Search results for: artificial intelligence based optimization
29871 Ant System with Acoustic Communication
Authors: Saad Bougrine, Salma Ouchraa, Belaid Ahiod, Abdelhakim Ameur El Imrani
Abstract:
Ant colony optimization is an ant algorithm framework that took inspiration from foraging behaviour of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved.Keywords: acoustic communication, ant colony optimization, local search, traveling salesman problem
Procedia PDF Downloads 59029870 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: artificial neural networks, biodiesel, iodine value, prediction
Procedia PDF Downloads 61229869 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Clement Yeboah, Eva Laryea
Abstract:
A pretest-posttest within subjects experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant, indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant, indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop an interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, computer game-based learning, statistics achievement, statistics anxiety
Procedia PDF Downloads 8229868 Optimization of Electrical Discharge Machining Parameters in Machining AISI D3 Tool Steel by Grey Relational Analysis
Authors: Othman Mohamed Altheni, Abdurrahman Abusaada
Abstract:
This study presents optimization of multiple performance characteristics [material removal rate (MRR), surface roughness (Ra), and overcut (OC)] of hardened AISI D3 tool steel in electrical discharge machining (EDM) using Taguchi method and Grey relational analysis. Machining process parameters selected were pulsed current Ip, pulse-on time Ton, pulse-off time Toff and gap voltage Vg. Based on ANOVA, pulse current is found to be the most significant factor affecting EDM process. Optimized process parameters are simultaneously leading to a higher MRR, lower Ra, and lower OC are then verified through a confirmation experiment. Validation experiment shows an improved MRR, Ra and OC when Taguchi method and grey relational analysis were usedKeywords: edm parameters, grey relational analysis, Taguchi method, ANOVA
Procedia PDF Downloads 29829867 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type
Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana
Abstract:
Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker
Procedia PDF Downloads 57929866 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables
Procedia PDF Downloads 33829865 Technology and Transformation: Redefining Higher Education for Generations Z and Alpha
Authors: James O'Farrell, Carla Weaver
Abstract:
This paper examines the transformative impact of technology in higher education, particularly in the context of the post-pandemic era, focusing on the learning needs of Digital Natives (Generation Z and Generation Alpha who grew up in the digital age). The study explores how the Covid-19 pandemic accelerated the transition to online and blended learning, highlighting the challenges and opportunities this shift presented. It delves into various technological tools such as learning management systems, collaboration technologies, video platforms, game-based learning and gamification, digital libraries, and artificial intelligence, and their role in enhancing educational delivery and student engagement. The paper also addresses the need to support faculty, predominantly comprised of Digital Immigrants (people who grew up before the digital age) to integrate these technologies effectively into their teaching practices. The findings reveal that while technology has significantly improved the flexibility and accessibility of education, it also requires educators to adapt to the changing needs of Digital Natives and the evolving educational landscape. Moreover, the paper underscores the importance of safeguarding the mental health and well-being of both faculty and students, acknowledging the stress and anxiety brought about by the rapid shift in teaching and learning modalities. The study concludes with recommendations for educational institutions to create a balanced, inclusive, and supportive learning environment. This involves continuous faculty development, prioritizing mental health, and leveraging technology to bridge generational divides, thus paving the way for a resilient and innovative future in higher education.Keywords: generation alpha, generation z, teaching strategies, technology
Procedia PDF Downloads 1329864 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application
Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui
Abstract:
Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling
Procedia PDF Downloads 28529863 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant
Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar
Abstract:
This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration
Procedia PDF Downloads 8729862 Optimization of Double-Layered Microchannel Heat Sinks
Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang
Abstract:
This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance
Procedia PDF Downloads 49329861 Planning a Supply Chain with Risk and Environmental Objectives
Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali
Abstract:
The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.Keywords: environmental indicators, optimization, risk, supply chain
Procedia PDF Downloads 35429860 Predicting Machine-Down of Woodworking Industrial Machines
Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta
