Search results for: 5) genetic algorithm
3031 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration
Authors: Soltani Amir, Hu Jiaxin
Abstract:
Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.Keywords: passive control system, damping devices, viscous dampers, control algorithm
Procedia PDF Downloads 4753030 Node Pair Selection Scheme in Relay-Aided Communication Based on Stable Marriage Problem
Authors: Tetsuki Taniguchi, Yoshio Karasawa
Abstract:
This paper describes a node pair selection scheme in relay-aided multiple source multiple destination communication system based on stable marriage problem. A general case is assumed in which all of source, relay and destination nodes are equipped with multiantenna and carry out multistream transmission. Based on several metrics introduced from inter-node channel condition, the preference order is determined about all source-relay and relay-destination relations, and then the node pairs are determined using Gale-Shapley algorithm. The computer simulations show that the effectiveness of node pair selection is larger in multihop communication. Some additional aspects which are different from relay-less case are also investigated.Keywords: relay, multiple input multiple output (MIMO), multiuser, amplify and forward, stable marriage problem, Gale-Shapley algorithm
Procedia PDF Downloads 4013029 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz
Abstract:
In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.Keywords: differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot
Procedia PDF Downloads 4673028 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process
Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria
Abstract:
Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms
Procedia PDF Downloads 1113027 The Influence of the Aquatic Environment on Hematological Parameters in Cyprinus carpio
Authors: Andreea D. Șerban, Răzvan Mălăncuș, Mihaela Ivancia, Șteofil Creangă
Abstract:
Just as air influences the quality of life in the terrestrial environment, water, as a living environment, is one of great importance when it comes to the quality of life of underwater animals, which acquires an even higher degree of importance when analyzing underwater creatures as future products for human consumption. Thus, going beyond the ideal environment, in which all water quality parameters are permanently in perfect standards for reproduction, growth, and development of fish material and customizing this study to reality, it was demonstrated the importance of reproduction, development, and growth of biological material, necessary in the population fish farms, in the same environment to gain the maximum yield that a fish farm can offer. The biological material used was harvested from 3 fish farms located at great distances from each other to have environments with different parameters. The specimens were clinically healthy at 2 years of age. Thus, the differences in water quality parameters had effects on specimens from other environments, describing large curves in their evolution in new environments. Another change was observed in the new environment, the specimens contributing with the "genetic package" to its modification, tending to a balance of the parameters studied to the values in the environment in which they lived until the time of the experiment. The study clearly showed that adaptability to the environment in which an individual has developed and grown is not valid in environments with different parameters, resulting even in the fatality of one sample during the experiment. In some specimens, the values of the studied hematological parameters were halved after the transfer to the new environment, and in others, the same parameters were doubled. The study concludes that the specimens were adapted to the environment in which they developed and grew, their descendants having a higher value of heritability only in the initial environment. It is known that heritability is influenced 50% by the genetic package of the individual and 50% by the environment, by removing the value of the environment, the duration of improvement of characters of interest will be shorter and the maximum yield of fish farms can be achieved in a smaller period.Keywords: environment, heritability, quality, water
Procedia PDF Downloads 1753026 Feasibility Study for Implementation of Geothermal Energy Technology as a Means of Thermal Energy Supply for Medium Size Community Building
Authors: Sreto Boljevic
Abstract:
Heating systems based on geothermal energy sources are becoming increasingly popular among commercial/community buildings as management of these buildings looks for a more efficient and environmentally friendly way to manage the heating system. The thermal energy supply of most European commercial/community buildings at present is provided mainly by energy extracted from natural gas. In order to reduce greenhouse gas emissions and achieve climate change targets set by the EU, restructuring in the area of thermal energy supply is essential. At present, heating and cooling account for approx... 