Search results for: test automation quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18207

Search results for: test automation quality

627 Patterns and Predictors of Intended Service Use among Frail Older Adults in Urban China

Authors: Yuanyuan Fu

Abstract:

Background and Purpose: Along with the change of society and economy, the traditional home function of old people has gradually weakened in the contemporary China. Acknowledging these situations, to better meet old people’s needs on formal services and improve the quality of later life, this study seeks to identify patterns of intended service use among frail old people living in the communities and examined determinants that explain heterogeneous variations in old people’s intended service use patterns. Additionally, this study also tested the relationship between culture value and intended service use patterns and the mediating role of enabling factors in terms of culture value and intended service use patterns. Methods:Participants were recruited from Haidian District, Beijing, China in 2015. The multi-stage sampling method was adopted to select sub-districts, communities and old people aged 70 years old or older. After screening, 577 old people with limitations in daily life, were successfully interviewed. After data cleaning, 550 samples were included for data analysis. This study establishes a conceptual framework based on the Anderson Model (including predisposing factors, enabling factors and need factors), and further developed it by adding culture value factors (including attitudes towards filial piety and attitudes towards social face). Using a latent class analysis (LCA), this study classifies overall patterns of old people’s formal service utilization. Fourteen types of formal services were taken into account, including housework, voluntary support, transportation, home-delivered meals, and home-delivery medical care, elderly’s canteen and day-care center/respite care and so on. Structural equation modeling (SEM) was used to examine the direct effect of culture value on service use pattern, and the mediating effect of the enabling factors. Results: The LCA classified a hierarchical structure of service use patterns: multiple intended service use (N=69, 23%), selective intended service use (N=129, 23%), and light intended service use (N=352, 64%). Through SEM, after controlling predisposing factors and need factors, the results showed the significant direct effect of culture value on older people’s intended service use patterns. Enabling factors had a partial mediation effect on the relationship between culture value and the patterns. Conclusions and Implications: Differentiation of formal services may be important for meeting frail old people’s service needs and distributing program resources by identifying target populations for intervention, which may make reference to specific interventions to better support frail old people. Additionally, culture value had a unique direct effect on the intended service use patterns of frail old people in China, enriching our theoretical understanding of sources of culture value and their impacts. The findings also highlighted the mediation effects of enabling factors on the relationship between culture value factors and intended service use patterns. This study suggests that researchers and service providers should pay more attention to the important role of culture value factors in contributing to intended service use patterns and also be more sensitive to the mediating effect of enabling factors when discussing the relationship between culture value and the patterns.

Keywords: frail old people, intended service use pattern, culture value, enabling factors, contemporary China, latent class analysis

Procedia PDF Downloads 226
626 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 129
625 Quantitative Analysis Of Traffic Dynamics And Violation Patterns Triggered By Cruise Ship Tourism In Victoria, British Columbia

Authors: Muhammad Qasim, Laura Minet

Abstract:

Victoria (BC), Canada, is a major cruise ship destination, attracting over 600,000 tourists annually. Residents of the James Bay neighborhood, home to the Ogden Point cruise terminal, have expressed concerns about the impacts of cruise ship activity on local traffic, air pollution, and safety compliance. This study evaluates the effects of cruise ship-induced traffic in James Bay, focusing on traffic flow intensification, density surges, changes in traffic mix, and speeding violations. To achieve these objectives, traffic data was collected in James Bay during two key periods: May, before the peak cruise season, and August, during full cruise operations. Three Miovision cameras captured the vehicular traffic mix at strategic entry points, while nine traffic counters monitored traffic distribution and speeding violations across the network. Traffic data indicated an average volume of 308 vehicles per hour during peak cruise times in May, compared to 116 vehicles per hour when no ships were in port. Preliminary analyses revealed a significant intensification of traffic flow during cruise ship "hoteling hours," with a volume increase of approximately 10% per cruise ship arrival. A notable 86% surge in taxi presence was observed on days with three cruise ships in port, indicating a substantial shift in traffic composition, particularly near the cruise terminal. The number of tourist buses escalated from zero in May to 32 in August, significantly altering traffic dynamics within the neighborhood. The period between 8 pm and 11 pm saw the most significant increases in traffic volume, especially when three ships were docked. Higher vehicle volumes were associated with a rise in speed violations, although this pattern was inconsistent across all areas. Speeding violations were more frequent on roads with lower traffic density, while roads with higher traffic density experienced fewer violations, due to reduced opportunities for speeding in congested conditions. PTV VISUM software was utilized for fuzzy distribution analysis and to visualize traffic distribution across the study area, including an assessment of the Level of Service on major roads during periods before and during the cruise ship season. This analysis identified the areas most affected by cruise ship-induced traffic, providing a detailed understanding of the impact on specific parts of the transportation network. These findings underscore the significant influence of cruise ship activity on traffic dynamics in Victoria, BC, particularly during peak periods when multiple ships are in port. The study highlights the need for targeted traffic management strategies to mitigate the adverse effects of increased traffic flow, changes in traffic mix, and speed violations, thereby enhancing road safety in the James Bay neighborhood. Further research will focus on detailed emissions estimation to fully understand the environmental impacts of cruise ship activity in Victoria.

