Search results for: injection system design
25672 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: filter media, hydraulic loading rate, residence time distribution, tracer
Procedia PDF Downloads 27725671 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 40925670 Fuzzy Availability Analysis of a Battery Production System
Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz
Abstract:
In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)
Procedia PDF Downloads 22425669 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD
Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai
Abstract:
This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control
Procedia PDF Downloads 36525668 A Novel Solution Methodology for Transit Route Network Design Problem
Authors: Ghada Moussa, Mamoud Owais
Abstract:
Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.Keywords: integer programming, transit route design, transportation, urban planning
Procedia PDF Downloads 27325667 Fault Diagnosis in Induction Motor
Authors: Kirti Gosavi, Anita Bhole
Abstract:
The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor
Procedia PDF Downloads 63325666 Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments
Authors: E. Rama Devi Jothilingam
Abstract:
Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness.Keywords: Diabetes mellitus, fuzzy expert system, Mamdani, MATLAB
Procedia PDF Downloads 29025665 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values
Authors: Muhammad A. Alsubaie
Abstract:
An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.Keywords: iterative learning control, singular values, state feedback, load disturbance
Procedia PDF Downloads 15825664 Design and Implementation of a Bluetooth-Based Misplaced Object Finder Using DFRobot Arduino Interfaced with Led and Buzzer
Authors: Bright Emeni
Abstract:
The project is a system that allows users to locate their misplaced or lost devices by using Bluetooth technology. It utilizes the DFRobot Bettle BLE Arduino microcontroller as its main component for communication and control. By interfacing it with an LED and a buzzer, the system provides visual and auditory signals to assist in locating the target device. The search process can be initiated through an Android application, by which the system creates a Bluetooth connection between the microcontroller and the target device, permitting the exchange of signals for tracking purposes. When the device is within range, the LED indicator illuminates, and the buzzer produces audible alerts, guiding the user to the device's location. The application also provides an estimated distance of the object using Bluetooth signal strength. The project’s goal is to offer a practical and efficient solution for finding misplaced devices, leveraging the capabilities of Bluetooth technology and microcontroller-based control systems.Keywords: Bluetooth finder, object finder, Bluetooth tracking, tracker
Procedia PDF Downloads 6525663 Design of a Pneumonia Ontology for Diagnosis Decision Support System
Authors: Sabrina Azzi, Michal Iglewski, Véronique Nabelsi
Abstract:
Diagnosis error problem is frequent and one of the most important safety problems today. One of the main objectives of our work is to propose an ontological representation that takes into account the diagnostic criteria in order to improve the diagnostic. We choose pneumonia disease since it is one of the frequent diseases affected by diagnosis errors and have harmful effects on patients. To achieve our aim, we use a semi-automated method to integrate diverse knowledge sources that include publically available pneumonia disease guidelines from international repositories, biomedical ontologies and electronic health records. We follow the principles of the Open Biomedical Ontologies (OBO) Foundry. The resulting ontology covers symptoms and signs, all the types of pneumonia, antecedents, pathogens, and diagnostic testing. The first evaluation results show that most of the terms are covered by the ontology. This work is still in progress and represents a first and major step toward a development of a diagnosis decision support system for pneumonia.Keywords: Clinical decision support system, Diagnostic errors, Ontology, Pneumonia
Procedia PDF Downloads 18925662 Real-Time Implementation of Self-Tuning Fuzzy-PID Controller for First Order Plus Dead Time System Base on Microcontroller STM32
Authors: Maitree Thamma, Witchupong Wiboonjaroen, Thanat Suknuan, Karan Homchat
Abstract:
First order plus dead time (FOPDT) is a high dynamic system. Therefore, the controller must be intelligent. This paper presents the development and implementation of self-tuning Fuzzy-PID controller for controlling the FOPDT system. The water level process used represented FOPDT system and the mathematical model of the system was approximated by using System Identification toolbox in Matlab. The control programming and Fuzzy-PID algorithm used Matlab/Simulink and run on Microcontroller STM32.Keywords: real-time control, self-tuning fuzzy-PID, FOPDT system, the water lever process
Procedia PDF Downloads 29225661 Julia-Based Computational Tool for Composite System Reliability Assessment
Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris
