Search results for: computer processing of large databases
11005 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria
Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan
Abstract:
Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM
Procedia PDF Downloads 13811004 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan
Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali
Abstract:
In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid
Procedia PDF Downloads 48211003 Performance Evaluation of Fingerprint, Auto-Pin and Password-Based Security Systems in Cloud Computing Environment
Authors: Emmanuel Ogala
Abstract:
Cloud computing has been envisioned as the next-generation architecture of Information Technology (IT) enterprise. In contrast to traditional solutions where IT services are under physical, logical and personnel controls, cloud computing moves the application software and databases to the large data centres, where the management of the data and services may not be fully trustworthy. This is due to the fact that the systems are opened to the whole world and as people tries to have access into the system, many people also are there trying day-in day-out on having unauthorized access into the system. This research contributes to the improvement of cloud computing security for better operation. The work is motivated by two problems: first, the observed easy access to cloud computing resources and complexity of attacks to vital cloud computing data system NIC requires that dynamic security mechanism evolves to stay capable of preventing illegitimate access. Second; lack of good methodology for performance test and evaluation of biometric security algorithms for securing records in cloud computing environment. The aim of this research was to evaluate the performance of an integrated security system (ISS) for securing exams records in cloud computing environment. In this research, we designed and implemented an ISS consisting of three security mechanisms of biometric (fingerprint), auto-PIN and password into one stream of access control and used for securing examination records in Kogi State University, Anyigba. Conclusively, the system we built has been able to overcome guessing abilities of hackers who guesses people password or pin. We are certain about this because the added security system (fingerprint) needs the presence of the user of the software before a login access can be granted. This is based on the placement of his finger on the fingerprint biometrics scanner for capturing and verification purpose for user’s authenticity confirmation. The study adopted the conceptual of quantitative design. Object oriented and design methodology was adopted. In the analysis and design, PHP, HTML5, CSS, Visual Studio Java Script, and web 2.0 technologies were used to implement the model of ISS for cloud computing environment. Note; PHP, HTML5, CSS were used in conjunction with visual Studio front end engine design tools and MySQL + Access 7.0 were used for the backend engine and Java Script was used for object arrangement and also validation of user input for security check. Finally, the performance of the developed framework was evaluated by comparing with two other existing security systems (Auto-PIN and password) within the school and the results showed that the developed approach (fingerprint) allows overcoming the two main weaknesses of the existing systems and will work perfectly well if fully implemented.Keywords: performance evaluation, fingerprint, auto-pin, password-based, security systems, cloud computing environment
Procedia PDF Downloads 14011002 Analysis of the Content of Sugars, Vitamin C, Preservatives, Synthetic Dyes, Sweeteners, Sodium and Potassium and Microbiological Purity in Selected Products Made From Fruit and Vegetables in Small Regional Factories and in Large Food Corporations
Authors: Katarzyna Miśkiewicz, Magdalena Lasoń-Rydel, Małgorzata Krępska, Katarzyna Sieczyńska, Iwona Masłowska-Lipowicz, Katarzyna Ławińska
Abstract:
The aim of the study was to analyse a selection of 12 pasteurised products made from fruit and vegetables, such as fruit juices, fruit drinks, jams, marmalades and jam produced by small regional factories as well as large food corporations. The research was carried out as part of the project "Innovative system of healthy and regional food distribution", funded by the Ministry of Education and Science (Poland), which aims to create an economically and organisationally strong agri-food industry in Poland through effective cooperation between scientific and socio-economic actors. The main activities of the project include support for the creation of new distribution channels for regional food products and their easy access to a wide group of potential customers while maintaining the highest quality standards. One of the key areas of the project is food quality analyses conducted to indicate the competitive advantage of regional products. Presented here are studies on the content of sugars, vitamin C, preservatives, synthetic colours, sweeteners, sodium and potassium, as