Keywords: cruise ship tourism, air quality, traffic violations, transport dynamics, pollution

Procedia PDF Downloads 22
624 Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement

Authors: Rajkumar Ghosh

Abstract:

Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics.

Keywords: earthquake, out-of-sequence thrust, disaster, human life

Procedia PDF Downloads 77
623 Insufficiency of Cardioprotection at Adaptation to Chronic Hypoxia and at Remote Postconditioning in Young and Aged Rats with Metabolic Syndrome, the Role of Metabolic Disorders or Opioid Signaling

Authors: Natalia V. Naryzhnaya, Alexandr V. Mukhomedzyanov, Ivan A. Derkachev, Boris K. Kurbatov, Leonid N. Maslov

Abstract:

Background: Techniques of adaptation to hypoxia and remote postconditioning (RPost) have great prospects for use in the clinic. However, recent studies have shown low efficacy of remote postconditioning in patients with AMI. We hypothesize that the reasons for this inefficiency may be metabolic disorders, which are very common, especially in patients with cardiovascular disease, and age of patients. The purpose of the study was to reveal the effectiveness of adaptation to chronic hypoxia and RPost. To determine the possible relationship between the decrease in the effectiveness of projective impacts and disorders of carbohydrate and lipid metabolism. Design: The study was carried out on Wistar rats 60 day old. MetS was induced by high-carbohydrate, high-fat diet (HСHFD). Modeling MS led to the formation of obesity, hypertension, impaired lipid and carbohydrate metabolism, hyperleptinemia, and moderate stress. Groups with adaptation to chronic hypoxia were subjected to hypoxia for 21 days at 12% O2 and 0.3% CO2 after complete of HСHFD. All animals were subjected to 45 min coronary occlusion and 120 min reperfusion. Groups with RPost, immediately after the end of ischemia, tourniquets were applied to the hind limbs in the area of the hip joint (3 times in the mode of 5 min ischemia, 5 min reperfusion). Results: RPost led to a twofold reduction of infarct size in rats with intact metabolism (р < 0.0001), while in rats with MetS, a decrease in infarct size during RPost was 25 % (p = 0.00003). A direct correlation was found between of infarct size during RPost and the serum leptin level of rats with MetC (r = 0.85). The presented data suggested that a decrease in the efficiency of remote postconditioning in rats with diet-induced metabolic syndrome depends on serum leptin. Chronic hypoxia resulted in a 38% reduced in infarct size in metabolically intact rats. The decrease of cardioprotection was observed in rats with chronic hypoxia and MetS. Infarct size showed a direct correlation with impaired glucose tolerance (AUC, glucose tolerance test, r = 0.034) and serum triglyceride levels (r = 0.39). Our study showed the dependence of cardioprotection in rats with metabolic syndrome during chronic hypoxia and DPost on opioids in the blood serum and myocardium, protein kinase C and NO synthase activity. Conclusion: The results obtained showed that the infarct-limiting efficiency of adaptation to hypoxia and remote postconditioning is reduced or completely absent in animals with metabolic syndrome. The increase in the infarction, in this case, directly depends on the disturbances in carbohydrate. lipid metabolism and opioids signaling. Funding: Investigation of effectiveness of chronic hypoxia at the metabolic syndrome was carried out within the support of Russian Science Foundation Grant 22-15-00048. Studies of the mechanisms of arterial hypertension in induced metabolic syndrome were carried out within the framework of the state assignment (122020300042-4). The work was performed using the Center for Collective Use "Medical Genomics".

Keywords: chronic hypoxia, opioids, remote postconditioning, metabolic syndrome

Procedia PDF Downloads 79
622 Community Participation and Place Identity as Mediators on the Impact of Resident Social Capital on Support Intention for Festival Tourism

Authors: Nien-Te Kuo, Yi-Sung Cheng, Kuo-Chien Chang

Abstract:

Cultural festival tourism is now seen by many as an opportunity to facilitate community development because it has significant influences on the economic, social, cultural, and political aspects of local communities. The potential for tourist attraction has been recognized as a useful tool to strengthen local economies from governments. However, most community festivals in Taiwan are short-lived, often only lasting for a few years or occasionally not making it past a one-off event. Researchers suggested that most governments and other stakeholders do not recognize the importance of building a partnership with residents when developing community tourism. Thus, the sustainable community tourism development still remains a key issue in the existing literature. The success of community tourism is related to the attitudes and lifestyles of local residents. In order to maintain sustainable tourism, residents need to be seen as development partners. Residents’ support intention for tourism development not only helps to increase awareness of local culture, history, the natural environment, and infrastructure, but also improves the interactive relationship between the host community and tourists. Furthermore, researchers have identified the social capital theory as the core of sustainable community tourism development. The social capital of residents has been seen as a good way to solve issues of tourism governance, forecast the participation behavior and improve support intention of residents. In addition, previous studies have pointed out the role of community participation and place identity in increasing resident support intention for tourism development. A lack of place identity is one of the main reasons that community tourism has become a mere formality and is not sustainable. It refers to how much residents participate during tourism development and is mainly influenced by individual interest. Scholars believed that the place identity of residents is the soul of community festivals. It shows the community spirit to visitors and has significant impacts on tourism benefits and support intention of residents in community tourism development. Although the importance of community participation and place identity have been confirmed by both governmental and non-governmental organizations, real-life execution still needs to be improved. This study aimed to use social capital theory to investigate the social structure between community residents, participation levels in festival tourism, degrees of place identity, and resident support intention for future community tourism development, and the causal relationship that these factors have with cultural festival tourism. A quantitative research approach was employed to examine the proposed model. Structural equation model was used to test and verify the proposed hypotheses. This was a case study of the Kaohsiung Zuoying Wannian Folklore Festival. The festival was located in the Zuoying District of Kaohsiung City, Taiwan. The target population of this study was residents who attended the festival. The results reveal significant correlations among social capital, community participation, place identity and support intention. The results also confirm that impacts of social capital on support intention were significantly mediated by community participation and place identity. Practical suggestions were provided for tourism operators and policy makers. This work was supported by the Ministry of Science and Technology of Taiwan, Republic of China, under the grant MOST-105-2410-H-328-013.

