Search results for: interbank networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2806

Search results for: interbank networks

1096 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito

Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar

Abstract:

The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.

Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes

Procedia PDF Downloads 239
1095 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 124
1094 An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains

Authors: Yohanes Kristianto

Abstract:

The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.

Keywords: life cycle assessment, techno-economic optimization, sustainable supply chains, closed loop economy

Procedia PDF Downloads 149
1093 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing

Authors: Jaimin Patel

Abstract:

Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.

Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man in middle attack

Procedia PDF Downloads 278
1092 The Exploration of Sustainable Landscape in Iran: From Persian Garden to Modern Park

Authors: Honey Fadaie, Vahid Parhoodeh

Abstract:

This paper concentrates on the result of research based on studies on parameters of sustainability in Persian Garden design as a traditional Iranian landscape and in a contemporary park, Jamshidieh in Iran as a new experience of re-creation of Persian Gardens’ sustainable design. Since, sustainable development has three parts: social, economic and environmental. The complexities of each part are too great to discuss in a paper of this length, thus the authors decided to analyze the design of Persian garden by considering their environmental sustainability. By the analysis of sustainable features and characteristics of traditional gardens, and exploration of parameters of sustainability in Iranian modern landscape, Such as Jamshideh Park, the main objective of this research is to identify the strategies for sustainable landscaping and parameters of creating sustainable green spaces for contemporary cities. The results demonstrate that in Persian Gardens, sustainable parameters such as productive networks and local renewable materials have been used to achieve sustainable development. At the conclusion, guidelines and recommendations for sustainable landscaping are presented.

Keywords: Jamshidieh park, Persian garden, sustainable landscape, urban green space

Procedia PDF Downloads 474
1091 Prediction of Extreme Precipitation in East Asia Using Complex Network

Authors: Feng Guolin, Gong Zhiqiang

Abstract:

In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.

Keywords: synchronization, climate network, prediction, rainfall

Procedia PDF Downloads 442
1090 Tourism Challenges and Prospects: The Nigerian Experience: A Case Study of Benin City

Authors: Olawale-Olakunle Olajumoke Elizabeth

Abstract:

There are many challenges which are been encountered in the area of tourism in Nigeria. This research work on Tourism Challenges and Prospects: The Nigerian Experience with a case study of Benin City, was carried out so as to identify the various challenges. Questionnaires were designed and administered in the various locations of Benin City, using the designed objectives and hypothesis. Use is made of both primary and secondary data collections, to gather information. The obtained data were subjected to statistical analysis where results were obtained for discussion. The results obtained showed that Tourism in the area is grossly affected by factors such as lack of preferred destination, lack of consistency in policy, erratic power-supply, bad road networks, insecurity in the city and perennial conflicts, no enabling environment for investors or tourists among others. It was revealed that touristic activities in the area are at low level due to economic hardship and this is rubbing the city of its contribution to the national economy. It is however recommended that the government should create an enabling environment for both investors and tourists, as this will fasten the development of tourism in the city.

Keywords: destination, network, tourists and investors, Nigeria, industry

Procedia PDF Downloads 384
1089 A Review of Routing Protocols for Mobile Ad-Hoc NETworks (MANET)

Authors: Hafiza Khaddija Saman, Muhammad Sufyan

Abstract:

The increase in availability and popularity of mobile wireless devices has led researchers to develop a wide variety of Mobile Ad-hoc Networking (MANET) protocols to exploit the unique communication opportunities presented by these devices. Devices are able to communicate directly using the wireless spectrum in a peer-to-peer fashion, and route messages through intermediate nodes, however, the nature of wireless shared communication and mobile devices result in many routing and security challenges which must be addressed before deploying a MANET. In this paper, we investigate the range of MANET routing protocols available and discuss the functionalities of several ranging from early protocols such as DSDV to more advanced such as MAODV, our protocol study focuses upon works by Perkins in developing and improving MANET routing. A range of literature relating to the field of MANET routing was identified and reviewed, we also reviewed literature on the topic of securing AODV based MANETs as this may be the most popular MANET protocol. The literature review identified a number of trends within research papers such as exclusive use of the random waypoint mobility model, excluding key metrics from simulation results and not comparing protocol performance against available alternatives.