well as studies on the microbiological purity of selected products made from fruit and vegetables. The composition of products made from fruit and vegetables varies greatly and depends on both the type of raw material and the way it is processed. Of the samples tested, fruit drinks contained the least amount of sugars, and jam and marmalade made by large producers and bought in large chain stores contained the most. However, the low sugar content of some fruit drinks is due to the presence of the sweetener sucralose in their composition. The vitamin C content of the samples varied, being higher in products where it was added during production. All products made in small local factories were free of food additives such as preservatives, sweeteners and synthetic colours, indicating their superiority over products made by large producers. Products made in small local factories were characterised by a relatively high potassium content. The microbiological purity of commercial products was confirmed - no Salmonella spp. were detected, and the number of mesophilic bacteria, moulds, yeasts, and β-glucuronidase-positive E. coli was below the limit of quantification.Keywords: fruit and vegetable products, sugars, food additives, HPLC, ICP-OES
Procedia PDF Downloads 9411001 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults
Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter
Abstract:
Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization
Procedia PDF Downloads 14411000 Metamorphic Computer Virus Classification Using Hidden Markov Model
Authors: Babak Bashari Rad
Abstract:
A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model
Procedia PDF Downloads 31510999 Analysis of Impact of Airplane Wheels Pre-Rotating on Landing Gears of Large Airplane
Authors: Huang Bingling, Jia Yuhong, Liu Yanhui
Abstract:
As an important part of aircraft, landing gears are responsible for taking-off and landing function. In recent years, big airplane's structural quality increases a lot. As a result, landing gears have stricter technical requirements than ever before such as structure strength and etc. If the structural strength of the landing gear is enhanced through traditional methods like increasing structural quality, the negative impacts on the landing gear's function would be very serious and even counteract the positive effects. Thus, in order to solve this problem, the impact of pre-rotating of landing gears on performance of landing gears is studied from the theoretical and experimental verification in this paper. By increasing the pre-rotating speed of the wheel, it can improve the performance of the landing gear and reduce the structural quality, the force of joint parts and other properties. In addition, the pre-rotating of the wheels also has other advantages, such as reduce the friction between wheels and ground and extend the life of the wheel. In this paper, the impact of the pre-rotating speed on landing gears and the connecting between landing gears performance and pre-rotating speed would be researched in detail. This paper is divided into three parts. In the first part, large airplane landing gear model is built by CATIA and LMS. As most general landing gear type in big plane, four-wheel landing gear is picked as model. The second part is to simulate the process of landing in LMS motion, and study the impact of pre-rotating of wheels on the aircraft`s properties, including the buffer stroke, efficiency, power; friction, displacement and relative speed between piston and sleeve; force and load distribution of tires. The simulation results show that the characteristics of the different pre-rotation speed are understood. The third part is conclusion. Through the data of the previous simulation and the relationship between the pre-rotation speed of the aircraft wheels and the performance of the aircraft, recommended speed interval is proposed. This paper is of great theoretical value to improve the performance of large airplane. It is a very effective method to improve the performance of aircraft by setting wheel pre-rotating speed. Do not need to increase the structural quality too much, eliminating the negative effects of traditional methods.Keywords: large airplane, landing gear, pre-rotating, simulation
Procedia PDF Downloads 34110998 Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors
Authors: Ji-Seok Hong, Hee-Jang Moon, Hong-Gye Sung
Abstract:
The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque.Keywords: large eddy simulation, proper orthogonal decomposition, SRM instability, flow-acoustic coupling
Procedia PDF Downloads 56610997 Algorithms used in Spatial Data Mining GIS
Authors: Vahid Bairami Rad
Abstract:
Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining
Procedia PDF Downloads 46010996 Development of Methods for Plastic Injection Mold Weight Reduction
Authors: Bita Mohajernia, R. J. Urbanic
Abstract:
Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction
Procedia PDF Downloads 29010995 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection
Authors: Maryam Heidari, James H. Jones Jr.
