was 20.9% for all procedures and 3.0% for all participants. Mitomycin-C and amniotic membrane transplant techniques had no recurrence following surgery. Comparing the surgeries done on people with recurrent pterygium did not show anything important (F = 1.13, p = 0.339). In conclusion, the prevalence of pterygium recurrence following pterygium, 14.6%, does not differ from earlier research. Underlying disease, other eye conditions, and surgical procedures such as pterygium recurrence are unaffected by pterygium surgery.

Keywords: pterygium, recurrence pterygium, pterygium surgery, excision pterygium

Procedia PDF Downloads 79
2537 The Molecular Mechanism of Vacuolar Function in Yeast Cell Homeostasis

Authors: Chang-Hui Shen, Paulina Konarzewska

Abstract:

Cell homeostasis is regulated by vacuolar activity and it has been shown that lipid composition of the vacuole plays an important role in vacuolar function. The major phosphoinositide species present in the vacuolar membrane include phosphatidylinositol 3,5-biphosphate (PI(3,5)P₂) which is generated from PI(3)P controlled by Fab1p. Deletion of FAB1 gene reduce the synthesis of PI(3,5)P₂ and thus result in enlarged or fragmented vacuoles, with neutral vacuolar pH due to reduced vacuolar H⁺-ATPase activity. These mutants also exhibited poor growth at high extracellular pH and in the presence of CaCl₂. Conversely, VPS34 regulates the synthesis of PI(3)P from phosphatidylinositol (PI), and the lack of Vps34p results in the reduction of vacuolar activity. Although the cellular observations are clear, it is still unknown about the molecular mechanism between the phospholipid biosynthesis pathway and vacuolar activity. Since both VPS34 and FAB1 are important in vacuolar activity, we hypothesize that the molecular mechanism of vacuolar function might be regulated by the transcriptional regulators of phospholipid biosynthesis. In this study, we study the role of the major phospholipid biosynthesis transcription factor, INO2, in the regulation of vacuolar activity. We first performed qRT-PCR to examine the effect of Ino2p on the expression of VPS34 and FAB1. Our results showed that VPS34 was upregulated in the presence of inositol for both WT and ino2Δ cells. However, FAB1 was only upregulated significantly in ino2Δ cells. This indicated that Ino2p might be the negative regulator for FAB1 expression. Next, growth sensitivity experiment showed that WT, vma3Δ, and ino2Δ grew well in growth medium buffered to pH 5.5 containing 10 mM CaCl₂. As cells were switched to growth medium buffered to pH 7 containing CaCl₂ WT, ino2Δ and opi1Δ showed growth reduction, whereas vma3Δ was completely nonviable. As the concentration of CaCl₂ was increased to 60 mM, ino2Δ cells showed moderate growth reduction compared to WT. This result suggests that ino2Δ cells have better vacuolar activity. Microscopic analysis and vacuolar acidification were employed to further elucidate the importance of INO2 in vacuolar homeostasis. Analysis of vacuolar morphology indicated that WT and vma3Δ cells displayed vacuoles that occupied a small area of the cell when grown in media buffered to pH 5.5. Whereas, ino2Δ displayed fragmented vacuoles. On the other hand, all strains grown in media buffered to pH 7, exhibited enlarged vacuoles that occupied most of the cell’s surface. This indicated that the presence of INO2 may play negative effect in vacuolar morphology when cells are grown in media buffered to pH 5.5. Furthermore, vacuolar acidification assay showed that only vma3Δ cells displayed notably less acidic vacuoles as cells were grown in media buffered to pH 5.5 and pH 7. Whereas, ino2Δ cells displayed more acidic pH compared to WT at pH7. Taken together, our results demonstrated the molecular mechanism of the vacuolar activity regulated by the phospholipid biosynthesis transcription factors Ino2p. Ino2p negatively regulates vacuolar activity through the expression of FAB1.