Keywords: protocol, MANET, ad-Hoc, communication

Procedia PDF Downloads 260
1088 Communication Layer Security in Smart Farming: A Survey on Wireless Technologies

Authors: Hossein Mohammadi Rouzbahani, Hadis Karimipour, Evan Fraser, Ali Dehghantanha, Emily Duncan, Arthur Green, Conchobhair Russell

Abstract:

Human population growth has driven rising demand for food that has, in turn, imposed huge impacts on the environment. In an effort to reconcile our need to produce more sustenance while also protecting the world’s ecosystems, farming is becoming more reliant on smart tools and communication technologies. Developing a smart farming framework allows farmers to make more efficient use of inputs, thus protecting water quality and biodiversity habitat. Internet of Things (IoT), which has revolutionized every sphere of the economy, is being applied to agriculture by connecting on-farm devices and providing real-time monitoring of everything from environmental conditions to market signals through to animal health data. However, utilizing IoT means farming networks are now vulnerable to malicious activities, mostly when wireless communications are highly employed. With that in mind, this research aims to review different utilized communication technologies in smart farming. Moreover, possible cyber-attacks are investigated to discover the vulnerabilities of communication technologies considering the most frequent cyber-attacks that have been happened.

Keywords: smart farming, Internet of Things, communication layer, cyber-attack

Procedia PDF Downloads 241
1087 An Efficient Encryption Scheme Using DWT and Arnold Transforms

Authors: Ali Abdrhman M. Ukasha

Abstract:

Data security needed in data transmission, storage, and communication to ensure the security. The color image is decomposed into red, green, and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using a key image that has same original size and is generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours of color image recovery can be obtained with accepted level of distortion using Canny edge detector. Experiments have demonstrated that proposed algorithm can fully encrypt 2D color image and completely reconstructed without any distortion. It has shown that the color image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.

Keywords: color image, wavelet transform, edge detector, Arnold transform, lossy image encryption

Procedia PDF Downloads 482
1086 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector

Procedia PDF Downloads 371
1085 Genesis of Entrepreneur Business Models in New Ventures

Authors: Arash Najmaei, Jo Rhodes, Peter Lok, Zahra Sadeghinejad

Abstract:

In this article, we endeavor to explore how a new business model comes into existence in the Australian cloud-computing eco-system. Findings from multiple case study methodology reveal that to develop a business model new ventures adopt a three-phase approach. In the first phase, labelled as business model ideation (BMID) various ideas for a viable business model are generated from both internal and external networks of the entrepreneurial team and the most viable one is chosen. Strategic consensus and commitment are generated in the second phase. This phase is a business modelling strategic action phase. We labelled this phase as business model strategic commitment (BMSC) because through commitment and the subsequent actions of executives resources are pooled, coordinated and allocated to the business model. Three complementary sets of resources shape the business model: managerial (MnRs), marketing (MRs) and technological resources (TRs). The third phase is the market-test phase where the business model is reified through the delivery of the intended value to customers and conversion of revenue into profit. We labelled this phase business model actualization (BMAC). Theoretical and managerial implications of these findings will be discussed and several directions for future research will be illuminated.

Keywords: entrepreneur business model, high-tech venture, resources, conversion of revenue

Procedia PDF Downloads 444
1084 Mentoring in Translation: A Tool for Future Translators

Authors: Ana Sofia Saldanha

Abstract:

The globalization is changing the translation world day after day, year after year. The need to know more about new technologies, clients, companies and social networks is becoming more and more demanding and competitive. The recently graduated translators usually do not know where to go, what to do or even who to contact to start their careers in translation. It is well known that there are innumerous webinars, books, blogs, webpages and even Facebook pages indicating what to do, what not to do, rates, how your CV should look like, etc. but are these pieces of advice of real translators? Translators, who work daily with clients, who understand their demands, requests, questions? As far as today`s trends, the answer is NO. Most of these pieces of advice are just theoretical and far away from the real translation world. Therefore, mentoring is becoming a very important tool to help and guide new translators starting their career. An effective and well-oriented mentoring is a powerful way to orient these translators on how to create their CVs, where to send CVs, how to approach clients, how to answer emails and how to negotiate rates in an efficient way. Mentoring is crucial when properly delivered by professional and experienced translators, to help developing careers. The advice and orientation sessions are almost a 'weapon' to destroy the barriers created by opinions, by influences or even by universities. This new trend is the future path of new translators and is the future of the translation industry and professionals, however minds and spirits need to be opened and engaged in this new way of developing skills.