Abstract:
Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.Keywords: bot detection, natural language processing, neural network, social media
Procedia PDF Downloads 11610994 Physical Activity and Cognitive Functioning Relationship in Children
Authors: Comfort Mokgothu
Abstract:
This study investigated the relation between processing information and fitness level of active (fit) and sedentary (unfit) children drawn from rural and urban areas in Botswana. It was hypothesized that fit children would display faster simple reaction time (SRT), choice reaction times (CRT) and movement times (SMT). 60, third grade children (7.0 – 9.0 years) were initially selected and based upon fitness testing, 45 participated in the study (15 each of fit urban, unfit urban, fit rural). All children completed anthropometric measures, skinfold testing and submaximal cycle ergometer testing. The cognitive testing included SRT, CRT, SMT and Choice Movement Time (CMT) and memory sequence length. Results indicated that the rural fit group exhibited faster SMT than the urban fit and unfit groups. For CRT, both fit groups were faster than the unfit group. Collectively, the study shows that the relationship that exists between physical fitness and cognitive function amongst the elderly can tentatively be extended to the pediatric population. Physical fitness could be a factor in the speed at which we process information, including decision making, even in children.Keywords: decision making, fitness, information processing, reaction time, cognition movement time
Procedia PDF Downloads 14510993 Sustainable Development Goals: The Effect of a Board Structure on the Sustainability Performance
Authors: V. Naciti, L. Pulejo, F. Cesaroni
Abstract:
This study empirically analyzes whether the composition of the board of directors (BoD) enhances sustainability performance, in order to understand how the BoD contribute to the integration of Sustainable Development Goals (SDGs) in their businesses. Hypotheses are developed based on the agency theory and stakeholder theory. Using a system generalized method of the moment (SGMM) two-step estimator, with data from Sustainalytics and Compustat databases for 362 firms in six regions, we find that firms with more diversity on the board and a separation of chair and CEO roles have higher sustainability performance. Moreover, our findings provide that a higher number of independent directors is negatively associated with sustainability performance. This study contributes to the literature on corporate governance and the firm’s performance by demonstrating that the composition of the board of directors contributes to a better sustainability performance: by the implementation of a particular corporate governance mechanism, it is possible to integrate SDGs in the corporate strategy.Keywords: sustainable development goals, corporate governance, board of directors, sustainability performance
Procedia PDF Downloads 18010992 The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach
Authors: Mao Zhaofang, Xu Yida, Fang Kan, Fu Enyuan, Zhao Zhao
Abstract:
Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies.Keywords: city logistics, last-mile delivery, location-routing, adaptive large neighborhood search
Procedia PDF Downloads 7810991 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure
Authors: T. Nozu, K. Hibi, T. Nishiie
Abstract:
This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure
Procedia PDF Downloads 24410990 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines
Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka
Abstract:
To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps
Procedia PDF Downloads 15110989 Neurosciences in Entrepreneurship: The Multitasking Case in Favor of Social Entrepreneurship Innovation
Authors: Berger Aida
Abstract:
Social entrepreneurship has emerged as an active area of practice and research within the last three decades and has called for a focus on Social Entrepreneurship innovation. Areas such as academics, practitioners , institutions or governments have placed Social Entrepreneurship on the priority list of reflexion and action. It has been accepted that Social entrepreneurship (SE) shares large similarities with its parent, Traditional Entrepreneurship (TE). SE has grown over the past ten years exploring entrepreneurial cognition and the analysis of the ways of thinking of entrepreneurs. The research community believes that value exists in grounding entrepreneurship in neuroscience and notes that SE, like Traditional Entrepreneurship, needs to undergo efforts in clarification, definition and differentiation. Moreover, gaps in SE research call for integrative multistage and multilevel framework for further research. The cognitive processes underpinning entrepreneurial action are similar for SE and TE even if Social Entrepreneurship orientation shows an increased empathy value. Theoretically, there is a need to develop sound models of how to process functions and how to work more effectively as entrepreneurs and research on efficiency improvement calls for the analysis of the most common practices in entrepreneurship. Multitasking has been recognized as a daily and unavoidable habit of entrepreneurs. Hence, we believe in the need of analyzing the multiple task phenomena as a methodology for skill acquisition. We will conduct our paper including Social Entrepreneurship within the wider spectrum of Traditional Entrepreneurship, for the purpose of simplifying the neuroscientific lecture of the entrepreneurial cognition. A question to be inquired is to know if there is a way of developing multitasking habits in order to improve entrepreneurial skills such as speed of information processing , creativity and adaptability . Nevertheless, the direct link between the neuroscientific approach to multitasking and entrepreneurship effectiveness is yet to be uncovered. That is why an extensive Literature Review on Multitasking is a propos.Keywords: cognitive, entrepreneurial, empathy, multitasking