Keywords: vacuole, phospholipid, homeostasis, Ino2p, FAB1

Procedia PDF Downloads 131
2536 Olive-Mill Wastewater and Organo-Mineral Fertlizers Application for the Control of Parasitic Weed Phelipanche ramosa L. Pomel in Tomato

Authors: Grazia Disciglio, Francesco Lops, Annalisa Tarantino, Emanuele Tarantino

Abstract:

The parasitic weed specie Phelipanche ramosa (L) Pomel is one of the major constraints in tomato crop in Apulia region (southern Italy). The experimental was considered to investigate the effect of six organic compounds (Olive miller wastewater, Allil isothiocyanate®, Alfa plus K®, Radicon®, Rizosum Max®, Kendal Nem®) on the naturally infested field of tomato growing season in 2016. The randomized block design with 3 replicates was adopted. Tomato seedling were transplant on 19 May 2016. During the growing cycle of the tomato at 74, 81, 93 and 103 days after transplantation (DAT), the number of parasitic shoots (branched plants) that had emerged in each plot was determined. At harvesting on 13 September 2016 the major quanti-qualitative yield parameters were determined, including marketable yield, mean weight, dry matter, soluble solids, fruit colour, pH and titratable acidity. The treatments provided the results show that none of treatments provided complete control against P. ramosa. However, among the products tested Olive miller wastewater, Alfa plus K®, Rizosum Max® and Kendal Nem® products applied to the soil show the number of emerged shoots significantly lower than Radicon® and especially than the Allil isothiocyanate® treatment and the untreated control. Regarding the effect of different treatments on the tomato productive parameters, the marketable yield resulted significantly higher in the same mentioned treatments which gave the lower P. ramosa infestation. No significative differences for the other fruit characteristics were observed.

Keywords: processing tomato crop, Phelipanche ramosa, olive-mill wastewater, organic fertilizers

Procedia PDF Downloads 327
2535 Imaging Features of Hepatobiliary Histiocytosis

Authors: Ayda Youssef, Tarek Rafaat, Iman zaky

Abstract:

Purpose: Langerhans’ cell histiocytosis (LCH) is not uncommon pathology that implies aberrant proliferation of a specific dendritic (Langerhans) cell. These atypical but mature cells of monoclonal origin can infiltrate many sites of the body and may occur as localized lesions or as widespread systemic disease. Liver is one of the uncommon sites of affection. The twofold objective of this study is to illustrate the radiological presentation of this disease, and to compare these results with previously reported series. Methods and Materials: Between 2007 and 2012, 150 patients with biopsy-proven LCH were treated in our hospital, a paediatric cancer tertiary care center. A retrospective review of radiographic images and reports was performed. There were 33 patients with liver affection are stratified. All patients underwent imaging studies, mostly US and CT. A chart review was performed to obtain demographic, clinical and radiological data. They were analyzed and compared to other published series. Results: Retrospective assessment of 150 patients with LCH was performed, among them 33 patients were identified who had liver involvement. All these patients developed multisystemic disease; They were 12 females and 21 males with (n= 32), seven of them had marked hepatomegaly. Diffuse hypodense liver parenchyma was encountered in five cases, the periportal location has a certain predilection in cases of focal affection where three cases has a hypodense periportal soft tissue sheets, one of them associated with dilated biliary radicals, only one case has multiple focal lesions unrelated to portal tracts. On follow up of the patients, two cases show abnormal morphology of liver with bossy outline. Conclusion: LCH is a not infrequent disease. A high-index suspicion should be raised in the context of diagnosis of liver affection. A biopsy is recommended in the presence of radiological suspicion. Chemotherapy is the preferred therapeutic modality. Liver histiocytosis are not disease specific features but should be interpreted in conjunction with the clinical history and the results of biopsy. Clinical Relevance/Application: Radiologist should be aware of different patterns of hepatobiliary histiocytosis, Thus early diagnosis and proper management of patient can be conducted.

Keywords: langerhans’ cell histiocytosis, liver, medical and health sciences, radiology

Procedia PDF Downloads 285
2534 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment

Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang

Abstract:

Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.