Keywords: mentoring, translation, translators, orientation, professional path

Procedia PDF Downloads 179
1083 Gender and Advertisements: A Content Analysis of Pakistani Prime Time Advertisements

Authors: Aaminah Hassan

Abstract:

Advertisements carry a great potential to influence our lives because they are crafted to meet particular ends. Stereotypical representation in advertisements is capable of forming unconscious attitudes among people towards any gender and their abilities. This study focuses on gender representation in Pakistani prime time advertisements. For this purpose, 13 advertisements were selected from three different categories of foods and beverages, cosmetics, cell phones and cellular networks from the prime time slots of one of the leading Pakistani entertainment channel, ‘Urdu 1’. Both quantitative and qualitative analyses are carried out for range of variables like gender, age, roles, activities, setting, appearance and voice overs. The results revealed that gender representation in advertisements is stereotypical. Moreover, in few instances, the portrayal of women is not only culturally inappropriate but is demeaning to the image of women as well. Their bodily charm is used to promote products. Comparing different entertainment channels for their prime time advertisements and broadening the scope of this research will yield greater implications for the researchers who want to carry out the similar research. It is hoped that the current study would help in the promotion of media literacy among the viewers and media authorities in Pakistan.

Keywords: Advertisements, Content Analysis, Gender, Prime time

Procedia PDF Downloads 213
1082 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 346
1081 Social Media Impact on Startup Entrepreneurial Intention: Evidence from Greece

Authors: Panagiotis I. Mallios, Vassilis S. Moustakis

Abstract:

The research reported herein presents a conceptual model that explores the relationship between social media factors and entrepreneurial intention, with a focus on the Greek startup ecosystem. The significance of the study is that social media have gained importance in explaining the entrepreneurial process, and through them, nascent and potential entrepreneurs seem to get inspired and motivated to initiate their businesses. The research methodology employed in this study included a qualitative research approach, utilizing in-depth interviews with a sample of 15 startup entrepreneurs providing valuable retrospective information. The data collected were analyzed using the content analysis method. The major findings of the study are that social media factors such as usefulness, influence, and credibility have a significant impact on entrepreneurial intention. We also found that social media can be a powerful tool for entrepreneurs to access resources, knowledge and networks that can help them in their venture creation. Overall, this research contributes to the entrepreneurship literature by uncovering the relationship between social media factors and entrepreneurial intention and has implications for entrepreneurial education, policymakers, and official partners, highlighting the potential of social media to enhance the startup ecosystem.

Keywords: entrepreneurial intention, social media, start up ecosystem, entrepreneurship

Procedia PDF Downloads 168
1080 Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System

Authors: Arindam Roy, Madhushree Das, Apurba Manna, Samir Maity

Abstract:

In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model.

Keywords: multi-objective four-dimensional traveling salesman problem (MO4DTSP), decomposition, NSGA-II, IoT-based transport system, customer satisfaction

Procedia PDF Downloads 109
1079 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 128
1078 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition

Authors: Arūnas Burinskas

Abstract:

Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.

Keywords: Bertrand and Cournot Competition, competition model, industry 4.0, industrial organisation, monopolistic competition

Procedia PDF Downloads 138
1077 Study on the Transition to Pacemaker of Two Coupled Neurons

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.

Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity

Procedia PDF Downloads 284
1076 The Right to State Lands: A Case Study of a Squatter Community in Egypt

Authors: Salwa Salman

Abstract:

On February 2016, Egypt’s President Abdel Fattah Al-Sisi ordered the former Prime Minister, Ibrahim Mehleb, to establish a committee responsible for retrieving looted state lands or providing squatters with land titles according to their individual cases. The specificity of desert lands emerges from its unique position in both Islamic law and Egypt’s Civil Code. In Egypt, desert lands can be transferred to private ownership through peaceful occupation and cultivation. This study explores the (re-) conceptualization of land rights, state territoriality, and sovereignty as a part of an emerging narrative on informal land tenure. Through the lens of an informal settlement, the study employs methodological insights from studies in the anthropology of development and their interpretation of Foucauldian discourse analysis to examine official representations on squatting over state lands and put them in conversation with individual narratives on land ownership and dispossession. It also employs Bruno Latour’s actor-network theory to explore the development of social networks through primary land contracts and informal local resource management.

