Search results for: brand image fit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3145

Search results for: brand image fit

1405 Incidental Findings in the Maxillofacial Region Detected on Cone Beam Computed Tomography

Authors: Zeena Dcosta, Junaid Ahmed, Ceena Denny, Nandita Shenoy

Abstract:

In the field of dentistry, there are many conditions which warrant the requirement of three-dimensional imaging that can aid in diagnosis and therapeutic management. Cone beam computed tomography (CBCT) is considered highly accurate in producing a three-dimensional image of an object and provides a complete insight of various findings in the captured volume. But, most of the clinicians focus primarily on the teeth and jaws and numerous unanticipated clinically significant incidental findings may be missed out. Rapid integration of CBCT into the practice of dentistry has led to the detection of various incidental findings. However, the prevalence of these incidental findings is still unknown. Thus, the study aimed to discern the reason for referral and to identify incidental findings on the referred CBCT scans. Patient’s demographic data such as age and gender was noted. CBCT scans of multiple fields of views (FOV) were considered. The referral for CBCT scans was broadly classified into two major categories: diagnostic scan and treatment planning scan. Any finding on the CBCT volumes, other than the area of concern was recorded as incidental finding which was noted under airway, developmental, pathological, endodontics, TMJ, bone, soft tissue calcifications and others. Few of the incidental findings noted under airway were deviated nasal septum, nasal turbinate hypertrophy, mucosal thickening and pneumatization of sinus. Developmental incidental findings included dilaceration, impaction, pulp stone and gubernacular canal. Resorption of teeth and periapical pathologies were noted under pathological incidental findings. Root fracture along with over and under obturation was noted under endodontics. Incidental findings under TMJ were flattening, erosion and bifid condyle. Enostosis and exostosis were noted under bone lesions. Tonsillolth, sialolith and calcified styloid ligament were noted under soft tissue calcifications. Incidental findings under others included foreign body, fused C1- C2 vertebrae, nutrient canals, and pneumatocyst. Maxillofacial radiologists should be aware of possible incidental findings and should be vigilant about comprehensively evaluating the entire captured volume, which can help in early diagnosis of any potential pathologies that may go undetected. Interpretation of CBCT is truly an art and with the experience, we can unravel the secrets hidden in the grey shades of the radiographic image.

Keywords: cone beam computed tomography, incidental findings, maxillofacial region, radiologist

Procedia PDF Downloads 209
1404 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals

Authors: C. C .D. Kulathilake, M. Jayatilake, T. Takahashi

Abstract:

The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.

Keywords: autoradiographs, fatty acid, radiopharmaceuticals, sugar

Procedia PDF Downloads 450
1403 Speed up Vector Median Filtering by Quasi Euclidean Norm

Authors: Vinai K. Singh

Abstract:

For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.

Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics

Procedia PDF Downloads 474
1402 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 75
1401 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: artificial intelligence, computer science, criminal investigation, digital forensics

Procedia PDF Downloads 212
1400 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 86
1399 Approaches to Diagnosis of Ectopic Solid Organs in the Abdominopelvic Cavity

Authors: Van-Ngoc-Cuong Le, Ngoc-Quy Le

Abstract:

Approaches to the diagnosis of ectopic solid organs in the abdominopelvic cavity include Accessory liver lobe, Accessory spleens (ectopic splenic tissue), Wandering spleen, Ectopic pancreatic tissue, Ectopic kidney (Pancake kidney), Cryptorchidism (undescended testis, ectopic testis), Ectopic endometriosis. The application of diagnostic imaging techniques, of which magnetic resonance imaging is the most important, includes a clinical case study and reports. Ectopic organs and tumors are easy to confuse. This is a concern, as well as practical challenges encountered and solutions adopted in the fields of Image Analysis.