Abstract:
In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence
Procedia PDF Downloads 22929859 Design and Optimization of a 6 Degrees of Freedom Co-Manipulated Parallel Robot for Prostate Brachytherapy
Authors: Aziza Ben Halima, Julien Bert, Dimitris Visvikis
Abstract:
In this paper, we propose designing and evaluating a parallel co-manipulated robot dedicated to low-dose-rate prostate brachytherapy. We developed 6 degrees of freedom compact and lightweight robot easy to install in the operating room thanks to its parallel design. This robotic system provides a co-manipulation allowing the surgeon to keep control of the needle’s insertion and consequently to improve the acceptability of the plan for the clinic. The best dimension’s configuration was solved by calculating the geometric model and using an optimization approach. The aim was to ensure the whole coverage of the prostate volume and consider the allowed free space around the patient that includes the ultrasound probe. The final robot dimensions fit in a cube of 300 300 300 mm³. A prototype was 3D printed, and the robot workspace was measured experimentally. The results show that the proposed robotic system satisfies the medical application requirements and permits the needle to reach any point within the prostate.Keywords: medical robotics, co-manipulation, prostate brachytherapy, optimization
Procedia PDF Downloads 21029858 Handwriting Velocity Modeling by Artificial Neural Networks
Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb
Abstract:
The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling
Procedia PDF Downloads 44429857 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite
Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar
Abstract:
This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts Grey Relational Analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.Keywords: metal matrix composite, drilling, optimization, step drill, surface roughness, burr height, hole diameter error
Procedia PDF Downloads 32529856 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants
Authors: Coriolano Salvini
Abstract:
The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis
Procedia PDF Downloads 21629855 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 53829854 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model
Authors: Jai Heui Kim, Sotheara Veng
Abstract:
This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility
Procedia PDF Downloads 30329853 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 10429852 Implementation of Inference Fuzzy System as a Valuation Subsidiary is Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League
Authors: Zahra Abdolkarimi, Naser Zouri
Abstract:
Nowadays, there is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Additionally, robotics system recommended RoboCup factor as a provider of some standardization and testing method in case of computer discussion widely. The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. In addition, decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidently. Consequences, shows method of our discussion is the best way for Particle Swarm Optimization and Fuzzy system compare to other decision of robotics algorithmic.Keywords: PSO algorithm, inference fuzzy system, chaos theory, soccer robot league
Procedia PDF Downloads 40729851 Research on Public Space Optimization Strategies for Existing Settlements Based on Intergenerational Friendliness
Authors: Huanhuan Qiang, Sijia Jin
Abstract:
Population aging has become a global trend, and China has entered an aging society, implementing an active aging system focused on home and community-based care. However, most urban communities where elderly people live face issues such as monotonous planning, unappealing landscapes, and inadequate aging infrastructure, which do not meet the requirements for active aging. Intergenerational friendliness and mutual assistance are key components in China's active aging policy framework. Therefore, residential development should prioritize enhancing intergenerational friendliness. Residential and public spaces are central to community life and well-being, offering new and challenging venues to improve relationships among residents of different ages. They are crucial for developing intergenerational communities with diverse generations and non-blood relationships. This paper takes the Maigaoqiao community in Nanjing, China, as a case study, examining intergenerational interactions in public spaces. Based on Maslow's hierarchy of needs and using time geography analysis, it identifies the spatiotemporal behavior characteristics of intergenerational groups in outdoor activities. Then construct an intergenerational-friendly evaluation system and an IPA quadrant model for public spaces in residential areas. Lastly, it explores optimization strategies for public spaces to promote intergenerational friendly interactions, focusing on five aspects: accessibility, safety, functionality, a sense of belonging, and interactivity.Keywords: intergenerational friendliness, demand theory, spatiotemporal behavior, IPA analysis, existing residential public space
Procedia PDF Downloads 1329850 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images
Authors: Yalçın Bozkurt
Abstract:
Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breedsKeywords: artificial neural networks, bodyweight, cattle, digital body measurements