Keywords: community participation, place identity, social capital, support intention

Procedia PDF Downloads 326
621 Collaborative Program Student Community Service as a New Approach for Development in Rural Area in Case of Western Java

Authors: Brian Yulianto, Syachrial, Saeful Aziz, Anggita Clara Shinta

Abstract:

Indonesia, with a population of about two hundred and fifty million people in quantity, indicates the outstanding wealth of human resources. Hundreds of millions of the population scattered in various communities in various regions in Indonesia with the different characteristics of economic, social and unique culture. Broadly speaking, the community in Indonesia is divided into two classes, namely urban communities and rural communities. The rural communities characterized by low potential and management of natural and human resources, limited access of development, and lack of social and economic infrastructure, and scattered and isolated population. West Java is one of the provinces with the largest population in Indonesia. Based on data from the Central Bureau of Statistics in 2015 the number of population in West Java reached 46.7096 million souls spread over 18 districts and 9 cities. The big difference in geographical and social conditions of people in West Java from one region to another, especially the south to the north causing the gap is high. It is closely related to the flow of investment to promote the area. Poverty and underdevelopment are the classic problems that occur on a massive scale in the region as the effects of inequity in development. South Cianjur and Tasikmalaya area South became one of the portraits area where the existing potential has not been capable of prospering society. Tri Dharma College not only define the College as a pioneer implementation of education and research to improve the quality of human resources but also demanded to be a pioneer in the development through the concept of public service. Bandung Institute of Technology as one of the institutions of higher education to implement community service system through collaborative community work program "one of the university community" as one approach to developing villages. The program is based Community Service, where students are not only required to be able to take part in community service, but also able to develop a community development strategy that is comprehensive and integrity in cooperation with government agencies and non-government related as a real form of effort alignment potential, position and role from various parties. Areas of western Java in particular have high poverty rates and disparity. On the other hand, there are three fundamental pillars in the development of rural communities, namely economic development, community development, and the integrated infrastructure development. These pillars require the commitment of all components of community, including the students and colleges for upholding success. College’s community program is one of the approaches in the development of rural communities. ITB is committed to implement as one form of student community service as community-college programs that integrate all elements of the community which is called Kuliah Kerja Nyata-Thematic.

Keywords: development in rural area, collaborative, student community service, Kuliah Kerja Nyata-Thematic ITB

Procedia PDF Downloads 222
620 Current Applications of Artificial Intelligence (AI) in Chest Radiology

Authors: Angelis P. Barlampas

Abstract:

Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.

Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses

Procedia PDF Downloads 72
619 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 359
618 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria

Authors: Tomola Obamuyi

Abstract:

The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,

Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression

Procedia PDF Downloads 121
617 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic

Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez

Abstract:

The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.

Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis

Procedia PDF Downloads 341
616 Monitoring Air Pollution Effects on Children for Supporting Public Health Policy: Preliminary Results of MAPEC_LIFE Project

Authors: Elisabetta Ceretti, Silvia Bonizzoni, Alberto Bonetti, Milena Villarini, Marco Verani, Maria Antonella De Donno, Sara Bonetta, Umberto Gelatti

Abstract:

Introduction: Air pollution is a global problem. In 2013, the International Agency for Research on Cancer (IARC) classified air pollution and particulate matter as carcinogenic to human. The study of the health effects of air pollution in children is very important because they are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. Methods: The study was carried out on 6-8-year-old children living in five Italian towns in two different seasons. Two biomarkers of early biological effects, primary DNA damage detected with the comet assay and frequency of micronuclei, were investigated in buccal cells of children. Details of children diseases, socio-economic status, exposures to other pollutants and life-style were collected using a questionnaire administered to children’s parents. Child exposure to urban air pollution was assessed by analysing PM0.5 samples collected in the school areas for PAHs and nitro-PAHs concentration, lung toxicity and in vitro genotoxicity on bacterial and human cells. Data on the chemical features of the urban air during the study period were obtained from the Regional Agency for Environmental Protection. The project created also the opportunity to approach the issue of air pollution with the children, trying to raise their awareness on air quality, its health effects and some healthy behaviors by means of an educational intervention in the schools. Results: 1315 children were recruited for the study and participate in the first sampling campaign in the five towns. The second campaign, on the same children, is still ongoing. The preliminary results of the tests on buccal mucosa cells of children will be presented during the conference as well as the preliminary data about the chemical composition and the toxicity and genotoxicity features of PM0.5 samples. The educational package was tested on 250 children of the primary school and showed to be very useful, improving children knowledge about air pollution and its effects and stimulating their interest. Conclusions: The associations between levels of air pollutants, air mutagenicity and biomarkers of early effects will be investigated. A tentative model to calculate the global absolute risk of having early biological effects for air pollution and other variables together will be proposed and may be useful to support policy-making and community interventions to protect children from possible health effects of air pollutants.