Keywords: ectopic, accessory, wandering, tumor

Procedia PDF Downloads 4
1398 Digital Antimicrobial Thermometer for Axilliary Usage: A New Device for Measuring the Temperature of the Body for the Reduction of Cross-Infections

Authors: P. Efstathiou, E. Kouskouni, Z. Manolidou, K. Karageorgou, M. Tseroni, A. Efstathiou, V. Karyoti, I. Agrafa

Abstract:

Aim: The aim of this prospective comparative study is to evaluate the reduction of microbial flora on the surface of an axillary digital thermometer, made of antimicrobial copper, in relation with a common digital thermometer. Material – Methods: A brand new digital electronic thermometer implemented with antimicrobial copper (Cu 70% - Nic 30%, low lead) on the two edges of the device (top and bottom: World Patent Number WO2013064847 and Register Number by the Hellenic Copper Development Institute No 11/2012) was manufactured and a comparative study with common digital electronic thermometer was conducted on 18 ICU (Intensive Care Unit) patients of three different hospitals. The thermometry was performed in accordance with the projected International Nursing Protocols for body temperature measurement. A total of 216 microbiological samples were taken from the axillary area of the patients, using both of the investigated body temperature devises. Simultaneously the “Halo” phenomenon (phenomenon “Stefanis”) was studied at the non-antimicrobial copper-implemented parts of the antimicrobial digital electronic thermometer. Results: In all samples collected from the surface of the antimicrobial electronic digital thermometer, the reduction of microbial flora (Klebsiella spp, Staphylococcus aureus, Staphylococcus epidermitis, Candida spp, Pneudomonas spp) was progressively reduced to 99% in two hours after the thermometry. The above flora was found in the axillary cavity remained the same in common thermometer. The statistical analysis (SPSS 21) showed a statistically significant reduction of the microbial load (N = 216, < 0.05). Conclusions: The hospital-acquired infections are linked to the transfer of pathogens due to the multi-usage of medical devices from both health professionals and patients, such as axillary thermometers. The use of antimicrobial digital electronic thermometer minimizes microbes' transportation between patients and health professionals while having all the conditions of reliability, proper functioning, security, ease of use and reduced cost.

Keywords: antimicrobial copper, cross infections, digital thermometers, ICU

Procedia PDF Downloads 403
1397 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction

Authors: Mohammad Ghahramani, Fahimeh Saei Manesh

Abstract:

Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.

Keywords: soccer, analytics, machine learning, database

Procedia PDF Downloads 238
1396 Improving the Supply Chain of Vietnamese Coffee in Buon Me Thuot City, Daklak Province, Vietnam to Achieve Sustainability

Authors: Giang Ngo Tinh Nguyen

Abstract:

Agriculture plays an important role in the economy of Vietnam and coffee is one of most crucial agricultural commodities for exporting but the current farming methods and processing infrastructure could not keep up with the development of the sector. There are many catastrophic impacts on the environment such as deforestation; soil degradation that leads to a decrease in the quality of coffee beans. Therefore, improving supply chain to develop the cultivation of sustainable coffee is one of the most important strategies to boost the coffee industry and create a competitive advantage for Vietnamese coffee in the worldwide market. If all stakeholders in the supply chain network unite together; the sustainable production of coffee will be scaled up and the future of coffee industry will be firmly secured. Buon Ma Thuot city, Dak Lak province is the principal growing region for Vietnamese coffee which accounted for a third of total coffee area in Vietnam. It plays a strategically crucial role in the development of sustainable Vietnamese coffee. Thus, the research is to improve the supply chain of sustainable Vietnamese coffee production in Buon Ma Thuot city, Dak Lak province, Vietnam for the purpose of increasing the yields and export availability as well as helping coffee farmers to be more flexible in an ever-changing market situation. It will help to affirm Vietnamese coffee brand when entering international market; improve the livelihood of farmers and conserve the environment of this area. Besides, after analyzing the data, a logistic regression model is established to explain the relationship between the dependent variable and independent variables to help sustainable coffee organizations forecast the probability of farmer will be having a sustainable certificate with their current situation and help them choose promising candidates to develop sustainable programs. It investigates opinions of local farmers through quantitative surveys. Qualitative interviews are also used to interview local collectors and staff of Trung Nguyen manufacturing company to have an overview of the situation.

