Search results for: architectural design studio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12967

Search results for: architectural design studio

11227 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier

Authors: Hassan Jassim Motlak

Abstract:

A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW.

Keywords: pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA

Procedia PDF Downloads 321
11226 Design of Agricultural Machinery Factory Facility Layout

Authors: Nilda Tri Putri, Muhammad Taufik

Abstract:

Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.

Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)

Procedia PDF Downloads 500
11225 Issues in Implementation of Vertical Greenery System on Existing Government Building in Malaysia

Authors: Jamilah Halina Abdul Halim, Norsiah Hassan, Azlina Aziz, Norhayati Mat Wajid, Mohd Saipul Asrafi

Abstract:

There are various types of vertical greenery system (VGS) in Malaysia, but none is installed at government buildings, although the government is looking into energy efficient building design. This is due to lack of technical information that focus on the maintenance and care, issues, and challenges face by vertical greenery system under tropical climate conditions. This research aim to identify issues in implementation of vertical greenery system on existing government building in Malaysia. The methodology used are literature reviews (desktop study), observation on sites, and case studies. Initial findings indicates that design and maintenance issues of vertical greenery system are the main challenges faced mainly by designer, especially those who involved in decision-making process. It can be concluded that orientation, openings, maintenance, performance, longevity, structural load, access, wind resistance, design failure, system failure, and lack of maintenance foresight are the main factors that need to be considered. These factors should be holistically aligned towards the economic cost, effective time, and quality design in implementation of vertical greenery system on existing government building. A comprehensive implementation of vertical greenery system will lead to greater sustainable investment for government buildings and responsive action to climate change.

Keywords: issues, government building, maintenance, vertical greenery system

Procedia PDF Downloads 89
11224 Methodology of Personalizing Interior Spaces in Public Libraries

Authors: Baharak Mousapour

Abstract:

Creating public spaces which are tailored for the specific demands of the individuals is one of the challenges for the contemporary interior designers. Improving the general knowledge as well as providing a forum for all walks of life to exploit is one of the objectives of a public library. In this regard, interior design in consistent with the demands of the individuals is of paramount importance. Seemingly, study spaces, in particular, those in close relation to the personalized sector, have proven to be challenging, according to the literature. To address this challenge, attributes of individuals, namely, perception of people from public spaces and their interactions with the so-called spaces, should be analyzed to provide interior designers with something to work on. This paper follows the analytic-descriptive research methodology by outlining case study libraries which have personalized public libraries with the investigation of the type of personalization as its primary objective and (I) recognition of physical schedule and the know-how of the spatial connection in indoor design of a library and (II) analysis of each personalized space in relation to other spaces of the library as its secondary objectives. The significance of the current research lies in the concept of personalization as one of the most recent methods of attracting people to libraries. Previous research exists in this regard, but the lack of data concerning personalization makes this topic worth investigating. Hence, this study aims to put forward approaches through real-case studies for the designers to deal with this concept.

Keywords: interior design, library, library design, personalization

Procedia PDF Downloads 154
11223 Operation Parameters of Vacuum Cleaned Filters

Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner

Abstract:

For vacuum cleaned dust filters, used e. g. in textile industry, there exist no calculation methods to determine design parameters (e. g. traverse speed of the nozzle, filter area...). In this work a method to calculate the optimum traverse speed of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions. A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Keywords: design of dust filter, dust removing, filter regeneration, operation parameters

Procedia PDF Downloads 392
11222 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 78
11221 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sökmen

Abstract:

An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis

Procedia PDF Downloads 297
11220 Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran

Authors: M. Bidi, H. Akhbari, S. Eslami, A. Bakhtiari

Abstract:

Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube.