Abstract:
The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow
Procedia PDF Downloads 7325660 Environmental Life Cycle Assessment of Two Technologic Scenario of Wind Turbine Blades Composition for an Optimized Wind Turbine Design Using the Impact 2002+ Method and Using 15 Environmental Impact Indicators
Authors: A. Jarrou, A. Iranzo, C. Nana
Abstract:
The rapid development of the onshore/offshore wind industry and the continuous, strong, and long-term support from governments have made it possible to create factories specializing in the manufacture of the different parts of wind turbines, but in the literature, Life Cycle Assessment (LCA) analyzes consider the wind turbine as a whole and do not allow the allocation of impacts to the different components of the wind turbine. Here we propose to treat each part of the wind turbine as a system in its own right. This is more in line with the current production system. Environmental Life Cycle Assessment of two technological scenarios of wind turbine blades composition for an optimized wind turbine design using the impact 2002+ method and using 15 environmental impact indicators. This article aims to assess the environmental impacts associated with 1 kg of wind turbine blades. In order to carry out a realistic and precise study, the different stages of the life cycle of a wind turbine installation are included in the study (manufacture, installation, use, maintenance, dismantling, and waste treatment). The Impact 2002+ method used makes it possible to assess 15 impact indicators (human toxicity, terrestrial and aquatic ecotoxicity, climate change, land use, etc.). Finally, a sensitivity study is carried out to analyze the different types of uncertainties in the data collected.Keywords: life cycle assessment, wind turbine, turbine blade, environmental impact
Procedia PDF Downloads 17825659 Engaging Students in Spatial Thinking through Design Education: Case Study of a Biomimicry Design Project in the Primary Classroom
Authors: Caiwei Zhu, Remke Klapwijk
Abstract:
Spatial thinking, a way of thinking based on the understanding and reasoning of spatial concepts and representations, is embedded in science, technology, engineering, arts, and mathematics (STEAM) learning. Aside from many studies that successfully used targeted training to improve students’ spatial thinking skills, few have closely examined how spatial thinking can be trained in classroom settings. Design and technology education, which receives increasing attention towards its integration into formal curriculums, inherently encompasses a wide range of spatial activities, such as constructing mental representations of design ideas, mentally transforming objects and materials to form designs, visually communicating design plans through annotated drawings, and creating 2D and 3D design artifacts. Among different design topics, biomimicry offers a unique avenue for students to recognize and analyze the shapes and structures in nature. By mapping the forms of plants and animals onto functions, students gain inspiration to solve human design challenges. This study is one of the first to highlight opportunities for training spatial thinking in a biomimicry design project for primary school students. Embracing methodological principles of educational design-based research, this case study is conducted along with iterations in the design of the intervention and collaboration with teachers. Data are harvested from small groups of 10- to 12-year-olds at an international school in the Netherlands. Classroom videos, semi-structured interviews with students, design drawings and artifacts, formative assessment, and the pre- and post-intervention spatial test triangulate evidence for students' spatial thinking. In addition to contributing to a theory of integrating spatial thinking in the primary curriculum, mechanisms underlying such improvement in spatial thinking are explored and discussed.Keywords: biomimicry, design and technology education, primary education, spatial thinking
Procedia PDF Downloads 7625658 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 12925657 Software User Experience Enhancement through Collaborative Design
Authors: Shan Wang, Fahad Alhathal, Daniel Hobson
Abstract:
User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023, aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight workshops with a diverse group of 11 individuals. Throughout these sessions, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.Keywords: user experiences, co-design, design process, knowledge management tool, user-centered design
Procedia PDF Downloads 6825656 Optimal Framework of Policy Systems with Innovation: Use of Strategic Design for Evolution of Decisions
Authors: Yuna Lee
Abstract:
In the current policy process, there has been a growing interest in more open approaches that incorporate creativity and innovation based on the forecasting groups composed by the public and experts together into scientific data-driven foresight methods to implement more effective policymaking. Especially, citizen participation as collective intelligence in policymaking with design and deep scale of innovation at the global level has been developed and human-centred design thinking is considered as one of the most promising methods for strategic foresight. Yet, there is a lack of a common theoretical foundation for a comprehensive approach for the current situation of and post-COVID-19 era, and substantial changes in policymaking practice are insignificant and ongoing with trial and error. This project hypothesized that rigorously developed policy systems and tools that support strategic foresight by considering the public understanding could maximize ways to create new possibilities for a preferable future, however, it must involve a better understating of Behavioural Insights, including individual and cultural values, profit motives and needs, and psychological motivations, for implementing holistic and multilateral foresight and creating more positive possibilities. To what extent is the policymaking system theoretically possible that incorporates the holistic and comprehensive foresight and policy process implementation, assuming that theory and practice, in reality, are different and not connected? What components and environmental conditions should be included in the strategic foresight system to enhance the capacity of decision from policymakers to predict alternative futures, or detect uncertainties of the future more accurately? And, compared to the required environmental condition, what are the environmental vulnerabilities of the current policymaking system? In this light, this research contemplates the question of how effectively policymaking practices have been implemented through the synthesis of scientific, technology-oriented innovation with the strategic design for tackling complex societal challenges and devising more significant insights to make society greener and more liveable. Here, this study conceptualizes the notions of a new collaborative way of strategic foresight that aims to maximize mutual benefits between policy actors and citizens through the cooperation stemming from evolutionary game theory. This study applies mixed methodology, including interviews of policy experts, with the case in which digital transformation and strategic design provided future-oriented solutions or directions to cities’ sustainable development goals and society-wide urgent challenges such as COVID-19. As a result, artistic and sensual interpreting capabilities through strategic design promote a concrete form of ideas toward a stable connection from the present to the future and enhance the understanding and active cooperation among decision-makers, stakeholders, and citizens. Ultimately, an improved theoretical foundation proposed in this study is expected to help strategically respond to the highly interconnected future changes of the post-COVID-19 world.Keywords: policymaking, strategic design, sustainable innovation, evolution of cooperation
Procedia PDF Downloads 19425655 Design Transformation to Reduce Cost in Irrigation Using Value Engineering
Authors: F. S. Al-Anzi, M. Sarfraz, A. Elmi, A. R. Khan
Abstract:
Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.Keywords: desertification, functional analysis, scrap tires, value engineering, waste recycling, water irrigation rationing
Procedia PDF Downloads 20025654 A 1.57ghz Mixer Design for GPS Receiver
Authors: Hamd Ahmed
Abstract:
During the Persian Gulf War in 1991s, The confederation forces were surprised when they were being shot at by friendly forces in Iraqi desert. As obvious was the fact that they were mislead due to the lack of proper guidance and technology resulting in unnecessary loss of life and bloodshed. This unforeseen incident along with many others led the US department of defense to open the doors of GPS. In the very beginning, this technology was for military use, but now it is being widely used and increasingly popular among the public due to its high accuracy and immeasurable significance. The GPS system simply consists of three segments, the space segment (the satellite), the control segment (ground control) and the user segment (receiver). This project work is about designing a 1.57GHZ mixer for triple conversion GPS receiver .The GPS Front-End receiver based on super heterodyne receiver which improves selectivity and image frequency. However the main principle of the super heterodyne receiver depends on the mixer. Many different types of mixers (single balanced mixer, Single Ended mixer, Double balanced mixer) can be used with GPS receiver, it depends on the required specifications. This research project will provide an overview of the GPS system and details about the basic architecture of the GPS receiver. The basic emphasis of this report in on investigating general concept of the mixer circuit some terms related to the mixer along with their definitions and present the types of mixer, then gives some advantages of using singly balanced mixer and its application. The focus of this report is on how to design mixer for GPS receiver and discussing the simulation results.Keywords: GPS , RF filter, heterodyne, mixer
Procedia PDF Downloads 32325653 An Analysis of Instruction Checklist Based on Universal Design for Learning
Authors: Yong Wook Kim
Abstract:
The purpose of this study is to develop an instruction analysis checklist applicable to inclusive setting based on the Universal Design for Learning Guideline 2.0. To do this, two self-validation reviews, two expert validity reviews, and two usability evaluations were conducted based on the Universal Design for Learning Guideline 2.0. After validation and usability evaluation, a total of 36 items consisting of 4 items for each instruction was developed. In all questions, examples are presented for the purpose of reinforcing concrete. All the items were judged by the 3-point scale. The observation results were provided through a radial chart allowing SWOT analysis of the universal design for learning of teachers. The developed checklist provides a description of the principles and guidelines in the checklist itself as it requires a thorough understanding by the observer of the universal design for learning through prior education. Based on the results of the study, the instruction criteria, the specificity of the criteria, the number of questions, and the method of arrangement were discussed. As a future research, this study proposed the characteristics of application of universal design for learning for each subject, the comparison with the observation results through the self-report teaching tool, and the continual revision and supplementation of the lecture checklist.Keywords: inclusion, universal design for learning, instruction analysis, instruction checklist
Procedia PDF Downloads 28125652 Biomimetic to Architectural Design for Increased Sustainability
Authors: Hamid Yazdani, Fatemeh Abbasi
Abstract:
Biomimicry, where flora, fauna or entire ecosystems are emulated as a basis for design, is a growing area of research in the fields of architecture and engineering. This is due to both the fact that it is an inspirational source of possible new innovation and because of the potential it offers as a way to create a more sustainable and even regenerative built environment. The widespread and practical application of biomimicry as a design method remains however largely unrealised. A growing body of international research identifies various obstacles to the employment of biomimicry as an architectural design method. One barrier of particular note is the lack of a clear definition of the various approaches to biomimicry that designers can initially employ. Through a comparative literature review, and an examination of existing biomimetic technologies, this paper elaborates on distinct approaches to biomimetic design that have evolved. A framework for understanding the various forms of biomimicry has been developed, and is used to discuss the distinct advantages and disadvantages inherent in each as a design methodology. It is shown that these varied approaches may lead to different outcomes in terms of overall sustainability or regenerative potential. It is posited that a biomimetic approach to architectural design that incorporates an understanding of ecosystems could become a vehicle for creating a built environment that goes beyond simply sustaining current conditions to a restorative practice where the built environment becomes a vital component in the integration with and regeneration of natural ecosystems.Keywords: biomimicry, bio-inspired design, ecology, ecomimicry, industrial ecology
Procedia PDF Downloads 51725651 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters
Authors: Srinivasan Chandrasekaran, R. Nagavinothini
Abstract:
Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.Keywords: offshore structures, triceratops, random waves, buoyant legs, preliminary design, dynamic analysis
Procedia PDF Downloads 20625650 Investigation of Distortion and Impact Strength of 304 L Butt Joint Using Different Weld Groove
Authors: A. Sharma, S. S. Sandhu, A.Shahi, A. Kumar
Abstract:
In this study, the effects of geometric configurations of butt joints i.e. double V groove, double U groove and UV groove of AISI 304L of thickness 12 mm by using Gas Tungsten Arc Welding (GTAW) are investigated. The magnitude of transverse shrinkage stress and distortion generated during welding under the unrestrained conditions of butt joints is the main objective of the study. The effect of groove design on impact strength and metallurgical properties are also studied. The Finite element analysis for the groove design is done and compared the actual experimentation. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for multipass joint with a standard analogy of 80%. In the case of VV groove design it was found that the transverse stress and cumulative deflection have the lowest value. It was found that the UV groove design had the maximum ultimate and yield tensile strength, VV groove had the highest impact strength. Vicker’s hardness value of all the groove design was measured. Micro structural studies were carried out using conventional microscopic tools which revealed a lot of useful information for correlating the microstructure with mechanical properties.Keywords: weld groove design, distortion, AISI 304 L, butt joint, FEM, GTAW
Procedia PDF Downloads 36625649 Designing an Enterprise Architecture for Mining Company by Using Togaf Framework
Authors: Rika Yuliana, Budi Rahardjo