Keywords: air pollution exposure, biomarkers of early effects, children, public health policy

Procedia PDF Downloads 330
615 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 50
614 Phonological Processing and Its Role in Pseudo-Word Decoding in Children Learning to Read Kannada Language between 5.6 to 8.6 Years

Authors: Vangmayee. V. Subban, Somashekara H. S, Shwetha Prabhu, Jayashree S. Bhat

Abstract:

Introduction and Need: Phonological processing is critical in learning to read alphabetical and non-alphabetical languages. However, its role in learning to read Kannada an alphasyllabary is equivocal. The literature has focused on the developmental role of phonological awareness on reading. To the best of authors knowledge, the role of phonological memory and phonological naming has not been addressed in alphasyllabary Kannada language. Therefore, there is a need to evaluate the comprehensive role of the phonological processing skills in Kannada on word decoding skills during the early years of schooling. Aim and Objectives: The present study aimed to explore the phonological processing abilities and their role in learning to decode pseudowords in children learning to read the Kannada language during initial years of formal schooling between 5.6 to 8.6 years. Method: In this cross sectional study, 60 typically developing Kannada speaking children, 20 each from Grade I, Grade II, and Grade III between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. Phonological processing abilities were assessed using an assessment tool specifically developed to address the objectives of the present research. The assessment tool was content validated by subject experts and had good inter and intra-subject reliability. Phonological awareness was assessed at syllable level using syllable segmentation, blending, and syllable stripping at initial, medial and final position. Phonological memory was assessed using pseudoword repetition task and phonological naming was assessed using rapid automatized naming of objects. Both phonological awareneness and phonological memory measures were scored for the accuracy of the response, whereas Rapid Automatized Naming (RAN) was scored for total naming speed. Results: The mean scores comparison using one-way ANOVA revealed a significant difference (p ≤ 0.05) between the groups on all the measures of phonological awareness, pseudoword repetition, rapid automatized naming, and pseudoword reading. Subsequent post-hoc grade wise comparison using Bonferroni test revealed significant differences (p ≤ 0.05) between each of the grades for all the tasks except (p ≥ 0.05) for syllable blending, syllable stripping, and pseudoword repetition between Grade II and Grade III. The Pearson correlations revealed a highly significant positive correlation (p=0.000) between all the variables except phonological naming which had significant negative correlations. However, the correlation co-efficient was higher for phonological awareness measures compared to others. Hence, phonological awareness was chosen a first independent variable to enter in the hierarchical regression equation followed by rapid automatized naming and finally, pseudoword repetition. The regression analysis revealed syllable awareness as a single most significant predictor of pseudoword reading by explaining the unique variance of 74% and there was no significant change in R² when RAN and pseudoword repetition were added subsequently to the regression equation. Conclusion: Present study concluded that syllable awareness matures completely by Grade II, whereas the phonological memory and phonological naming continue to develop beyond Grade III. Amongst phonological processing skills, phonological awareness, especially syllable awareness is crucial for word decoding than phonological memory and naming during initial years of schooling.

Keywords: phonological awareness, phonological memory, phonological naming, phonological processing, pseudo-word decoding

Procedia PDF Downloads 175
613 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V

Authors: Javed Iqbal

Abstract:

The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.

Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells

Procedia PDF Downloads 241
612 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines

Authors: Cristobal García

Abstract:

The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.

Keywords: SHM, vibrations, connections, floating offshore platform

Procedia PDF Downloads 125
611 Ecological Relationships Between Material, Colonizing Organisms, and Resulting Performances

Authors: Chris Thurlbourne

Abstract:

Due to the continual demand for material to build, and a limit of good environmental material credentials of 'normal' building materials, there is a need to look at new and reconditioned material types - both biogenic and non-biogenic - and a field of research that accompanies this. This research development focuses on biogenic and non-biogenic material engineering and the impact of our environment on new and reconditioned material types. In our building industry and all the industries involved in constructing our built environment, building material types can be broadly categorized into two types, biogenic and non-biogenic material properties. Both play significant roles in shaping our built environment. Regardless of their properties, all material types originate from our earth, whereas many are modified through processing to provide resistance to 'forces of nature', be it rain, wind, sun, gravity, or whatever the local environmental conditions throw at us. Modifications are succumbed to offer benefits in endurance, resistance, malleability in handling (building with), and ergonomic values - in all types of building material. We assume control of all building materials through rigorous quality control specifications and regulations to ensure materials perform under specific constraints. Yet materials confront an external environment that is not controlled with live forces undetermined, and of which materials naturally act and react through weathering, patination and discoloring, promoting natural chemical reactions such as rusting. The purpose of the paper is to present recent research that explores the after-life of specific new and reconditioned biogenic and non-biogenic material types and how the understanding of materials' natural processes of transformation when exposed to the external climate, can inform initial design decisions. With qualities to receive in a transient and contingent manner, ecological relationships between material, the colonizing organisms and resulting performances invite opportunities for new design explorations for the benefit of both the needs of human society and the needs of our natural environment. The research follows designing for the benefit of both and engaging in both biogenic and non-biogenic material engineering whilst embracing the continual demand for colonization - human and environment, and the aptitude of a material to be colonized by one or several groups of living organisms without necessarily undergoing any severe deterioration, but embracing weathering, patination and discoloring, and at the same time establishing new habitat. The research follows iterative prototyping processes where knowledge has been accumulated via explorations of specific material performances, from laboratory to construction mock-ups focusing on the architectural qualities embedded in control of production techniques and facilitating longer-term patinas of material surfaces to extend the aesthetic beyond common judgments. Experiments are therefore focused on how the inherent material qualities drive a design brief toward specific investigations to explore aesthetics induced through production, patinas and colonization obtained over time while exposed and interactions with external climate conditions.

Keywords: biogenic and non-biogenic, natural processes of transformation, colonization, patina

Procedia PDF Downloads 87
610 Developing Geriatric Oral Health Network is a Public Health Necessity for Older Adults

Authors: Maryam Tabrizi, Shahrzad Aarup

Abstract:

Objectives- Understanding the close association between oral health and overall health for older adults at the right time and right place, a person, focus treatment through Project ECHO telementoring. Methodology- Data from monthly ECHO telementoring sessions were provided for three years. Sessions including case presentations, overall health conditions, considering medications, organ functions limitations, including the level of cognition. Contributions- Providing the specialist level of providing care to all elderly regardless of their location and other health conditions and decreasing oral health inequity by increasing workforce via Project ECHO telementoring program worldwide. By 2030, the number of adults in the USA over the age of 65 will increase more than 60% (approx.46 million) and over 22 million (30%) of 74 million older Americans will need specialized geriatrician care. In 2025, a national shortage of medical geriatricians will be close to 27,000. Most individuals 65 and older do not receive oral health care due to lack of access, availability, or affordability. One of the main reasons is a significant shortage of Oral Health (OH) education and resources for the elderly, particularly in rural areas. Poor OH is a social stigma, a thread to quality and safety of overall health of the elderly with physical and cognitive decline. Poor OH conditions may be costly and sometimes life-threatening. Non-traumatic dental-related emergency department use in Texas alone was over $250 M in 2016. Most elderly over the age of 65 present with at least one or multiple chronic diseases such as arthritis, diabetes, heart diseases, and chronic obstructive pulmonary disease (COPD) are at higher risk to develop gum (periodontal) disease, yet they are less likely to get dental care. In addition, most older adults take both prescription and over-the-counter drugs; according to scientific studies, many of these medications cause dry mouth. Reduced saliva flow due to aging and medications may increase the risk of cavities and other oral conditions. Most dental schools have already increased geriatrics OH in their educational curriculums, but the aging population growth worldwide is faster than growing geriatrics dentists. However, without the use of advanced technology and creating a network between specialists and primary care providers, it is impossible to increase the workforce, provide equitable oral health to the elderly. Project ECHO is a guided practice model that revolutionizes health education and increases the workforce to provide best-practice specialty care and reduce health disparities. Training oral health providers for utilizing the Project ECHO model is a logical response to the shortage and increases oral health access to the elderly. Project ECHO trains general dentists & hygienists to provide specialty care services. This means more elderly can get the care they need, in the right place, at the right time, with better treatment outcomes and reduces costs.

Keywords: geriatric, oral health, project echo, chronic disease, oral health

Procedia PDF Downloads 174
609 Advanced Statistical Approaches for Identifying Predictors of Poor Blood Pressure Control: A Comprehensive Analysis Using Multivariable Logistic Regression and Generalized Estimating Equations (GEE)