Keywords: desalination, parabolic trough collector, direct steam production, solar water heater, design and construction

Procedia PDF Downloads 315
11219 Drugstore Control System Design and Realization Based on Programmable Logic Controller (PLC)

Authors: Muhammad Faheem Khakhi, Jian Yu Wang, Salman Muhammad, Muhammad Faisal Shabir

Abstract:

Population growth and Chinese two-child policy will boost pharmaceutical market, and it will continue to maintain the growth for a period of time in the future, the traditional pharmacy dispensary has been unable to meet the growing medical needs of the peoples. Under the strong support of the national policy, the automatic transformation of traditional pharmacies is the inclination of the Times, the new type of intelligent pharmacy system will continue to promote the development of the pharmaceutical industry. Under this background, based on PLC control, the paper proposed an intelligent storage and automatic drug delivery system; complete design of the lower computer's control system and the host computer's software system has been present. The system can be applied to dispensing work for Chinese herbal medicinal and Western medicines. Firstly, the essential of intelligent control system for pharmacy is discussed. After the analysis of the requirements, the overall scheme of the system design is presented. Secondly, introduces the software and hardware design of the lower computer's control system, including the selection of PLC and the selection of motion control system, the problem of the human-computer interaction module and the communication between PC and PLC solves, the program design and development of the PLC control system is completed. The design of the upper computer software management system is described in detail. By analyzing of E-R diagram, built the establish data, the communication protocol between systems is customize, C++ Builder is adopted to realize interface module, supply module, main control module, etc. The paper also gives the implementations of the multi-threaded system and communication method. Lastly, each module of the lower computer control system is tested. Then, after building a test environment, the function test of the upper computer software management system is completed. On this basis, the entire control system accepts the overall test.

Keywords: automatic pharmacy, PLC, control system, management system, communication

Procedia PDF Downloads 314
11218 The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas

Authors: Massimiliano Condotta, Giovanni Borga, Chiara Scanagatta

Abstract:

Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases.

Keywords: air quality, co-design, learning loops, noise pollution, urban living labs

Procedia PDF Downloads 372
11217 Computational Thinking Based Coding Environment for Coding and Free Semester Mathematics Education in Korea

Authors: Han Hyuk Cho, Hanik Jo

Abstract:

In recent years, coding education has been globally emphasized, and the Free Semester System and coding education were introduced to the public schools from the beginning of 2016 and 2018 respectively in Korea. With the introduction of the Free Semester System and the rising demand of Computational Thinking (CT) capacity, this paper aims to design ‘Coding Environment’ and Minecraft-like Turtlecraft in which learners can design and construct mathematical objects through mathematical symbolic expressions. Students can transfer the constructed mathematical objects to the Turtlecraft environment (open-source codingmath website), and also can print them out through 3D printers. Furthermore, we design learnable mathematics and coding curriculum by representing the figurate numbers and patterns in terms of executable expression in the coding context and connecting them to algebraic symbols, which will allow students to experience mathematical patterns and symbolic coding expressions.

Keywords: coding education, computational thinking, mathematics education, TurtleMAL and Turtlecraft

Procedia PDF Downloads 209
11216 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning

Authors: Chia Wei Lim, Ning Yan

Abstract:

The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.

Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning

Procedia PDF Downloads 98
11215 Designing Nanowire Based Honeycomb Photonic Crystal Surface Emitting Lasers

Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li

Abstract:

Photonic Crystal Surface Emitting Lasers (PCSELs) are structures which are made up of a periodically repeating patterns with a unit cell consisting of changes in refractive index. The variation in refractive index can be achieved by etching air holes in a semiconductor material to get hole based PCSELs or by growing nanowires to get nanowire based PCSELs. As opposed to hole based PCSELs, nanowire based PCSELs can be integrated on silicon platform without threading dislocations, thanks to the small area of the nanowire that is in contact with silicon substrate that relaxes the strain. Nanowire based PCSELs reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) and/or variable wavelength devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we study how the resonance wavelength and the Q-factor of three different resonance modes of the device vary when their design parameters are tuned. Through this study we establish the design and simulation of devices operating in 970nm wavelength band, O band and in the C band with quality factors up to 7X〖10〗^7 . We also investigate the quality factors of undeformed device and establish that the band edge close to 970nm can attain high quality factor when the device is undeformed and the quality factor degrades as the device is deformed.

Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, simulation of photonic crystal surface emitting laser

Procedia PDF Downloads 20
11214 Fashion Appropriation: A Study in Awareness of Crossing Cultural Boundaries in Design

Authors: Anahita Suri

Abstract:

Myriad cultures form the warp and weft of the fabric of this world. The last century saw mass migration of people across geographical boundaries, owing to industrialization and globalization. These people took with them their cultures, costumes, traditions, and folklore, which mingled with the local cultures to create something new and place it in a different context to make it contemporary. With the surge in population and growth of the fashion industry, there has been an increasing demand for innovative and individual fashion, from street markets to luxury brands. Exhausted by local influences, designers take inspiration from the so called ‘low’ culture and create artistic products, place it in a different context, and the end-product is categorized as ‘high’ culture. It is challenging as to why a design/culture is ‘high’ or ‘low’. Who decides which works, practices, activities, etc., are ‘high’ and which are ‘low’? The justification for this distinction is often found not in the design itself but the context attached to it. Also, the concept of high/ low is relative to time- what is ‘high’ today can be ‘low’ tomorrow and ‘high’ again the day after. This raises certain concerns. Firstly, it is sad that a culture which offers inspiration is looked down upon as ‘low’ culture. Secondly, it is ironic because the so designated ‘high’ culture is a manipulation of the truth from the authentic ‘low’ culture, which is capable of true expression. When you borrow from a different culture, you pretend to be authentic because you actually are not. Finally, it is important to be aware of crossing cultural boundaries and the context attached to a design/product so as to use it a responsible way that communicates the design without offending anyone. Is it ok for a person’s cultural identity to become another person’s fashion accessory? This essay explores the complex, multi-layered subject of fashion appropriation and aims to provoke debate over cultural ‘borrowing’ and create awareness that commodification of cultural symbols and iconography in fashion is inappropriate and offensive and not the same as ‘celebrating cultural differences’.

Keywords: context, culture, fashion appropriation, inoffensive, responsible

Procedia PDF Downloads 133
11213 Investigating the Effect of Handicrafts Recreation on the Interior Design of Traditional Arts Gallery

Authors: Amir Masoud Dabagh, Mahsa Khaleghi

Abstract:

The world has entered a new phase of cultural, social, economic, and so on in the last two centuries. Apart from its positive benefits and achievements to the world, it has also incurred many costs, most of which can be mentioned as destroying or at least diminishing the role of the costumes, traditions and authentic culture of the past communities. Understanding what lasts in traditional arts is vital and worthy of study because receiving it and embracing art and forms of art using that last the artistic creation removes the age-old color and smell of its face, making it immortal and persistent in all ages. This paper attempts to present traditional art concepts and solutions for interior design with the approach of handicrafts recreation as a symbol and manifestation of national identity and proof of ancient civilizations, which is at the center of tourists' attention today. The research method is a descriptive-analytical one that first explores the theoretical foundations of research, which are the concepts of recreation and traditional arts, and analyzes the process of recreation that conceals the recollection of past experiences as well as the dynamics and creativity.

Keywords: recreation, handicrafts, interior design, concept, traditional arts

Procedia PDF Downloads 116
11212 Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment

Authors: Ehsan Yazdanpanah Moghadam, Muthukumaran Packirisamy

Abstract:

In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform.

Keywords: microfluidic, MEMS, biosensor, microresonator

Procedia PDF Downloads 228
11211 Seismic Assessment of Non-Structural Component Using Floor Design Spectrum

Authors: Amin Asgarian, Ghyslaine McClure

Abstract:

Experiences in the past earthquakes have clearly demonstrated the necessity of seismic design and assessment of Non-Structural Components (NSCs) particularly in post-disaster structures such as hospitals, power plants, etc. as they have to be permanently functional and operational. Meeting this objective is contingent upon having proper seismic performance of both structural and non-structural components. Proper seismic design, analysis, and assessment of NSCs can be attained through generation of Floor Design Spectrum (FDS) in a similar fashion as target spectrum for structural components. This paper presents the developed methodology to generate FDS directly from corresponding Uniform Hazard Spectrum (UHS) (i.e. design spectra for structural components). The methodology is based on the experimental and numerical analysis of a database of 27 real Reinforced Concrete (RC) buildings which are located in Montreal, Canada. The buildings were tested by Ambient Vibration Measurements (AVM) and their dynamic properties have been extracted and used as part of the approach. Database comprises 12 low-rises, 10 medium-rises, and 5 high-rises and they are mostly designated as post-disaster\emergency shelters by the city of Montreal. The buildings are subjected to 20 compatible seismic records to UHS of Montreal and Floor Response Spectra (FRS) are developed for every floors in two horizontal direction considering four different damping ratios of NSCs (i.e. 2, 5, 10, and 20 % viscous damping). Generated FRS (approximately 132’000 curves) are statistically studied and the methodology is proposed to generate the FDS directly from corresponding UHS. The approach is capable of generating the FDS for any selection of floor level and damping ratio of NSCs. It captures the effect of: dynamic interaction between primary (structural) and secondary (NSCs) systems, higher and torsional modes of primary structure. These are important improvements of this approach compared to conventional methods and code recommendations. Application of the proposed approach are represented here through two real case-study buildings: one low-rise building and one medium-rise. The proposed approach can be used as practical and robust tool for seismic assessment and design of NSCs especially in existing post-disaster structures.