Abstract:
The Role of ICT in the organization will continue to experience growth in line with business growth. However, in reality, there is a gap between ICT initiatives with the development (needs) of company business that is caused by yet inadequate of ICT strategic alignment. Therefore, this study was conducted with the aim to create an enterprise architectural model rule, particularly in mining companies, using the TOGAF framework. The results from the design development phase of the mining enterprise architecture meta model represents the domain of business, applications, data, and technology. The results of the design as a whole were analyzed from four perspectives, namely the perspective of contextual, conceptual, logical and physical. In the end, the quality assessment of the mining enterprise architecture is conducted to assess the suitability of the design standards and architectural principles.Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)
Procedia PDF Downloads 44525648 Modeling and Simulation Analysis and Design of Components of the Microgrid Prototype System
Authors: Draou Azeddine, Mazin Alahmadi, Abdulrahmane Alkassem, Alamri Abdullah
Abstract:
The demand for electric power in Saudi Arabia is steadily increasing with economic growth. More power plants should be installed to increase generation capacity and meet demand. Electricity in Saudi Arabia is mainly dependent on fossil fuels, which are a major problem as they deplete natural resources and increase CO₂ emissions. In this research work, performance and techno-economic analyzes are conducted to evaluate a microgrid system based on hybrid PV/wind diesel power sources as a stand-alone system for rural electrification in Saudi Arabia. The total power flow, maximum power point tracking (MPPT) efficiency, effectiveness of the proposed control strategy, and total harmonic distortion (THD) are analyzed in MATLAB/Simulink environment. Various simulation studies have been carried out under different irradiation conditions. The sizing, optimization, and economic feasibility analysis were performed using Homer energy software.Keywords: WIND, solar, microgrid, energy
Procedia PDF Downloads 10825647 Tele-Monitoring and Logging of Patient Health Parameters Using Zigbee
Authors: Kirubasankar, Sanjeevkumar, Aravindh Nagappan
Abstract:
This paper addresses a system for monitoring patients using biomedical sensors and displaying it in a remote place. The main challenges in present health monitoring devices are lack of remote monitoring and logging for future evaluation. Typical instruments used for health parameter measurement provide basic information regarding health status. This paper identifies a set of design principles to address these challenges. This system includes continuous measurement of health parameters such as Heart rate, electrocardiogram, SpO2 level and Body temperature. The accumulated sensor data is relayed to a processing device using a transceiver and viewed by the implementation of cloud services.Keywords: bio-medical sensors, monitoring, logging, cloud service
Procedia PDF Downloads 52025646 Comparative Assessment of ABS and Disk Brake Systems
Authors: Saleh Mobasseri, Mohammad Mobasseri
Abstract:
The article refers to the history of the rise of brake system and described it’s importance in passenger’s lives. The disc brake system performance and ABS are also compared with each other by the kinetic and kinematic analysis of the braking system,and evaluate the impact of each parameters is checked on the vehicle stopping distance. Anti−lock braking system (ABS) is one of the most important features that affect on vehicle safety and for this reason much efforts have been made to improve this system. The objectives of the anti−lock system (ABS) are as follows: Preventing the wheels from locking, achieving maximum technical momentum in terms of braking,stability,reducing stopping distances. In this paper,we study the comparative of ABS brake and disc brake.Keywords: anti−lock braking System (ABS), stopping distances, booster, car stability, force exerted on the brake pedal
Procedia PDF Downloads 39825645 Evaluation of Double Displacement Process via Gas Dumpflood from Multiple Gas Reservoirs
Authors: B. Rakjarit, S. Athichanagorn
Abstract:
Double displacement process is a method in which gas is injected at an updip well to displace the oil bypassed by waterflooding operation from downdip water injector. As gas injection is costly and a large amount of gas is needed, gas dump-flood from multiple gas reservoirs is an attractive alternative. The objective of this paper is to demonstrate the benefits of the novel approach of double displacement process via gas dump-flood from multiple gas reservoirs. A reservoir simulation model consisting of a dipping oil reservoir and several underlying layered gas reservoirs was constructed in order to investigate the performance of the proposed method. Initially, water was injected via the downdip well to displace oil towards the producer located updip. When the water cut at the producer became high, the updip well was shut in and perforated in the gas zones in order to dump gas into the oil reservoir. At this point, the downdip well