Procedia PDF Downloads 17210988 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study
Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes
Abstract:
The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.Keywords: coal ash, mine tailings, paste blends, surface disposal
Procedia PDF Downloads 29210987 Impact of Mucormycosis Infection In Limb Salvage for Trauma Patients
Authors: Katie-Beth Webster
Abstract:
Mucormycosis is a rare opportunistic fungal infection that, if left untreated, can cause large scale tissue necrosis and death. There are a number of cases of this in the literature, most commonly in the head and neck region arising from sinuses. It is also usually found in immunocompromised patient subgroups. This study reviewed a number of cases of mucormycosis in previously fit and healthy young trauma patients to assess predisposing factors for infection and adequacy of current treatment paradigms. These trauma patients likely contracted the fungal infection from the soil at the site of the incident. Despite early washout and debridement of the wounds at the scene of the injury and on arrival in hospital, both these patients contracted mucormycosis. It was suspected that inadequate early debridement of soil contaminated limbs was one of the major factors that can lead to catastrophic tissue necrosis. In both cases, this resulted in the patients having a higher level of amputation than would have initially been required based on the level of their injury. This was secondary to cutaneous and soft tissue necrosis secondary to the fungal infiltration leading to osteomyelitis and systemic sepsis. In the literature, it appears diagnosis is often protracted in this condition secondary to inadequate early treatment and long processing times for fungal cultures. If fungal cultures were sent at the time of first assessment and adequate debridements are performed aggressively early, it could lead to these critically unwell trauma patients receiving appropriate antifungal and surgical treatment earlier in their episode of care. This is likely to improve long term outcomes for these patients.Keywords: mucormycosis, plastic surgery, osteomyelitis, trauma
Procedia PDF Downloads 20810986 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test
Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata
Abstract:
The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place duringKeywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test
Procedia PDF Downloads 14710985 In-Situ Determination of Radioactivity Levels and Radiological Hazards in and around the Gold Mine Tailings of the West Rand Area, South Africa
Authors: Paballo M. Moshupya, Tamiru A. Abiye, Ian Korir
Abstract:
Mining and processing of naturally occurring radioactive materials could result in elevated levels of natural radionuclides in the environment. The aim of this study was to evaluate the radioactivity levels on a large scale in the West Rand District in South Africa, which is dominated by abandoned gold mine tailings and the consequential radiological exposures to members of the public. The activity concentrations of ²³⁸U, ²³²Th and 40K in mine tailings, soil and rocks were assessed using the BGO Super-Spec (RS-230) gamma spectrometer. The measured activity concentrations for ²³⁸U, ²³²Th and 40K in the studied mine tailings were found to range from 209.95 to 2578.68 Bq/kg, 19.49 to 108.00 Bq/kg and 31.30 to 626.00 Bq/kg, respectively. In surface soils, the overall average activity concentrations were found to be 59.15 Bq/kg, 34.91 and 245.64 Bq/kg for 238U, ²³²Th and 40K, respectively. For the rock samples analyzed, the mean activity concentrations were 32.97 Bq/kg, 32.26 Bq/kg and 351.52 Bg/kg for ²³⁸U, ²³²Th and 40K, respectively. High radioactivity levels were found in mine tailings, with ²³⁸U contributing significantly to the overall activity concentration. The external gamma radiation received from surface soil in the area is generally low, with an average of 0.07 mSv/y. The highest annual effective doses were estimated from the tailings dams and the levels varied between 0.14 mSv/y and 1.09 mSv/y, with an average of 0.51 mSv/y. In certain locations, the recommended dose constraint of 0.25 mSv/y from a single source to the average member of the public within the exposed population was exceeded, indicating the need for further monitoring and regulatory control measures specific to these areas to ensure the protection of resident members of the public.Keywords: activity concentration, gold mine tailings, in-situ gamma spectrometry, radiological exposures
Procedia PDF Downloads 12610984 Earth Tremors in Nigeria: A Precursor to Major Disaster?