Keywords: supply chain management, sustainable agricultural development, sustainable coffee, Vietnamese coffee

Procedia PDF Downloads 447
1395 An Extraction of Cancer Region from MR Images Using Fuzzy Clustering Means and Morphological Operations

Authors: Ramandeep Kaur, Gurjit Singh Bhathal

Abstract:

Cancer diagnosis is very difficult task. Magnetic resonance imaging (MRI) scan is used to produce image of any part of the body and provides an efficient way for diagnosis of cancer or tumor. In existing method, fuzzy clustering mean (FCM) is used for the diagnosis of the tumor. In the proposed method FCM is used to diagnose the cancer of the foot. FCM finds the centroids of the clusters of the foot cancer obtained from MRI images. FCM thresholding result shows the extract region of the cancer. Morphological operations are applied to get extracted region of cancer.

Keywords: magnetic resonance imaging (MRI), fuzzy C mean clustering, segmentation, morphological operations

Procedia PDF Downloads 398
1394 Enhanced Thai Character Recognition with Histogram Projection Feature Extraction

Authors: Benjawan Rangsikamol, Chutimet Srinilta

Abstract:

This research paper deals with extraction of Thai character features using the proposed histogram projection so as to improve the recognition performance. The process starts with transformation of image files into binary files before thinning. After character thinning, the skeletons are entered into the proposed extraction using histogram projection (horizontal and vertical) to extract unique features which are inputs of the subsequent recognition step. The recognition rate with the proposed extraction technique is as high as 97 percent since the technique works very well with the idiosyncrasies of Thai characters.

Keywords: character recognition, histogram projection, multilayer perceptron, Thai character features extraction

Procedia PDF Downloads 464
1393 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: building detection, local maximum filtering, matched filtering, multiscale

Procedia PDF Downloads 320
1392 Electroencephalography Correlates of Memorability While Viewing Advertising Content

Authors: Victor N. Anisimov, Igor E. Serov, Ksenia M. Kolkova, Natalia V. Galkina

Abstract:

The problem of memorability of the advertising content is closely connected with the key issues of neuromarketing. The memorability of the advertising content contributes to the marketing effectiveness of the promoted product. Significant directions of studying the phenomenon of memorability are the memorability of the brand (detected through the memorability of the logo) and the memorability of the product offer (detected through the memorization of dynamic audiovisual advertising content - commercial). The aim of this work is to reveal the predictors of memorization of static and dynamic audiovisual stimuli (logos and commercials). An important direction of the research was revealing differences in psychophysiological correlates of memorability between static and dynamic audiovisual stimuli. We assumed that static and dynamic images are perceived in different ways and may have a difference in the memorization process. Objective methods of recording psychophysiological parameters while watching static and dynamic audiovisual materials are well suited to achieve the aim. The electroencephalography (EEG) method was performed with the aim of identifying correlates of the memorability of various stimuli in the electrical activity of the cerebral cortex. All stimuli (in the groups of statics and dynamics separately) were divided into 2 groups – remembered and not remembered based on the results of the questioning method. The questionnaires were filled out by survey participants after viewing the stimuli not immediately, but after a time interval (for detecting stimuli recorded through long-term memorization). Using statistical method, we developed the classifier (statistical model) that predicts which group (remembered or not remembered) stimuli gets, based on psychophysiological perception. The result of the statistical model was compared with the results of the questionnaire. Conclusions: Predictors of the memorability of static and dynamic stimuli have been identified, which allows prediction of which stimuli will have a higher probability of remembering. Further developments of this study will be the creation of stimulus memory model with the possibility of recognizing the stimulus as previously seen or new. Thus, in the process of remembering the stimulus, it is planned to take into account the stimulus recognition factor, which is one of the most important tasks for neuromarketing.

Keywords: memory, commercials, neuromarketing, EEG, branding

Procedia PDF Downloads 251
1391 Fahr Dsease vs Fahr Syndrome in the Field of a Case Report

Authors: Angelis P. Barlampas

Abstract:

Objective: The confusion of terms is a common practice in many situations of the everyday life. But, in some circumstances, such as in medicine, the precise meaning of a word curries a critical role for the health of the patient. Fahr disease and Fahr syndrome are often falsely used interchangeably, but they are two different conditions with different physical histories of different etiology and different medical management. A case of the seldom Fahr disease is presented, and a comparison with the more common Fahr syndrome follows. Materials and method: A 72 years old patient came to the emergency department, complaining of some kind of non specific medal disturbances, like anxiety, difficulty of concentrating, and tremor. The problems had a long course, but he had the impression of getting worse lately, so he decided to check them. Past history and laboratory tests were unremarkable. Then, a computed tomography examination was ordered. Results: The CT exam showed bilateral, hyperattenuating areas of heavy, dense calcium type deposits in basal ganglia, striatum, pallidum, thalami, the dentate nucleus, and the cerebral white matter of frontal, parietal and iniac lobes, as well as small areas of the pons. Taking into account the absence of any known preexisting illness and the fact that the emergency laboratory tests were without findings, a hypothesis of the rare Fahr disease was supposed. The suspicion was confirmed with further, more specific tests, which showed the lack of any other conditions which could probably share the same radiological image. Differentiating between Fahr disease and Fahr syndrome. Fahr disease: Primarily autosomal dominant Symmetrical and bilateral intracranial calcifications The patient is healthy until the middle age Absence of biochemical abnormalities. Family history consistent with autosomal dominant Fahr syndrome :Earlier between 30 to 40 years old. Symmetrical and bilateral intracranial calcifications Endocrinopathies: Idiopathic hypoparathyroidism, secondary hypoparathyroidism, hyperparathyroidism, pseudohypoparathyroidism ,pseudopseudohypoparathyroidism, e.t.c The disease appears at any age There are abnormal laboratory or imaging findings. Conclusion: Fahr disease and Fahr syndrome are not the same illness, although this is not well known to the inexperienced doctors. As clinical radiologists, we have to inform our colleagues that a radiological image, along with the patient's history, probably implies a rare condition and not something more usual and prompt the investigation to the right route. In our case, a genetic test could be done earlier and reveal the problem, and thus avoiding unnecessary and specific tests which cost in time and are uncomfortable to the patient.

Keywords: fahr disease, fahr syndrome, CT, brain calcifications

Procedia PDF Downloads 62
1390 Perception of Customers towards Service Quality: A Comparative Analysis of Organized and Unorganised Retail Stores (with Special Reference to Bhopal City)

Authors: Abdul Rashid, Varsha Rokade

Abstract:

Service Quality within retail units is pivotal for satisfying customers and retaining them. This study on customer perception towards Service Quality variables in Retail aims to identify the dimensions and their impact on customers. An analytical study of the different retail service quality variables was done to understand the relationship between them. The study tries exploring the factors that attract the customers towards the organised and unorganised retail stores in the capital city of Madhya Pradesh, India. As organised retailers are seen as offering similar products in the outlets, improving service quality is seen as critical to ensuring competitive advantage over unorganised retailers. Data were collected through a structured questionnaire on a five-point Likert scale from existing walk-in customers of selected organised and unorganised retail stores in Bhopal City of Madhya Pradesh, India. The data was then analysed by factor analysis using (SPSS) Statistical Package for the Social Sciences especially Percentage analysis, ANOVA and Chi-Square. This study tries to find interrelationship between various Retail Service Quality dimensions, which will help the retailers to identify the steps needed to improve the overall quality of service. Thus, the findings of the study prove to be helpful in understanding the service quality variables which should be considered by organised and unorganised retail stores in Capital city of Madhya Pradesh, India.Also, findings of this empirical research reiterate the point of view that dimensions of Service Quality in Retail play an important role in enhancing customer satisfaction – a sector with high growth potential and tremendous opportunities in rapidly growing economies like India’s. With the introduction of FDI in multi-brand retailing, a large number of international retail players are expected to enter the Indian market, this intern will bring more competition in the retail sector. For benchmarking themselves with global standards, the Indian retailers will have to improve their service quality.

Keywords: organized retail, unorganised retail, retail service quality, service quality dimension

Procedia PDF Downloads 230
1389 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 412
1388 Digital Forgery Detection by Signal Noise Inconsistency

Authors: Bo Liu, Chi-Man Pun

Abstract:

A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.

Keywords: forgery detection, splicing forgery, noise estimation, noise

Procedia PDF Downloads 461
1387 Hull Detection from Handwritten Digit Image

Authors: Sriraman Kothuri, Komal Teja Mattupalli

Abstract:

In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.

Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm

Procedia PDF Downloads 400
1386 Cilubaba: An Agriculture-Based Education Tool through Congklak Traditional Game as an Introduction of Home Garden for Children in Cibanteng, Bogor

Authors: Yoni Elviandri, Vivi Fitriyanti, Agung Surya Wijaya, Suryani Humayyah, Muhammad Alif Azizi

Abstract:

The massive development of computing power and internet access nowadays is marked by audiovisual games and computers which are known as electronic games, one of the examples is online games. This kind of game can be found everywhere in Indonesia, both in the cities and even the villages. In the present time, online games are becoming a popular games in various layers of the community, one of them does happen to elementary school students. As the online games spread over, the traditional games gradually fade away and even thought as an old-fashioned game. Contrary, traditional games actually have the better and higher educational values such as patience, honesty, integrity and togetherness value which cannot be found in online games which are more to individualist. A brand new set of education tools is necessary to provide a convenience, safe and fun place for children to play around but still contains educational values. One interesting example goes to Cilulaba is an agricultural-based playground. It is a good place for children to play and learn as it was planned to entertain children to play around as well as introducing agriculture to them. One of the games is a 1990’s well-known traditional game which its name is Congklak. Congklak is an agricultural-based traditional game and it also introduces the home garden to the children. Some of the Cilulaba’s aims are to protect the existence of nation’s cultural inheritance through Congklak traditional game, as a tool to introduce the agriculture to the children through the methods of Congklak traditional game and giving explanation related to the advantages of a “healthy home garden” to the children. The expected output from this place is to deliver a good understanding about agriculture to the children and make them begin to love it to make an aesthetic home garden and enhance the optimalisation usage of home garden that will support the availability of various edible plants in productive and health households. The proposed method in this Student Creative Program in Society Service is Participatory Rural Appraisal (PRA) method.

Keywords: Cilubaba, Congklak, traditional game, agricultural-based playground

Procedia PDF Downloads 441
1385 The Job of Rhetoric in Public Relations Practice

Authors: Talal Alqahtani

Abstract:

For all institutions, either public or private, communication is important now more than ever. This is because the importance of communication has grown over the years, and it has the ability to either break or make an organization. With globalization, the changing technology, and other emergent issues that affect organizations, the communication given out has had to be better, sharper, and both proactive and reactive. This is the reason why the importance of public relations has been on the increase. Institutions realize the importance of having a good image and having public relations experts who can effectively manage communication in an institution easily in times of crisis. Public relations itself is not, however, effective, and this has led to the adoption of rhetoric in communication. Rhetoric use has had a long transformation because, in the past, it was only used in politics. Rhetoric in communication has come to be appreciated and adopted by many diverse fields and sectors. This study looks at the job of rhetoric in public relations practice and how it can identify with the administration of an institution's notoriety.

Keywords: communication, notoriety, rhetoric, public relation

Procedia PDF Downloads 234
1384 Tobacco Taxation and the Heterogeneity of Smokers' Responses to Price Increases

Authors: Simone Tedeschi, Francesco Crespi, Paolo Liberati, Massimo Paradiso, Antonio Sciala

Abstract:

This paper aims at contributing to the understanding of smokers’ responses to cigarette prices increases with a focus on heterogeneity, both across individuals and price levels. To do this, a stated preference quasi-experimental design grounded in a random utility framework is proposed to evaluate the effect on smokers’ utility of the price level and variation, along with social conditioning and health impact perception. The analysis is based on individual-level data drawn from a unique survey gathering very detailed information on Italian smokers’ habits. In particular, qualitative information on the individual reactions triggered by changes in prices of different magnitude and composition are exploited. The main findings stemming from the analysis are the following; the average price elasticity of cigarette consumption is comparable with previous estimates for advanced economies (-.32). However, the decomposition of this result across five latent-classes of smokers, reveals extreme heterogeneity in terms of price responsiveness, implying a potential price elasticity that ranges between 0.05 to almost 1. Such heterogeneity is in part explained by observable characteristics such as age, income, gender, education as well as (current and lagged) smoking intensity. Moreover, price responsiveness is far from being independent from the size of the prospected price increase. Finally, by comparing even and uneven price variations, it is shown that uniform across-brand price increases are able to limit the scope of product substitutions and downgrade. Estimated price-response heterogeneity has significant implications for tax policy. Among them, first, it provides evidence and a rationale for why the aggregate price elasticity is likely to follow a strictly increasing pattern as a function of the experienced price variation. This information is crucial for forecasting the effect of a given tax-driven price change on tax revenue. Second, it provides some guidance on how to design excise tax reforms to balance public health and revenue goals.