50% of the EU primary energy supply. Due to its physical characteristics, thermal energy cannot be distributed or exchange over long distances, contrary to electricity and gas energy carriers. Compared to electricity and the gas sectors, heating remains a generally black box, with large unknowns to a researcher and policymaker. Ain literature number of documents address policies for promoting renewable energy technology to facilitate heating for residential/community/commercial buildings and assess the balance between heat supply and heat savings. Ground source heat pump (GSHP) technology has been an extremely attractive alternative to traditional electric and fossil fuel space heating equipment used to supply thermal energy for residential/community/commercial buildings. The main purpose of this paper is to create an algorithm using an analytical approach that could enable a feasibility study regarding the implementation of GSHP technology in community building with existing fossil-fueled heating systems. The main results obtained by the algorithm will enable building management and GSHP system designers to define the optimal size of the system regarding technical, environmental, and economic impacts of the system implementation, including payback period time. In addition, an algorithm is created to be utilized for a feasibility study for many different types of buildings. The algorithm is tested on a building that was built in 1930 and is used as a church located in Cork city. The heating of the building is currently provided by a 105kW gas boiler.Keywords: GSHP, greenhouse gas emission, low-enthalpy, renewable energy
Procedia PDF Downloads 2233025 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model
Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed
Abstract:
Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification
Procedia PDF Downloads 2713024 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system
Procedia PDF Downloads 1263023 Gene Distribution of CB1 Receptor rs2023239 in Thailand Cannabis Patients
Authors: Tanyaporn Chairoch
Abstract:
Introduction: Cannabis is a drug to treat patients with many diseases such as Multiple sclerosis, Alzheimer’s disease, and Epilepsy, where theycontain many active compounds such as delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). Especially, THC is the primary psychoactive ingredient in cannabis and binds to cannabinoid 1 (CB1) receptors. Moreover, CB1 is located on the neocortex, hippocampus, basal ganglia, cerebellum, and brainstem. In previous study, we found the association between the variant of CB1recptors gene (rs2023239) and decreased effect of nicotine reinforcement in patients. However, there are no data describing whether the distribution of CB1 receptor gene is a genetic marker for Thai patients who are treated with cannabis. Objective: Thus, the aim of this study we want to investigate the frequency of the CB1 receptor gene in Thai patients. Materials and Methods: All of sixty Thai patients received the medical cannabis for treatment who were recruited in this study. DNA will be extracted from EDTA whole blood by Genomic DNA Mini Kit. The genotyping of CNR1 gene (rs 2023239) was genotyped by the TaqMan real time PCR assay (ABI, Foster City, CA, USA).and using the real-time PCR ViiA7 (ABI, Foster City, CA, USA). Results: We found thirty-eight (63.3%) Thai patients were female, and twenty-two (36.70%) were male in this study with median age of 45.8 (range19 – 87 ) years. Especially, thirty-two (53.30%) medical cannabis tolerant controls were female ( 55%) and median age of52.1 (range 27 – 79 ) years. The most adverse effects for medical cannabis treatment was tachycardia. Furthermore, the number of rs 2023239 (TT) carriers was 26 of 27 (96.29%) in medical cannabis-induced adverse effects and 32 of 33 (96.96%) in tolerant controls. Additionally, rs 2023239 (CT) variant was found just only one of twenty-seven (3.7%) in medical cannabis-induced adverse effects and 1 of 33 (3.03%) in tolerant controls. Conclusions: The distribution of genetic variant in CNR1 gene might serve as a pharmacogenetics markers for screening before initiating the therapy with medical cannabis in Thai patients.Keywords: cannabis, pharmacogenetics, CNR1 gene, thai patient
Procedia PDF Downloads 1143022 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 463021 Oil-Oil Correlation Using Polar and Non-Polar Fractions of Crude Oil: A Case Study in Iranian Oil Fields
Authors: Morteza Taherinezhad, Ahmad Reza Rabbani, Morteza Asemani, Rudy Swennen
Abstract:
Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils genetically. Oil-oil correlation is generally estimated based on non-polar fractions of crude oil (e.g., saturate and aromatic compounds). Despite several advantages, the drawback of using these compounds is their susceptibility of being affected by secondary processes. The polar fraction of crude oil (e.g., asphaltenes) has similar characteristics to kerogen, and this structural similarity is preserved during migration, thermal maturation, biodegradation, and water washing. Therefore, these structural characteristics can be considered as a useful correlation parameter, and it can be concluded that asphaltenes from different reservoirs with the same genetic signatures have a similar origin. Hence in this contribution, an integrated study by using both non-polar and polar fractions of oil was performed to use the merits of both fractions. Therefore, five oil samples from oil fields in the Persian Gulf were studied. Structural characteristics of extracted asphaltenes were investigated by Fourier transform infrared (FTIR) spectroscopy. Graphs based on aliphatic and aromatic compounds (predominant compounds