Keywords: earthquake engineering, operational and functional components, operational modal analysis, seismic assessment and design

Procedia PDF Downloads 215
11210 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 330
11209 Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems

Authors: A. Luft, S. Bremen, N. Balc

Abstract:

The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper.

Keywords: additive manufacturing, production system design, flexibility enhancement, strategic guideline

Procedia PDF Downloads 130
11208 Design and Analysis of a Clustered Nozzle Configuration and Comparison of Its Thrust

Authors: Abdul Hadi Butt, Asfandyar Arshad

Abstract:

The purpose of this paper is to study the thrust variation in different configurations of clustered nozzles. It involves the design and analysis of clustered configuration of nozzles using Ansys fluent. Clustered nozzles with different configurations are simulated and compared on basis of effective exhaust thrust. Mixing length for the flow interaction is also calculated. Further clustered configurations are analyzed over different altitudes. An optimum value of the thrust among different configurations is proposed at the end of comparisons.

Keywords: CD nozzle, cluster, thrust, fluent, ANSYS

Procedia PDF Downloads 407
11207 A Holistic Approach for Technical Product Optimization

Authors: Harald Lang, Michael Bader, A. Buchroithner

Abstract:

Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications.

Keywords: design, product development, product optimization, systems engineering

Procedia PDF Downloads 627
11206 The Tramway in French Cities: Complication of Public Spaces and Complexity of the Design Process

Authors: Elisa Maître

Abstract:

The redeployment of tram networks in French cities has considerably modified public spaces and the way citizens use them. Above and beyond the image that trams have of contributing to the sustainable urban development, the question of safety for users in these spaces has not been studied much. This study is based on an analysis of use of public spaces laid out for trams, from the standpoint of legibility and safety concerns. The study also examines to what extent the complexity of the design process, with many interactions between numerous and varied players in this process has a role in the genesis of these problems. This work is mainly based on the analysis of links between the uses of these re-designed public spaces (through observations, interviews of users and accident studies) and the analysis of the design conditions and processes of the projects studied (mainly based on interviews with the actors of these projects). Practical analyses were based three points of view: that of the planner, that of the user (based on observations and interviews) and that of the road safety expert. The cities of Montpellier, Marseille and Nice are the three fields of study on which the demonstration of this thesis is based. On part, the results of this study allow showing that the insertion of tram poses some problems complication of public areas of French cities. These complications related to the restructuring of public spaces for the tram, create difficulties of use and safety concerns. On the other hand, interviews depth analyses, fully transcribed, have led us to develop particular dysfunction scenarios in the design process. These elements lead to question the way the legibility and safety of these new forms of public spaces are taken into account. Then, an in-depth analysis of the design processes of public spaces with trams systems would also be a way of better understanding the choices made, the compromises accepted, and the conflicts and constraints at work, weighing on the layout of these spaces. The results presented concerning the impact that spaces laid out for trams have on the difficulty of use, suggest different possibilities for improving the way in which safety for all users is taken into account in designing public spaces.