Keywords: cancer, extracellular matrix, hydrogel, microfluidic

Procedia PDF Downloads 94
2533 Effect of Salinity on Carbon Isotope Discrimination in Chamomile

Authors: Mehdi Ghanavati

Abstract:

The Effects of salinity level and duration on carbon isotope discrimination (Δ) of Matricaria chamomilla and Matricaria aurea were evaluated. Four ecotypes of M. chamomilla and four ecotypes of M. aurea were grown at different NaCl concentrations (control, 6, 12 and 18 dS/m) in sand culture condition. Carbon isotope discrimination (Δ) varied significantly (p<0.001) among ecotypes. The amount of carbon isotope discrimination (Δ) increased in first salinity level (6 dS/m), but in other levels (12 and 18 dS/m) it did not increase. Stages of salinity treatments (two stages: first from seedling stage until the end of the experiment and second stage of stress exertion began at stem elongation and seedlings emergence from rosette stage to harvest) had not a significant difference. Study of two spices of chamomile showed the M. aurea had a higher amount of carbon isotope discrimination (Δ) (22.9%) than M. chamomilla (22.48%).

Keywords: salinity, carbon isotope discrimination, Matricaria chamomilla, Matricaria aurea

Procedia PDF Downloads 445
2532 Cell-free Bioconversion of n-Octane to n-Octanol via a Heterogeneous and Bio-Catalytic Approach

Authors: Shanna Swart, Caryn Fenner, Athanasios Kotsiopoulos, Susan Harrison

Abstract:

Linear alkanes are produced as by-products from the increasing use of gas-to-liquid fuel technologies for synthetic fuel production and offer great potential for value addition. Their current use as low-value fuels and solvents do not maximize this potential. Therefore, attention has been drawn towards direct activation of these aliphatic alkanes to more useful products such as alcohols, aldehydes, carboxylic acids and derivatives. Cytochrome P450 monooxygenases (P450s) can be used for activation of these aliphatic alkanes using whole-cells or cell-free systems. Some limitations of whole-cell systems include reduced mass transfer, stability and possible side reactions. Since the P450 systems are little studied as cell-free systems, they form the focus of this study. Challenges of a cell-free system include co-factor regeneration, substrate availability and enzyme stability. Enzyme immobilization offers a positive outlook on this dilemma, as it may enhance stability of the enzyme. In the present study, 2 different P450s (CYP153A6 and CYP102A1) as well as the relevant accessory enzymes required for electron transfer (ferredoxin and ferredoxin reductase) and co-factor regeneration (glucose dehydrogenase) have been expressed in E. coli and purified by metal affinity chromatography. Glucose dehydrogenase (GDH), was used as a model enzyme to assess the potential of various enzyme immobilization strategies including; surface attachment on MagReSyn® microspheres with various functionalities and on electrospun nanofibers, using self-assembly based methods forming Cross Linked Enzymes (CLE), Cross Linked Enzyme Aggregates (CLEAs) and spherezymes as well as in a sol gel. The nanofibers were synthesized by electrospinning, which required the building of an electrospinning machine. The nanofiber morphology has been analyzed by SEM and binding will be further verified by FT-IR. Covalent attachment based methods showed limitations where only ferredoxin reductase and GDH retained activity after immobilization which were largely attributed to insufficient electron transfer and inactivation caused by the crosslinkers (60% and 90% relative activity loss for the free enzyme when using 0.5% glutaraldehyde and glutaraldehyde/ethylenediamine (1:1 v/v), respectively). So far, initial experiments with GDH have shown the most potential when immobilized via their His-tag onto the surface of MagReSyn® microspheres functionalized with Ni-NTA. It was found that Crude GDH could be simultaneously purified and immobilized with sufficient activity retention. Immobilized pure and crude GDH could be recycled 9 and 10 times, respectively, with approximately 10% activity remaining. The immobilized GDH was also more stable than the free enzyme after storage for 14 days at 4˚C. This immobilization strategy will also be applied to the P450s and optimized with regards to enzyme loading and immobilization time, as well as characterized and compared with the free enzymes. It is anticipated that the proposed immobilization set-up will offer enhanced enzyme stability (as well as reusability and easy recovery), minimal mass transfer limitation, with continuous co-factor regeneration and minimal enzyme leaching. All of which provide a positive outlook on this robust multi-enzyme system for efficient activation of linear alkanes as well as the potential for immobilization of various multiple enzymes, including multimeric enzymes for different bio-catalytic applications beyond alkane activation.