in asphaltenes structure) and sulphoxide and carbonyl functional groups (which are representatives of sulphur and oxygen abundance in asphaltenes) were used for comparison of asphaltenes structures in different samples. Non-polar fractions were analyzed by GC-MS. The study of asphaltenes showed the studied oil samples comprise two oil families with distinct genetic characteristics. The first oil family consists of Salman and Reshadat oil samples, and the second oil family consists of Resalat, Siri E, and Siri D oil samples. To validate our results, biomarker parameters were employed, and this approach completely confirmed previous results. Based on biomarker analyses, both oil families have a marine source rock, whereby marl and carbonate source rocks are the source rock for the first and the second oil family, respectively.Keywords: biomarker, non-polar fraction, oil-oil correlation, petroleum geochemistry, polar fraction
Procedia PDF Downloads 1393020 Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System
Authors: Dao Phuong Nam, Tran Van Tuyen, Do Trong Tan, Bui Minh Dinh, Nguyen Van Huong
Abstract:
In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system.Keywords: approximate/adaptive dynamic programming, ADP, adaptive optimal control law, input state stability, ISS, inverted pendulum
Procedia PDF Downloads 1973019 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 2953018 Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India
Authors: A. S. Vidyashree, C. M. Kalleshwaraswamy, R. Asokan, H. M. Mahadevaswamy
Abstract:
Termites are very vital ecological thespians in tropical ecosystem, having been designated as “ecosystem engineers”, due to their significant role in providing soil ecosystem services. Despite their importance, our understanding of a number of their basic biological processes in termites is extremely limited. Developing a better understanding of termite biology is closely dependent upon consistent species identification. At present, identification of termites is relied on soldier castes. But for many species, soldier caste is not reported, that creates confusion in identification. The use of molecular markers may be helpful in estimating phylogenetic relatedness between the termite species and estimating genetic differentiation among local populations within each species. To understand this, termites samples were collected from various places of Western Ghats covering four states namely Karnataka, Kerala, Tamil Nadu, Maharashtra during 2013-15. Termite samples were identified based on their morphological characteristics, molecular characteristics, or both. Survey on the termite fauna in Karnataka, Kerala, Maharashtra and Tamil Nadu indicated the presence of a 16 species belongs to 4 subfamilies under two families viz., Rhinotermitidae and Termitidae. Termititidae was the dominant family which was belonging to 4 genera and four subfamilies viz., Macrotermitinae, Amitermitinae, Nasutitermitinae and Termitinae. Amitermitinae had three species namely, Microcerotermes fletcheri, M. pakistanicus and Speculitermes sinhalensis. Macrotermitinae had the highest number of species belonging two genera, namely Microtermes and Odontotermes. Microtermes genus was with only one species i.e., Microtermes obesi. The genus Odontotermes was represented by the highest number of species (07), namely, O. obesus was the dominant (41 per cent) and the most widely distributed species in Karnataka, Karala, Maharashtra and Tamil nadu followed by O. feae (19 per cent), O.assmuthi (11 per cent) and others like O. bellahunisensis O. horni O. redemanni, O. yadevi. Nasutitermitinae was represented by two genera namely Nasutitermes anamalaiensis and Trinervitermes biformis. Termitinae subfamily was represented by Labiocapritermes distortus. Rhinotermitidae was represented by single subfamily Heterotermetinae. In Heterotermetinae, two species namely Heterotermes balwanthi and H. malabaricus were recorded. Genetic relationship among termites collected from various locations of Western Ghats of India was characterized based on mitochondrial DNA sequences (12S, 16S, and COII). Sequence analysis and divergence among the species was assessed. These results suggest that the use of both molecular and morphological approaches is crucial in ensuring accurate species identification. Efforts were made to understand their evolution and to address the ambiguities in morphological taxonomy. The implication of the study in revising the taxonomy of Indian termites, their characterization and molecular comparisons between the sequences are discussed.Keywords: isoptera, mitochondrial DNA sequences, rhinotermitidae, termitidae, Western ghats
Procedia PDF Downloads 2693017 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction
Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal
Abstract:
A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem.Keywords: circular arrays, first null beam width, side lobe level, FFA
Procedia PDF Downloads 2613016 A Novel Algorithm for Parsing IFC Models
Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai
Abstract:
Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD). Procedia PDF Downloads 3013015 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data
Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis
Abstract:
Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction
Procedia PDF Downloads 5963014 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems
Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber
Abstract:
Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement
Procedia PDF Downloads 1543013 Flashover Detection Algorithm Based on Mother Function
Authors: John A. Morales, Guillermo Guidi, B. M. Keune
Abstract:
Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines.Keywords: mother function, outages, lightning, sensitivity analysis
Procedia PDF Downloads 5893012 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 443011 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows
Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava
Abstract:
The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein
Procedia PDF Downloads 2753010 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 3273009 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot
Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan
Abstract:
Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.Keywords: ADAS, home zone parking pilot, object detection, visual SLAM
Procedia PDF Downloads 723008 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm
Authors: Monojit Manna, Arpan Adhikary
Abstract:
In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection
Procedia PDF Downloads 813007 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 3363006 Genome-Wide Homozygosity Analysis of the Longevous Phenotype in the Amish Population
Authors: Sandra Smieszek, Jonathan Haines
Abstract:
Introduction: Numerous research efforts have focused on searching for ‘longevity genes’. However, attempting to decipher the genetic component of the longevous phenotype have resulted in limited success and the mechanisms governing longevity remain to be explained. We conducted a genome-wide homozygosity analysis (GWHA) of the founder population of the Amish community in central Ohio. While genome-wide association studies using unrelated individuals have revealed many interesting longevity associated variants, these variants are typically of small effect and cannot explain the observed patterns of heritability for this complex trait. The Amish provide a large cohort of extended kinships allowing for in depth analysis via family-based approach excellent population due to its. Heritability of longevity increases with age with significant genetic contribution being seen in individuals living beyond 60 years of age. In our present analysis we show that the heritability of longevity is estimated to be increasing with age particularly on the paternal side. Methods: The present analysis integrated both phenotypic and genotypic data and led to the discovery of a series of variants, distinct for stratified populations across ages and distinct for paternal and maternal cohorts. Specifically 5437 subjects were analyzed and a subset of 893 successfully genotyped individuals was used to assess CHIP heritability. We have conducted the homozygosity analysis to examine if homozygosity is associated with increased risk of living beyond 90. We analyzed AMISH cohort genotyped for 614,957 SNPs. Results: We delineated 10 significant regions of homozygosity (ROH) specific for the age group of interest (>90). Of particular interest was ROH on chromosome 13, P < 0.0001. The lead SNPs rs7318486 and rs9645914 point to COL4A2 and our lead SNP. COL25A1 encodes one of the six subunits of type IV collagen, the C-terminal portion of the protein, known as canstatin, is an inhibitor of angiogenesis and tumor growth. COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities. The second region of interest points to IRS2. Furthermore we built a classifier using the obtained SNPs from the significant ROH region with 0.945 AUC giving ability to discriminate between those living beyond to 90 years of age and beyond. Conclusion: In conclusion our results suggest that a history of longevity does indeed contribute to increasing the odds of individual longevity. Preliminary results are consistent with conjecture that heritability of longevity is substantial when we start looking at oldest fifth and smaller percentiles of survival specifically in males. We will validate all the candidate variants in independent cohorts of centenarians, to test whether they are robustly associated with human longevity. The identified regions of interest via ROH analysis could be of profound importance for the understanding of genetic underpinnings of longevity.Keywords: regions of homozygosity, longevity, SNP, Amish
Procedia PDF Downloads 2403005 Location Management in Wireless Sensor Networks with Mobility
Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar
Abstract:
Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.Keywords: mobility management, motes, multihop, wireless sensor networks
Procedia PDF Downloads 4243004 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element
Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao
Abstract:
V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm
Procedia PDF Downloads 1763003 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options
Authors: Wajih Abbassi, Zouhaier Ben Khelifa
Abstract:
The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options
Procedia PDF Downloads 4313002 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing
Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano
Abstract:
Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning
Procedia PDF Downloads 447