was open for production. In order to optimize oil recovery, oil production and water injection rates and perforation strategy on the gas reservoirs were investigated for different numbers of gas reservoirs having various depths and thicknesses. Gas dump-flood from multiple gas reservoirs can help increase the oil recovery after implementation of waterflooding upto 10%. Although the amount of additional oil recovery is slightly lower than the one obtained in conventional double displacement process, the proposed process requires a small completion cost of the gas zones and no operating cost while the conventional method incurs high capital investment in gas compression facility and high-pressure gas pipeline and additional operating cost. From the simulation study, oil recovery can be optimized by producing oil at a suitable rate and perforating the gas zones with the right strategy which depends on depths, thicknesses and number of the gas reservoirs. Conventional double displacement process has been studied and successfully implemented in many fields around the world. However, the method of dumping gas into the oil reservoir instead of injecting it from surface during the second displacement process has never been studied. The study of this novel approach will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost.Keywords: gas dump-flood, multi-gas layers, double displacement process, reservoir simulation
Procedia PDF Downloads 40825644 Design of a Real Time Heart Sounds Recognition System
Authors: Omer Abdalla Ishag, Magdi Baker Amien
Abstract:
Physicians used the stethoscope for listening patient heart sounds in order to make a diagnosis. However, the determination of heart conditions by acoustic stethoscope is a difficult task so it requires special training of medical staff. This study developed an accurate model for analyzing the phonocardiograph signal based on PC and DSP processor. The system has been realized into two phases; offline and real time phase. In offline phase, 30 cases of heart sounds files were collected from medical students and doctor's world website. For experimental phase (real time), an electronic stethoscope has been designed, implemented and recorded signals from 30 volunteers, 17 were normal cases and 13 were various pathologies cases, these acquired 30 signals were preprocessed using an adaptive filter to remove lung sounds. The background noise has been removed from both offline and real data, using wavelet transform, then graphical and statistics features vector elements were extracted, finally a look-up table was used for classification heart sounds cases. The obtained results of the implemented system showed accuracy of 90%, 80% and sensitivity of 87.5%, 82.4% for offline data, and real data respectively. The whole system has been designed on TMS320VC5509a DSP Platform.Keywords: code composer studio, heart sounds, phonocardiograph, wavelet transform
Procedia PDF Downloads 44625643 The Anti-Angiogenic Effect of Tectorigenin in a Mouse Model of Retinopathy of Prematurity
Authors: KuiDong Kang, Hye Bin Yim, Su Ah Kim
Abstract:
Purpose: Tectorigenin is an isoflavone derived from the rhizome of Belamacanda chinensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of tectorigenin in mice. Methods: ICR neonatal mice were exposed to 75% oxygen from postnatal day P7 until P12 and returned to room air (21% oxygen) for five days (P12 to P17). Mice were subjected to daily intraperitoneal injection of tectorigenin (1 mg/kg, 10 mg/kg) and vehicle from P12 to P17. Retro-orbital injection of FITC-dextran was performed and retinal flat mounts were viewed by fluorescence microscopy. The Central avascular area was quantified from the digital images in a masked fashion using image analysis software (NIH ImageJ). Neovascular tufts were quantified by using SWIFT_NV and neovascular lumens were quantified from a histologic section in a masked fashion. Immunohistochemistry and Western blot analysis were also performed to demonstrate the anti-angiogenic activity of this compound in vivo. Results: In the retina of tectorigenin injected mouse (10mg/kg), the central non-perfusion area was significantly decreased compared to the vehicle injected group (1.76±0.5 mm2 vs 2.85±0.6 mm2, P<0.05). In vehicle-injected group, 33.45 ± 5.51% of the total retinal area was avascular, whereas the retinas of pups treated with high-dose (10 mg/kg) tectorigenin showed avascular retinal areas of 21.25 ±4.34% (P<0.05). High dose of tectorigenin also significantly reduced the number of vascular lumens in the histologic section. Tectorigenin (10 mg/kg) significantly reduced the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and angiotensin II compared to the vehicle injected group. Tectorigenin did not affect CD31 abundance at any tested dose. Conclusions: Our results show that tectorigenin possesses powerful anti-angiogenic properties and can attenuate new vessel formation in the retina after systemic administration. These results imply that this compound can be considered as a candidate substance for therapeutic inhibition of retinal angiogenesis.Keywords: tectorigenin, anti-angiogenic, retinopathy, Belamacanda chinensis
Procedia PDF Downloads 267