Keywords: alkane activation, cytochrome P450 monooxygenase, enzyme catalysis, enzyme immobilization

Procedia PDF Downloads 231
2531 Cocoa Stimulates the Production Bioactive Components of Lactobacillus Casei and Competitively Excludes Foodborne Pathogens

Authors: Mengfei Peng, Serajus Salaheen, Debabrata Biswas

Abstract:

Lactobacillus casei found in the human intestine and mouth is commonly applied for dairy production. Recently, it was found that some byproducts produced by Lactobacillus exhibited antimicrobial activities against multiple bacteria. Meanwhile, introduction of prebiotic-like foods (e.g. cocoa) or probiotics or both of them as food supplements in human diets as well as in farm animal feeds is believed to be an effective ways in control/reduce the colonization of foodborne bacterial pathogens infection in the gut environment. We hypothesized that cocoa may stimulate the production antimicrobial components of Lactobacillus casei and may potentially inhibit/reduce the colonization and infection of foodborne bacterial pathogens in the gut. Mixed culture of L. casei (LC) with enterohemorrhagic E. coli EDL933 (EHEC), Salmonella Typhimurium LT2 (ST), or Listeria monocytogenes LM2 (LM) showed that LC could competitively exclude (100%) them within 72 h. Further, investigation of cell-free culture supernatant (CFCS) revealed that the antimicrobial effects of LC came from CFCS. CFCS of LC eliminated (100%) EHEC, ST, and LM within 72 h, and 2 h CFCS treatment increased the hydrophobicity of EHEC (5.10 folds), ST (8.48 folds), and LM (2.03 folds). In addition, LC cells exhibited more inhibitive effects than CFCS on cell adhesive and invasive activities of EHEC (52.14% & 90.45%), ST (66.89% & 93.83%), and LM (61.10% & 83.40%). Two clusters of poly-peptides in CFCS were identified by SDS-PAGE, the molecular weights of which are ≈5 KD and 40-45 KD. LC CFCS with overnight growth in the presence of 3% strengthened all of the antimicrobial activities (growth inhibition, outer membrane disruption, and cell infective ability reduction). Liquid chromatography/Mass spectrometry analysis detected 5 unique components in class of flavonoids in LC CFCS with overnight 3% cocoa supplement. Furthermore, qPCR results showed that CFCSs up-regulated the expression level of genes responsible for flagellin synthesis and motility, but down-regulated genes for specific binding and invasion-associated proteins synthesis. The stimulatory effects of cocoa in producing bioactive components of probiotics may aid prevention of foodborne illness caused by major foodborne enteric bacterial pathogens.

Keywords: foodborne pathogens, probiotics, prebiotics, pathogen exclusion

Procedia PDF Downloads 440
2530 Photo-Electrochemical/Electro-Fenton Coupling Oxidation System with Fe/Co-Based Anode and Cathode Metal-Organic Frameworks Derivative Materials for Sulfamethoxazole Treatment

Authors: Xin Chen, Xinyong Li, Qidong Zhao, Dong Wang

Abstract:

A new coupling system was constructed by combining photo-electrochemical cell with electro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photoinduced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.