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Effective management of hypertension remains a critical public health challenge, particularly among racially and ethnically diverse populations. This study employs sophisticated statistical models to rigorously investigate the predictors of poor blood pressure (BP) control, with a specific focus on demographic, socioeconomic, and clinical risk factors. Leveraging a large sample of 19,253 adults drawn from the National Health and Nutrition Examination Survey (NHANES) across three distinct time periods (2013-2014, 2015-2016, and 2017-2020), we applied multivariable logistic regression and generalized estimating equations (GEE) to account for the clustered structure of the data and potential within-subject correlations. Our multivariable models identified significant associations between poor BP control and several key predictors, including race/ethnicity, age, gender, body mass index (BMI), prevalent diabetes, and chronic kidney disease (CKD). Non-Hispanic Black individuals consistently exhibited higher odds of poor BP control across all periods (OR = 1.99; 95% CI: 1.69, 2.36 for the overall sample; OR = 2.33; 95% CI: 1.79, 3.02 for 2017-2020). Younger age groups demonstrated substantially lower odds of poor BP control compared to individuals aged 75 and older (OR = 0.15; 95% CI: 0.11, 0.20 for ages 18-44). Men also had a higher likelihood of poor BP control relative to women (OR = 1.55; 95% CI: 1.31, 1.82), while BMI ≥35 kg/m² (OR = 1.76; 95% CI: 1.40, 2.20) and the presence of diabetes (OR = 2.20; 95% CI: 1.80, 2.68) were associated with increased odds of poor BP management. Further analysis using GEE models, accounting for temporal correlations and repeated measures, confirmed the robustness of these findings. Notably, individuals with chronic kidney disease displayed markedly elevated odds of poor BP control (OR = 3.72; 95% CI: 3.09, 4.48), with significant differences across the survey periods. Additionally, higher education levels and better self-reported diet quality were associated with improved BP control. College graduates exhibited a reduced likelihood of poor BP control (OR = 0.64; 95% CI: 0.46, 0.89), particularly in the 2015-2016 period (OR = 0.48; 95% CI: 0.28, 0.84). Similarly, excellent dietary habits were associated with significantly lower odds of poor BP control (OR = 0.64; 95% CI: 0.44, 0.94), underscoring the importance of lifestyle factors in hypertension management. In conclusion, our findings provide compelling evidence of the complex interplay between demographic, clinical, and socioeconomic factors in predicting poor BP control. The application of advanced statistical techniques such as GEE enhances the reliability of these results by addressing the correlated nature of repeated observations. This study highlights the need for targeted interventions that consider racial/ethnic disparities, clinical comorbidities, and lifestyle modifications in improving BP control outcomes.

Keywords: hypertension, blood pressure, NHANES, generalized estimating equations

Procedia PDF Downloads 11
608 A Study on Green Building Certification Systems within the Context of Anticipatory Systems

Authors: Taner Izzet Acarer, Ece Ceylan Baba

Abstract:

This paper examines green building certification systems and their current processes in comparison with anticipatory systems. Rapid growth of human population and depletion of natural resources are causing irreparable damage to urban and natural environment. In this context, the concept of ‘sustainable architecture’ has emerged in the 20th century so as to establish and maintain standards for livable urban spaces, to improve quality of urban life, and to preserve natural resources for future generations. The construction industry is responsible for a large part of the resource consumption and it is believed that the ‘green building’ designs that emerge in construction industry can reduce environmental problems and contribute to sustainable development around the world. A building must meet a specific set of criteria, set forth through various certification systems, in order to be eligible for designation as a green building. It is disputable whether methods used by green building certification systems today truly serve the purposes of creating a sustainable world. Accordingly, this study will investigate the sets of rating systems used by the most popular green building certification programs, including LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment's Environmental Assessment Methods), DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen System), in terms of ‘Anticipatory Systems’ in accordance with the certification processes and their goals, while discussing their contribution to architecture. The basic methodology of the study is as follows. Firstly analyzes of brief historical and literature review of green buildings and certificate systems will be stated. Secondly, processes of green building certificate systems will be disputed by the help of anticipatory systems. Anticipatory Systems is a set of systems designed to generate action-oriented projections and to forecast potential side effects using the most current data. Anticipatory Systems pull the future into the present and take action based on future predictions. Although they do not have a claim to see into the future, they can provide foresight data. When shaping the foresight data, Anticipatory Systems use feedforward instead of feedback, enabling them to forecast the system’s behavior and potential side effects by establishing a correlation between the system’s present/past behavior and projected results. This study indicates the goals and current status of LEED, BREEAM and DGNB rating systems that created by using the feedback technique will be examined and presented in a chart. In addition, by examining these rating systems with the anticipatory system that using the feedforward method, the negative influences of the potential side effects on the purpose and current status of the rating systems will be shown in another chart. By comparing the two obtained data, the findings will be shown that rating systems are used for different goals than the purposes they are aiming for. In conclusion, the side effects of green building certification systems will be stated by using anticipatory system models.

Keywords: anticipatory systems, BREEAM, certificate systems, DGNB, green buildings, LEED

Procedia PDF Downloads 220
607 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff

Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers

Abstract:

Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.

Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development

Procedia PDF Downloads 128
606 Cytochrome B Diversity and Phylogeny of Egyptian Sheep Breeds

Authors: Othman E. Othman, Agnés Germot, Daniel Petit, Abderrahman Maftah

Abstract:

Threats to the biodiversity are increasing due to the loss of genetic diversity within the species utilized in agriculture. Due to the progressive substitution of the less productive, locally adapted and native breeds by highly productive breeds, the number of threatened breeds is increased. In these conditions, it is more strategically important than ever to preserve as much the farm animal diversity as possible, to ensure a prompt and proper response to the needs of future generations. Mitochondrial (mtDNA) sequencing has been used to explain the origins of many modern domestic livestock species. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. Because of the eastern location of Egypt in the Mediterranean basin and the presence of fat-tailed sheep breeds- character quite common in Turkey and Syria- where genotypes that seem quite primitive, the phylogenetic studies of Egyptian sheep breeds become particularly attractive. We aimed in this work to clarify the genetic affinities, biodiversity and phylogeny of five Egyptian sheep breeds using cytochrome B sequencing. Blood samples were collected from 63 animals belonging to the five tested breeds; Barki, Rahmani, Ossimi, Saidi and Sohagi. The total DNA was extracted and the specific primer allowed the conventional PCR amplification of the cytochrome B region of mtDNA (approximately 1272 bp). PCR amplified products were purified and sequenced. The alignment of Sixty-three samples was done using BioEdit software. DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 34 polymorphic sites leading to the formation of 18 haplotypes. The haplotype diversity in five tested breeds ranged from 0.676 in Rahmani breed to 0.894 in Sohagi breed. The genetic distances (D) and the average number of pairwise differences (Dxy) between breeds were estimated. The lowest distance was observed between Rahmani and Saidi (D: 1.674 and Dxy: 0.00150) while the highest distance was observed between Ossimi and Sohagi (D: 5.233 and Dxy: 0.00475). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of the 63 analyzed samples were aligned with references sequences of different haplogroups. The phylogeny result showed the presence of three haplogroups (HapA, HapB and HapC) in the 63 examined samples. The other two haplogroups described in literature (HapD and HapE) were not found. The result showed that 50 out of 63 tested animals cluster with haplogroup B (79.37%) whereas 7 tested animals cluster with haplogroup A (11.11%) and 6 animals cluster with haplogroup C (9.52%). In conclusion, the phylogenetic reconstructions showed that the majority of Egyptian sheep breeds belonging to haplogroup B which is the dominant haplogroup in Eastern Mediterranean countries like Syria and Turkey. Some individuals are belonging to haplogroups A and C, suggesting that the crosses were done with other breeds for characteristic selection for growth and wool quality.

Keywords: cytochrome B, diversity, phylogheny, Egyptian sheep breeds

Procedia PDF Downloads 375
605 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 259
604 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.

Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI

Procedia PDF Downloads 50
603 A Supply Chain Risk Management Model Based on Both Qualitative and Quantitative Approaches

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

In today’s business, it is well-recognized that risk is an important factor that needs to be taken into consideration before a decision is made. Studies indicate that both the number of risks faced by organizations and their potential consequences are growing. Supply chain risk management has become one of the major concerns for practitioners and researchers. Supply chain leaders and scholars are now focusing on the importance of managing supply chain risk. In order to meet the challenge of managing and mitigating supply chain risk (SCR), we must first identify the different dimensions of SCR and assess its relevant probability and severity. SCR has been classified in many different ways, and there are no consistently accepted dimensions of SCRs and several different classifications are reported in the literature. Basically, supply chain risks can be classified into two dimensions namely disruption risk and operational risk. Disruption risks are those caused by events such as bankruptcy, natural disasters and terrorist attack. Operational risks are related to supply and demand coordination and uncertainty, such as uncertain demand and uncertain supply. Disruption risks are rare but severe and hard to manage, while operational risk can be reduced through effective SCM activities. Other SCRs include supply risk, process risk, demand risk and technology risk. In fact, the disorganized classification of SCR has created confusion for SCR scholars. Moreover, practitioners need to identify and assess SCR. As such, it is important to have an overarching framework tying all these SCR dimensions together for two reasons. First, it helps researchers use these terms for communication of ideas based on the same concept. Second, a shared understanding of the SCR dimensions will support the researchers to focus on the more important research objective: operationalization of SCR, which is very important for assessing SCR. In general, fresh food supply chain is subject to certain level of risks, such as supply risk (low quality, delivery failure, hot weather etc.) and demand risk (season food imbalance, new competitors). Effective strategies to mitigate fresh food supply chain risk are required to enhance operations. Before implementing effective mitigation strategies, we need to identify the risk sources and evaluate the risk level. However, assessing the supply chain risk is not an easy matter, and existing research mainly use qualitative method, such as risk assessment matrix. To address the relevant issues, this paper aims to analyze the risk factor of the fresh food supply chain using an approach comprising both fuzzy logic and hierarchical holographic modeling techniques. This novel approach is able to take advantage the benefits of both of these well-known techniques and at the same time offset their drawbacks in certain aspects. In order to develop this integrated approach, substantial research work is needed to effectively combine these two techniques in a seamless way, To validate the proposed integrated approach, a case study in a fresh food supply chain company was conducted to verify the feasibility of its functionality in a real environment.

Keywords: fresh food supply chain, fuzzy logic, hierarchical holographic modelling, operationalization, supply chain risk

Procedia PDF Downloads 243
602 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 41
601 Productivity of Grain Sorghum-Cowpea Intercropping System: Climate-Smart Approach

Authors: Mogale T. E., Ayisi K. K., Munjonji L., Kifle Y. G.