Authors: Oluseyi Adunola Bamisaiye
Abstract:
The frequency of occurrence of earth tremor in Nigeria has increased tremendously in recent years. Slow earthquakes/ tremor have preceded some large earthquakes in some other regions of the world and the Nigerian case may not be an exception. Timely and careful investigation of these tremors may reveal their relation to large earthquakes and provides important clues to constrain the slip rates on tectonic faults. Thus making it imperative to keep under watch and also study carefully the tectonically active terrains within the country, in order to adequately forecast, prescribe mitigation measures and in order to avoid a major disaster. This report provides new evidence of a slow slip transient in a strongly locked seismogenic zone of the Okemesi fold belt. The aim of this research is to investigate the different methods of earth tremor monitoring using fault slip analysis and mapping of Okemesi hills, which has been the most recent epicenter to most of the recent tremors.Keywords: earth tremor, fault slip, intraplate activities, plate tectonics
Procedia PDF Downloads 15410983 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements
Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating
Abstract:
Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly
Procedia PDF Downloads 23310982 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone
Procedia PDF Downloads 40310981 Real-Time Neuroimaging for Rehabilitation of Stroke Patients
Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge
Abstract:
Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation
Procedia PDF Downloads 38710980 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN
Procedia PDF Downloads 12810979 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061
Authors: M. Ghosh, A. Miroux, L. A. I. Kestens
Abstract:
At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.Keywords: AA 6061, deformation, temperature, tensile, PSC, texture
Procedia PDF Downloads 48410978 Exploring the Landscape of Information Visualization through a Mark Lombardi Lens
Authors: Alon Friedman, Antonio Sanchez Chinchon
Abstract:
This bibliometric study takes an artistic and storytelling approach to explore the term ”information visualization.” Analyzing over 1008 titles collected from databases that specialize in data visualization research, we examine the titles of these publications to report on the characteristics and development trends in the field. Employing a qualitative methodology, we delve into the titles of these publications, extracting leading terms and exploring the cooccurrence of these terms to gain deeper insights. By systematically analyzing the leading terms and their relationships within the titles, we shed light on the prevailing themes that shape the landscape of ”information visualization” by employing the artist Mark Lombardi’s techniques to visualize our findings. By doing so, this study provides valuable insights into bibliometrics visualization while also opening new avenues for leveraging art and storytelling to enhance data representation.Keywords: bibliometrics analysis, Mark Lombardi design, information visualization, qualitative methodology
Procedia PDF Downloads 9010977 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps
Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam
Abstract:
GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.Keywords: noise, image, GIS, digital map, inpainting
Procedia PDF Downloads 35210976 Comparative Study between Inertial Navigation System and GPS in Flight Management System Application
Authors: Othman Maklouf, Matouk Elamari, M. Rgeai, Fateh Alej
Abstract:
In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software.Keywords: flight management system, GPS, IMU, inertial navigation system
Procedia PDF Downloads 299