Keywords: public spaces, road layout, users, design process of urban projects

Procedia PDF Downloads 232
11205 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: hybrid energy system, optimum sizing, power management, TLBO

Procedia PDF Downloads 581
11204 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production: A Cost-Minimization Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This report unveils a meticulous project focused on the design intricacies of a Fire Tube Boiler tailored for the efficient generation of saturated steam. The overarching objective is to produce 2000kg/h of saturated steam at 12-bar design pressure, achieved through the development of an advanced fire tube boiler. This design is meticulously crafted to harmonize cost-effectiveness and parameter refinement, with a keen emphasis on material selection for component parts, construction materials, and production methods throughout the analytical phases. The analytical process involves iterative calculations, utilizing pertinent formulas to optimize design parameters, including the selection of tube diameters and overall heat transfer coefficients. The boiler configuration incorporates two passes, a strategic choice influenced by tube and shell size considerations. The utilization of heavy oil fuel no. 6, with a higher heating value of 44000kJ/kg and a lower heating value of 41300kJ/kg, results in a fuel consumption of 140.37kg/hr. The boiler achieves an impressive heat output of 1610kW with an efficiency rating of 85.25%. The fluid flow pattern within the boiler adopts a cross-flow arrangement strategically chosen for inherent advantages. Internally, the welding of the tube sheet to the shell, secured by gaskets and welds, ensures structural integrity. The shell design adheres to European Standard code sections for pressure vessels, encompassing considerations for weight, supplementary accessories (lifting lugs, openings, ends, manhole), and detailed assembly drawings. This research represents a significant stride in optimizing fire tube boiler technology, balancing efficiency and safety considerations in the pursuit of enhanced saturated steam production.

Keywords: fire tube, saturated steam, material selection, efficiency

Procedia PDF Downloads 87
11203 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout

Procedia PDF Downloads 154
11202 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 85
11201 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee

Abstract:

Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.

Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander

Procedia PDF Downloads 149
11200 Design and Development of Multi-Functional Intelligent Robot Arm Gripper

Authors: W. T. Asheber, L. Chyi-Yeu

Abstract:

An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.

Keywords: gripper, intelligent gripper, transmissivity, vision sensor

Procedia PDF Downloads 358
11199 Evaluation of Inceptor Design for Manned Multicopter

Authors: Jędrzej Minda

Abstract:

In aviation, a very narrow spectrum of control inceptors exists, namely centre sticks, side-sticks, pedals, and yokes. However, new types of aircraft are emerging, and with them, a need for new inceptors. A manned multicopter created at AGH University of Science and Technology is an aircraft in which the pilot takes a specific orientation in which classical inceptors may be impractical to use. In this paper, a unique kind of control inceptor is described, which aims to provide a handling quality not unlike standard solutions, and provide a firm grip point for the pilot without the risk of involuntary stick movement. Simulations of the pilot-inceptor model were performed in order to compare the dynamic amplification factors of the design described in this paper with the classical one. A functional prototype is built on which drone pilots carry out a comfort-of-use evaluation. This paper provides a general overview of the project, including a literature review, reasoning behind components selection, and mechanism design finalized by conclusions.

Keywords: mechanisms, mechatronics, embedded control, serious gaming for training rescue missions, rescue robotics

Procedia PDF Downloads 86
11198 Optimization of a Flux Switching Permanent Magnet Machine Using Laminated Segmented Rotor

Authors: Seyedmilad Kazemisangdehi, Seyedmehdi Kazemisangdehi

Abstract:

Flux switching permanent magnet machines are considered for wide range of applications because of their outstanding merits including high torque/power densities, high efficiency, simple and robust rotor structure. Therefore, several topologies have been proposed like the PM exited flux switching machine, hybrid excited flux switching type, and so on. Recently, a novel laminated segmented rotor flux switching permanent magnet machine was introduced. It features flux barriers on rotor structure to enhance the performances of machine including torque ripple reduction and also torque and efficiency improvements at the same time. This is while, the design of barriers was not optimized by the authors. Therefore, in this paper three coefficients regarding the position of the barriers are considered for optimization. The effect of each coefficient on the performance of this machine is investigated by finite element method and finally an optimized design of flux barriers based on these three coefficients is proposed from different points of view including electromagnetic torque maximization and cogging torque/torque ripple minimization. At optimum design from maximum developed torque aspect, this machine generates 0.65 Nm torque higher than that of the not-optimized design with an almost 0.4 % improvement in efficiency.

Keywords: finite element analysis, FSPM, laminated segmented rotor flux switching permanent magnet machine, optimization

Procedia PDF Downloads 236