Procedia PDF Downloads 37929849 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 15229848 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems
Procedia PDF Downloads 24829847 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification
Procedia PDF Downloads 31129846 Whale Optimization Algorithm for Optimal Reactive Power Dispatch Solution Under Various Contingency Conditions
Authors: Medani Khaled Ben Oualid
Abstract:
Most of researchers solved and analyzed the ORPD problem in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.Keywords: optimal reactive power dispatch, metaheuristic techniques, whale optimization algorithm, real power loss minimization, contingency conditions
Procedia PDF Downloads 9429845 Neural Network Approach to Classifying Truck Traffic
Authors: Ren Moses
Abstract:
The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions
Procedia PDF Downloads 31529844 Optimization-Based Design Improvement of Synchronizer in Transmission System for Efficient Vehicle Performance
Authors: Sanyka Banerjee, Saikat Nandi, P. K. Dan
Abstract:
Synchronizers as an integral part of gearbox is a key element in the transmission system in automotive. The performance of synchronizer affects transmission efficiency and driving comfort. Synchronizing mechanism as a major component of transmission system must be capable of preventing vibration and noise in the gears. Gear shifting efficiency improvement with an aim to achieve smooth, quick and energy efficient power transmission remains a challenge for the automotive industry. Performance of the synchronizer is dependent on the features and characteristics of its sub-components and therefore analysis of the contribution of such characteristics is necessary. An important exercise involved is to identify all such characteristics or factors which are associated with the modeling and analysis and for this purpose the literature was reviewed, rather extensively, to study the mathematical models, formulated considering such. It has been observed that certain factors are rather common across models; however, there are few factors which have specifically been selected for individual models, as reported. In order to obtain a more realistic model, an attempt here has been made to identify and assimilate practically all possible factors which may be considered in formulating the model more comprehensively. A simulation study, formulated as a block model, for such analysis has been carried out in a reliable environment like MATLAB. Lower synchronization time is desirable and hence, it has been considered here as the output factors in the simulation modeling for evaluating transmission efficiency. An improved synchronizer model requires optimized values of sub-component design parameters. A parametric optimization utilizing Taguchi’s design of experiment based response data and their analysis has been carried out for this purpose. The effectiveness of the optimized parameters for the improved synchronizer performance has been validated by the simulation study of the synchronizer block model with improved parameter values as input parameters for better transmission efficiency and driver comfort.Keywords: design of experiments, modeling, parametric optimization, simulation, synchronizer
Procedia PDF Downloads 31929843 The Effect of Human Rights Violation in Modern Society
Authors: Hanania Nasan Shokry Abdelmasih
Abstract:
The discipline of regulation is pretty complex and has its own terminology. other than written legal guidelines, there's also dwelling regulation, which refers to prison exercise. primary legal rules purpose at the happiness of individuals in social existence and feature different characteristics in unique branches including public or non-public regulation. on the other hand, law is a countrywide phenomenon. The law of 1 state and the legal device implemented at the territory of another state can be completely exceptional. individuals who are professionals in a specific discipline of regulation in a single united states may have inadequate know-how within the regulation of every other united states. today, similarly to the neighborhood nature of regulation, worldwide and even supranational regulation rules are implemented as a way to defend basic human values and make sure the protection of human rights around the sector. systems that offer algorithmic answers to prison problems using synthetic intelligence (AI) gear will perhaps serve to produce very meaningful consequences in phrases of human rights. but, algorithms to be used need to no longer be evolved with the aid of only pc professionals, however additionally want the contribution of folks who are familiar with law, values, judicial choices, and even the social and political culture of the society to which it'll provide answers. otherwise, even supposing the set of rules works perfectly, it may not be well suited with the values of the society in which it is applied. The present day traits involving using AI techniques in legal systems suggest that artificial law will come to be a brand new subject within the area of law.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 1429842 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System
Authors: Mobarok Hossain Bhuyain
Abstract:
Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.Keywords: human detection, target tracking, neural network, particle filter
Procedia PDF Downloads 168