Keywords: electro-fenton, photo-electrochemical, synergic effect, sulfamethoxazole

Procedia PDF Downloads 182
2529 Pentosan Polysulfate Sodium: A Potential Treatment to Improve Bone and Joint Manifestations of Mucopolysaccharidosis I

Authors: Drago Bratkovic, Curtis Gravance, David Ketteridge, Ravi Krishnan, Michael Imperiale

Abstract:

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases that have a common defect in the catabolism of glycosaminoglycans (GAGs). MPS I is the most common of the MPS diseases. Manifestations of MPS I include coarsening of facial features, corneal clouding, developmental delay, short stature, skeletal manifestations, hearing loss, cardiac valve disease, hepatosplenomegaly, and umbilical and inguinal hernias. Treatments for MPS I restore or activate the missing or deficient enzyme in the case of enzyme replacement therapy (ERT) and haematopoietic stem cell transplantation (HSCT). Pentosan polysulfate sodium (PPS) is a potential treatment to improve bone and joint manifestations of MPS I. The mechanisms of action of PPS that are relevant to the treatment of MPS I are the ability to: (i) Reduce systemic and accumulated GAG, (ii) Reduce inflammatory effects via the inhibition of NF-kB, resulting in the reduction in pro-inflammatory mediators. (iii) Reduce the expression of the pain mediator nerve growth factor in osteocytes from degenerating joints. (iv) Inhibit the cartilage degrading enzymes related to joint dysfunction in MPS I. PPS is being evaluated as an adjunctive therapy to ERT and/or HSCT in an open-label, single-centre, phase 2 study. Patients are ≥ 5 years of age with a diagnosis of MPS I and previously received HSCT and/or ERT. Three white, female, patients with MPS I-Hurler, ages 14, 15, and 19 years, and one, white male patient aged 15 years are enrolled. All were diagnosed at ≤2 years of age. All patients received HSCT ≤ 6 months after diagnosis. Two of the patients were treated with ERT prior to HSCT, and 1 patient received ERT commencing 3 months prior to HSCT. Two patients received 0.75mg/kg and 2 patients received 1.5mg/kg of PPS. PPS was well tolerated at doses of 0.75 and 1.5 mg/kg to 47 weeks of continuous dosing. Of the 19 adverse events (AEs), 2 were related to PPS. One AE was moderate (pre-syncope) and 1 was mild (injection site bruising), experienced in the same patient. All AEs were reported as mild or moderate. There have been no SAEs. One subject experienced a COVID-19 infection and PPS was interrupted. The MPS I signature GAG fragments, sulfated disaccharide and UA-HNAc S, tended to decrease in 3 patients from baseline through Week 25. Week 25 GAG data are pending for the 4th patient. Overall, most biomarkers (inflammatory, cartilage degeneration, and bone turnover) evaluated in the 3 patients with 25-week assessments have indicated either no change or a reduction in levels compared to baseline. In 3 patients, there was a trend toward improvement in the 2MWT from baseline to Week 48 with > 100% increase in 1 patient (01-201). In the 3 patients that had Week 48 assessments, patients and proxies reported improvement in PGIC, including “worthwhile difference” (n=1), or “made all the difference” (n=2).

Keywords: MPS I, pentosan polysulfate sodium, clinical study, 2MWT, QoL

Procedia PDF Downloads 116
2528 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 133
2527 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study

Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey

Abstract:

Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.

Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose

Procedia PDF Downloads 67
2526 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells

Authors: Hawon Lee, Young-Pil Kim

Abstract:

Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.

Keywords: collagen, ECM, FRET, MMP

Procedia PDF Downloads 204
2525 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology

Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).

Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts

Procedia PDF Downloads 327
2524 The Glycitin and 38 Combination Inhibit the UV-Induced Wrinkle Fomation in Human Primary Fibroblast

Authors: Manh Tin Ho, Phorl Sophors, Ga Young Seo, Young Mee Kim, Youngho Lim, Moonjae Cho

Abstract:

UV radiation in sunlight is one of the most potential factor induced skin ageing and photocarcinogenesis. UV may induce the melanin production and wrinkle formation. Recently, the natural secondary compounds have been reported that had the beneficial protective effects from UV light. In this study, we investigated the effects of two different compounds, glycitin and 38, on human dermal fibroblast. We first only treated the 38 on melanocyte cell to test the proliferation inhibition of 38 on this cell line. Then, we induced the combination of glycitin and 38 on human dermal fibroblast in 48h and investigate the proliferation, collagen production and the metalloproteinase family expression. The 38 alone could inhibit the proliferation of melanocyte which indicated the reduction of melanin production. The combination of glycitin and 38 truly increased the fibroblast proliferation and even they could recover the UV-induced and H2O2-induced damaged fibroblast proliferation. The co-treatment also promoted the collagen IV expression significantly and accelerated the total collagen secretion. In addition, metalloproteinase (MMPs) family such as MMP1, MMP2, MMP7 was down-regulated in transcriptional level. In conclusion, the combination of glycitin and 38 has induced the fibroblast proliferation even when it was damaged by UV exposure and H2O2, whereas augmented collagen production and inhibited the MMPs caused the wrinkle formation and decreased the melanocyte proliferation, suggested an potential UV-protective therapy.

Keywords: UV radiation, wrinkle, ageing, glycitin, dermal fibroblast

Procedia PDF Downloads 239
2523 Factors Associated to Down Syndrome Causes in Patients of Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran in 2014─2015

Authors: Bremmy Laksono, Nurul Qomarilla, Riksa Parikrama, Dyan K. Nugrahaeni, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani

Abstract:

Down syndrome is a chromosomal abnormality of chromosome 21 which can appear in man or woman. Maternal age and paternal age, history of radiation are the common risk factors. This study was conducted to observe risk factors which related as causes of Down syndrome. In this case control study using purposive sampling technique, 84 respondents were chosen from Cell Culture and Cytogenetics Laboratory patients in Faculty of Medicine, Universitas Padjadjaran, Indonesia. They were used as study samples and divided into 42 Down syndrome cases and 42 control respondents. This study used univariate and bivariate analysis (chi-square). Samples population were West Java residents, the biggest province in Indonesia in number of population. The results showed maternal age, paternal age, history of radiation exposure and family history were not significantly related to Down syndrome baby. Moreover, all of those factors also did not contribute to the risk of having a child with Down syndrome in patients at Cell Culture and Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran. Therefore, we should investigate other risk factors of Down syndrome in West Java population.

Keywords: down syndrome, family history, maternal age, paternal age, risk factor

Procedia PDF Downloads 408
2522 A Cross-Sectional Study on the Nutritional Status of School Going Children From Urban and Rural Populations of Pakistan

Authors: Aftab Ahmed, Farhan Saeed, Muhammad Afzaal, Shinawar Waseem Ali, Ali Imran, Sadaf Munir

Abstract:

Malnutrition is a globally increasing public health concern among children; it affects number of school children influencing their growth, development and academic performance. The tenet of the current cross sectional study was to assess the nutritional biomarkers of school going children of age 12-15 years resulting in stunting, underweight, overweight, bone deformities and other health disparities in nutritionally deprived urban and rural populations of Pakistan. A sample size comprising of 180 school going children was stipulated from the targeted urban and rural populations. The fallouts of investigation unveiled that both rural and urban populations were experiencing nutritional challenges however; on account of awareness paucity the rustic population was nutritionally more compromised. Hematological tests elucidated 16.7% and 7.8% cases for high glucose level, 35.6% and 27.8% cases for low hemoglobin levels, 14.4% and 15.6% cases for low calcium indices, 12.2% and 4.4% high white blood cell count (WBC), 20% and 14.4% low red blood cell count, 76.7% and 74.4% low hematocrit (HCT) values, among the rural and urban populations respectively. The above mentioned outcomes can serve as a way forward for policy and law maker institutions to curb the possible barricades in the way of healthy nutritional status in these areas

Keywords: malnutrition, hematological study, child nutrition, bone mineral density, calcium, RBC

Procedia PDF Downloads 92