Keywords: smoking behaviour, preference heterogeneity, price responsiveness, cigarette taxation, random utility models

Procedia PDF Downloads 162
1383 Semigroups of Linear Transformations with Fixed Subspaces: Green’s Relations and Ideals

Authors: Yanisa Chaiya, Jintana Sanwong

Abstract:

Let V be a vector space over a field and W a subspace of V. Let Fix(V,W) denote the set of all linear transformations on V with fix all elements in W. In this paper, we show that Fix(V,W) is a semigroup under the composition of maps and describe Green’s relations on this semigroup in terms of images, kernels and the dimensions of subspaces of the quotient space V/W where V/W = {v+W : v is an element in V} with v+W = {v+w : w is an element in W}. Let dim(U) denote the dimension of a vector space U and Vα = {vα : v is an element in V} where vα is an image of v under a linear transformation α. For any cardinal number a let a'= min{b : b > a}. We also show that the ideals of Fix(V,W) are precisely the sets. Fix(r) ={α ∊ Fix(V,W) : dim(Vα/W) < r} where 1 ≤ r ≤ a' and a = dim(V/W). Moreover, we prove that if V is a finite-dimensional vector space, then every ideal of Fix(V,W) is principle.

Keywords: Green’s relations, ideals, linear transformation semi-groups, principle ideals

Procedia PDF Downloads 292
1382 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 303
1381 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 83
1380 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection

Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour

Abstract:

The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.

Keywords: EEG, wavelet, epilepsy, detection

Procedia PDF Downloads 538
1379 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution

Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques

Abstract:

The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.

Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)

Procedia PDF Downloads 296
1378 Urdu Text Extraction Method from Images

Authors: Samabia Tehsin, Sumaira Kausar

Abstract:

Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.

Keywords: caption text, content-based image retrieval, document analysis, text extraction

Procedia PDF Downloads 516
1377 Subjectivity in Miracle Aesthetic Clinic Ambient Media Advertisement

Authors: Wegig Muwonugroho

Abstract:

Subjectivity in advertisement is a ‘power’ possessed by advertisements to construct trend, concept, truth, and ideology through subconscious mind. Advertisements, in performing their functions as message conveyors, use such visual representation to inspire what’s ideal to the people. Ambient media is advertising medium making the best use of the environment where the advertisement is located. Miracle Aesthetic Clinic (Miracle) popularizes the visual representation of its ambient media advertisement through the omission of face-image of both female mannequins that function as its ambient media models. Usually, the face of a model in advertisement is an image commodity having selling values; however, the faces of ambient media models in Miracle advertisement campaign are suppressed over the table and wall. This face concealing aspect creates not only a paradox of subjectivity but also plurality of meaning. This research applies critical discourse analysis method to analyze subjectivity in obtaining the insight of ambient media’s meaning. First, in the stage of textual analysis, the embedding attributes upon female mannequins imply that the models are denoted as the representation of modern women, which are identical with the identities of their social milieus. The communication signs aimed to be constructed are the women who lose their subjectivities and ‘feel embarrassed’ to flaunt their faces to the public because of pimples on their faces. Second, in the stage of analysis of discourse practice, it points out that ambient media as communication media has been comprehensively responded by the targeted audiences. Ambient media has a role as an actor because of its eyes-catching setting, and taking space over the area where the public are wandering around. Indeed, when the public realize that the ambient media models are motionless -unlike human- stronger relation then appears, marked by several responses from targeted audiences. Third, in the stage of analysis of social practice, soap operas and celebrity gossip shows on the television become a dominant discourse influencing advertisement meaning. The subjectivity of Miracle Advertisement corners women by the absence of women participation in public space, the representation of women in isolation, and the portrayal of women as an anxious person in the social rank when their faces suffered from pimples. The Ambient media as the advertisement campaign of Miracle is quite success in constructing a new trend discourse of face beauty that is not limited on benchmarks of common beauty virtues, but the idea of beauty can be presented by ‘when woman doesn’t look good’ visualization.

Keywords: ambient media, advertisement, subjectivity, power

Procedia PDF Downloads 321
1376 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96