Keywords: State lands, squatter community, Islamic law, Egypt’s Civil Code

Procedia PDF Downloads 170
1075 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 159
1074 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion

Authors: Swarna Pundir, Prabuddha Hans

Abstract:

As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved.

Keywords: AI, ML, DL, ANN

Procedia PDF Downloads 95
1073 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.

Keywords: challenges, IPTV service, requirements, software defined networking (SDN)

Procedia PDF Downloads 271
1072 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 181
1071 The Hubs of Transformation Dictated by the Innovation Wave: Boston as a Case Study. Exploring How Design is Emerging as an Essential Feature in the Process of Laboratorisation of Cities

Authors: Luana Parisi, Sohrab Donyavi

Abstract:

Cities have become the nodes of global networks, standing at the intersection points of the flows of capital, goods, workers, businesses and travellers, making them the spots where innovation, progress and economic development occur. The primary challenge for them is to create the most fertile ecosystems for triggering innovation activities. Design emerges as an essential feature in this process of laboratorisation of cities. This paper aims at exploring the spatial hubs of transformation within the knowledge economy, providing an overview of the current models of innovation spaces, before focusing on the innovation district of one of the cities that are riding the innovation wave, namely, Boston, USA. Useful lessons will be drawn from the case study of the innovation district in Boston, allowing to define precious tools for policymakers, in the form of a range of factors that define the broad strategy able to implement the model successfully. A mixed methodology is implemented, including information from observations, exploratory interviews to key stakeholders and on-desk data.

Keywords: Innovation District, innovation ecosystem, economic development, urban regeneration

Procedia PDF Downloads 123
1070 Energy Consumption in China’s Urban Water Supply System

Authors: Kate Smith, Shuming Liu, Yi Liu, Dragan Savic, Gustaf Olsson, Tian Chang, Xue Wu

Abstract:

In a water supply system, a great deal of care goes into sourcing, treating and delivering water to consumers, but less thought is given to the energy consumed during these processes. This study uses 2011 data to quantify energy use for urban water supply in China and investigates population density as a possible influencing factor. The objective is to provide information that can be used to develop energy-conscious water infrastructure policy, calculate the energy co-benefits of water conservation and compare energy use between China and other countries. The average electrical energy intensity and per capita electrical energy consumption for urban water supply in China in 2011 were 0.29 kWh/m3 and 33.2 kWh/cap•yr, respectively. Comparison between provinces revealed a direct correlation between energy intensity of urban water supply and population served per unit length of pipe. This could imply energy intensity is lower when more densely populated areas are supplied by relatively dense networks of pipes. This study also found that whereas the percentage of energy used for urban water supply tends to increase with the percentage of population served this increase is slower where water supply is more energy efficient and where a larger percentage of population is already supplied.

Keywords: china, electrical energy use, water-energy nexus, water supply

Procedia PDF Downloads 494
1069 A Comparison of Methods for Neural Network Aggregation

Authors: John Pomerat, Aviv Segev

Abstract:

Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.

Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning

Procedia PDF Downloads 161
1068 Aggregate Fluctuations and the Global Network of Input-Output Linkages

Authors: Alexander Hempfing

Abstract:

The desire to understand business cycle fluctuations, trade interdependencies and co-movement has a long tradition in economic thinking. From input-output economics to business cycle theory, researchers aimed to find appropriate answers from an empirical as well as a theoretical perspective. This paper empirically analyses how the production structure of the global economy and several states developed over time, what their distributional properties are and if there are network specific metrics that allow identifying structurally important nodes, on a global, national and sectoral scale. For this, the World Input-Output Database was used, and different statistical methods were applied. Empirical evidence is provided that the importance of the Eastern hemisphere in the global production network has increased significantly between 2000 and 2014. Moreover, it was possible to show that the sectoral eigenvector centrality indices on a global level are power-law distributed, providing evidence that specific national sectors exist which are more critical to the world economy than others while serving as a hub within the global production network. However, further findings suggest, that global production cannot be characterized as a scale-free network.

Keywords: economic integration, industrial organization, input-output economics, network economics, production networks

Procedia PDF Downloads 275
1067 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 127