Abstract:

Grain sorghum and cowpea are important staple crops in many areas of South Africa, particularly the Limpopo Province. The two crops are produced under a wide range of unsustainable conventional methods, which reduces productivity in the long run. Climate-smart traditional methods such as intercropping can be adopted to ensure sustainable production of these important two crops in the province. A no-tillage field experiment was laid out in a randomised complete block design (RCBD) with four replications over two seasons in two distinct agro-ecological zones, Syferkuil and Ofcolacoin, the province to assess the productivity of sorghum-cowpea intercropped under two cowpea densities.LCi Ultra compact photosynthesis machine was used to collect photosynthetic rate data biweekly between 11h00 and 13h00 until physiological maturity. Biomass and grain yield of the component crops in binary and sole cultures were determined at harvest maturity from middle rows of 2.7 m2 area. The biomass was oven dried in the laboratory at 65oC till constant weight. To obtain grain yield, harvested sorghum heads and cowpea pods were threshed, cleaned, and weighed. Harvest index (HI) and land equivalent ratio (LER) of the two crops were calculated to assess intercrop productivity relative to sole cultures. Data was analysed using the statistical analysis software system (SAS) 9.4 version, followed by mean separation using the least significant difference method. The photosyntheticrate of sorghum-cowpea intercrop was influenced by cowpea density and sorghum cultivar. Photosynthetic rate under low density was higher compared to high density, but this was dependent on the growing conditions. Dry biomass accumulation, grain yield, and harvest index differed among the sorghum cultivars and cowpea in both binary and sole cultures at the two test locations during the 2018/19 and 2020/21 growing seasons. Cowpea grain and dry biomass yields werein excess of 60% under high density compared to low density in both binary and sole cultures. The results revealed that grain yield accumulation of sorghum cultivars was influenced by the density of the companion cowpea crop as well as the production season. For instant, at Syferkuil, Enforcer and Ns5511 accumulated high yield under low density, whereas, at Ofcolaco, the higher yield was recorded under high density. Generally, under low cowpea density, cultivar Enforcer produced relatively higher grain yield whereas, under higher density, Titan yield was superior. The partial and total LER varied with growing season and the treatments studied. The total LERs exceeded 1.0 at the two locations across seasons, ranging from 1.3 to 1.8. From the results, it can be concluded that resources were used more efficiently in sorghum-cowpea intercrop at both Syferkuil and Ofcolaco. Furthermore, intercropping system improved photosynthetic rate, grain yield, and dry matter accumulation of sorghum and cowpea depending on growing conditions and density of cowpea. Hence, the sorghum-cowpea intercropping system can be adopted as a climate-smart practice for sustainable production in the Limpopo province.

Keywords: cowpea, climate-smart, grain sorghum, intercropping

Procedia PDF Downloads 222
600 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 121
599 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1

Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.

Abstract:

In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.

Keywords: biochip, herpes virus, SPR

Procedia PDF Downloads 417
598 Home Environment and Self-Efficacy Beliefs among Native American, African American and Latino Adolescents

Authors: Robert H. Bradley

Abstract:

Many minority adolescents in the United States live in adverse circumstances that pose long-term threats to their well-being. A strong sense of personal control and self-efficacy can help youth mitigate some of those risks and may help protect youth from influences connected with deviant peer groups. Accordingly, it is important to identify conditions that help foster feelings of efficacy in areas that seem critical for the accomplishment of developmental tasks during adolescence. The purpose of this study is to examine two aspects of the home environment (modeling and encouragement of maturity, family companionship and investment) and their relation to three components of self efficacy (self efficacy in enlisting social resources, self efficacy for engaging in independent learning, and self-efficacy for self-regulatory behavior) in three groups of minority adolescents (Native American, African American, Latino). The sample for this study included 54 Native American, 131 African American, and 159 Latino families, each with a child between 16 and 20 years old. The families were recruited from four states: Arizona, Arkansas, California, and Oklahoma. Each family was administered the Late Adolescence version of the Home Observation for Measurement of the Environment (HOME) Inventory and each adolescent completed a 30-item measure of perceived self-efficacy. Three areas of self-efficacy beliefs were examined for this study: enlisting social resources, independent learning, and self-regulation. Each of the three areas of self-efficacy was regressed on the two aspects of the home environment plus overall household risk. For Native Americans, modeling and encouragement were significant for self-efficacy pertaining to enlisting social resources and independent learning. For African Americans, companionship and investment was significant in all three models. For Latinos, modeling and encouragement was significant for self-efficacy pertaining to enlisting social resources and companionship and investment were significant for the other two areas of self-efficacy. The findings show that even as minority adolescents are becoming more individuated from their parents, the quality of experiences at home continues to be associated with their feelings of self-efficacy in areas important for adaptive functioning in adult life. Specifically, individuals can develop a sense that they are efficacious in performing key tasks relevant to work, social relationships, and management of their own behavior if they are guided in how to deal with key challenges and they have been exposed and supported by others who are competent in dealing with such challenges. The findings presented in this study would seem useful given that there is so little current research on home environmental factors connected to self-efficacy beliefs among adolescents in the three groups examined. It would seem worthwhile that personnel from health, human service and juvenile justice agencies give attention to supporting parents in communicating with adolescents, offering expectations to adolescents in mutually supportive ways, and in engaging with adolescents in productive activities. In comparison to programs for parents of young children, there are few specifically designed for parents of children in middle childhood and adolescence.

Keywords: family companionship, home environment, household income, modeling, self-efficacy

Procedia PDF Downloads 238