Search results for: vector error correction model (VECM)
17187 Formation of the Investment Portfolio of Intangible Assets with a Wide Pairwise Comparison Matrix Application
Authors: Gulnara Galeeva
Abstract:
The Analytic Hierarchy Process is widely used in the economic and financial studies, including the formation of investment portfolios. In this study, a generalized method of obtaining a vector of priorities for the case with separate pairwise comparisons of the expert opinion being presented as a set of several equal evaluations on a ratio scale is examined. The author claims that this method allows solving an important and up-to-date problem of excluding vagueness and ambiguity of the expert opinion in the decision making theory. The study describes the authentic wide pairwise comparison matrix. Its application in the formation of the efficient investment portfolio of intangible assets of a small business enterprise with limited funding is considered. The proposed method has been successfully approbated on the practical example of a functioning dental clinic. The result of the study confirms that the wide pairwise comparison matrix can be used as a simple and reliable method for forming the enterprise investment policy. Moreover, a comparison between the method based on the wide pairwise comparison matrix and the classical analytic hierarchy process was conducted. The results of the comparative analysis confirm the correctness of the method based on the wide matrix. The application of a wide pairwise comparison matrix also allows to widely use the statistical methods of experimental data processing for obtaining the vector of priorities. A new method is available for simple users. Its application gives about the same accuracy result as that of the classical hierarchy process. Financial directors of small and medium business enterprises get an opportunity to solve the problem of companies’ investments without resorting to services of analytical agencies specializing in such studies.Keywords: analytic hierarchy process, decision processes, investment portfolio, intangible assets
Procedia PDF Downloads 27117186 A Model to Assess Sustainability Using Multi-Criteria Analysis and Geographic Information Systems: A Case Study
Authors: Antonio Boggia, Luisa Paolotti, Gianluca Massei, Lucia Rocchi, Elaine Pace, Maria Attard
Abstract:
The aim of this paper is to present a methodology and a computer model for sustainability assessment based on the integration of Multi-criteria Decision Analysis (MCDA) with a Geographic Information System (GIS). It presents the result of a study for the implementation of a model for measuring sustainability to address the policy actions for the improvement of sustainability at territory level. The aim is to rank areas in order to understand the specific technical and/or financial support that is required to develop sustainable growth. Assessing sustainable development is a multidimensional problem: economic, social and environmental aspects have to be taken into account at the same time. The tool for a multidimensional representation is a proper set of indicators. The set of indicators must be integrated into a model, that is an assessment methodology, to be used for measuring sustainability. The model, developed by the Environmental Laboratory of the University of Perugia, is called GeoUmbriaSUIT. It is a calculation procedure developed as a plugin working in the open-source GIS software QuantumGIS. The multi-criteria method used within GeoUmbriaSUIT is the algorithm TOPSIS (Technique for Order Preference by Similarity to Ideal Design), which defines a ranking based on the distance from the worst point and the closeness to an ideal point, for each of the criteria used. For the sustainability assessment procedure, GeoUmbriaSUIT uses a geographic vector file where the graphic data represent the study area and the single evaluation units within it (the alternatives, e.g. the regions of a country, or the municipalities of a region), while the alphanumeric data (attribute table), describe the environmental, economic and social aspects related to the evaluation units by means of a set of indicators (criteria). The use of the algorithm available in the plugin allows to treat individually the indicators representing the three dimensions of sustainability, and to compute three different indices: environmental index, economic index and social index. The graphic output of the model allows for an integrated assessment of the three dimensions, avoiding aggregation. The presence of separate indices and graphic output make GeoUmbriaSUIT a readable and transparent tool, since it doesn’t produce an aggregate index of sustainability as final result of the calculations, which is often cryptic and difficult to interpret. In addition, it is possible to develop a “back analysis”, able to explain the positions obtained by the alternatives in the ranking, based on the criteria used. The case study presented is an assessment of the level of sustainability in the six regions of Malta, an island state in the middle of the Mediterranean Sea and the southernmost member of the European Union. The results show that the integration of MCDA-GIS is an adequate approach for sustainability assessment. In particular, the implemented model is able to provide easy to understand results. This is a very important condition for a sound decision support tool, since most of the time decision makers are not experts and need understandable output. In addition, the evaluation path is traceable and transparent.Keywords: GIS, multi-criteria analysis, sustainability assessment, sustainable development
Procedia PDF Downloads 29417185 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation
Procedia PDF Downloads 37517184 Mobile Robot Manipulator Kinematics Motion Control Analysis with MATLAB/Simulink
Authors: Wayan Widhiada, Cok Indra Partha, Gusti Ngurah Nitya Santhiarsa
Abstract:
The purpose of this paper is to investigate the sophistication of the use of Proportional Integral and Derivative Control to control the kinematic motion of the mobile robot manipulator. Simulation and experimental methods will be used to investigate the sophistication of PID control to control the mobile robot arm in the collection and placement of several kinds of objects quickly, accurately and correctly. Mathematical modeling will be done by utilizing the integration of Solidworks and MATLAB / Simmechanics software. This method works by converting the physical model file into the xml file. This method is easy, fast and accurate done in modeling and design robotics. The automatic control design of this robot manipulator will be validated in simulations and experimental in control labs as evidence that the mobile robot manipulator gripper control design can achieve the best performance such as the error signal is lower than 5%, small overshoot and get steady signal response as quickly.Keywords: control analysis, kinematics motion, mobile robot manipulator, performance
Procedia PDF Downloads 41117183 The Mirage of Progress? a Longitudinal Study of Japanese Students’ L2 Oral Grammar
Authors: Robert Long, Hiroaki Watanabe
Abstract:
This longitudinal study examines the grammatical errors of Japanese university students’ dialogues with a native speaker over an academic year. The L2 interactions of 15 Japanese speakers were taken from the JUSFC2018 corpus (April/May 2018) and the JUSFC2019 corpus (January/February). The corpora were based on a self-introduction monologue and a three-question dialogue; however, this study examines the grammatical accuracy found in the dialogues. Research questions focused on a possible significant difference in grammatical accuracy from the first interview session in 2018 and the second one the following year, specifically regarding errors in clauses per 100 words, global errors and local errors, and with specific errors related to parts of speech. The investigation also focused on which forms showed the least improvement or had worsened? Descriptive statistics showed that error-free clauses/errors per 100 words decreased slightly while clauses with errors/100 words increased by one clause. Global errors showed a significant decline, while local errors increased from 97 to 158 errors. For errors related to parts of speech, a t-test confirmed there was a significant difference between the two speech corpora with more error frequency occurring in the 2019 corpus. This data highlights the difficulty in having students self-edit themselves.Keywords: clause analysis, global vs. local errors, grammatical accuracy, L2 output, longitudinal study
Procedia PDF Downloads 13517182 Comparison of Sourcing Process in Supply Chain Operation References Model and Business Information Systems
Authors: Batuhan Kocaoglu
Abstract:
Although using powerful systems like ERP (Enterprise Resource Planning), companies still cannot benchmark their processes and measure their process performance easily based on predefined SCOR (Supply Chain Operation References) terms. The purpose of this research is to identify common and corresponding processes to present a conceptual model to model and measure the purchasing process of an organization. The main steps for the research study are: Literature review related to 'procure to pay' process in ERP system; Literature review related to 'sourcing' process in SCOR model; To develop a conceptual model integrating 'sourcing' of SCOR model and 'procure to pay' of ERP model. In this study, we examined the similarities and differences between these two models. The proposed framework is based on the assumptions that are drawn from (1) the body of literature, (2) the authors’ experience by working in the field of enterprise and logistics information systems. The modeling framework provides a structured and systematic way to model and decompose necessary information from conceptual representation to process element specification. This conceptual model will help the organizations to make quality purchasing system measurement instruments and tools. And offered adaptation issues for ERP systems and SCOR model will provide a more benchmarkable and worldwide standard business process.Keywords: SCOR, ERP, procure to pay, sourcing, reference model
Procedia PDF Downloads 36317181 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications
Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain
Abstract:
In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application
Procedia PDF Downloads 23017180 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability
Procedia PDF Downloads 10717179 Effect of Different Model Drugs on the Properties of Model Membranes from Fishes
Authors: M. Kumpugdee-Vollrath, T. G. D. Phu, M. Helmis
Abstract:
A suitable model membrane to study the pharmacological effect of pharmaceutical products is human stratum corneum because this layer of human skin is the outermost layer and it is an important barrier to be passed through. Other model membranes which were also used are for example skins from pig, mouse, reptile or fish. We are interested in fish skins in this project. The advantages of the fish skins are, that they can be obtained from the supermarket or fish shop. However, the fish skins should be freshly prepared and used directly without storage. In order to understand the effect of different model drugs e.g. lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid on the properties of the model membrane from various types of fishes e.g. trout, salmon, cod, plaice permeation tests were performed and differential scanning calorimetry was applied.Keywords: fish skin, model membrane, permeation, DSC, lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid
Procedia PDF Downloads 47117178 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 10717177 Management of Gap Non-Union Following Tumour Resection of the Distal Femur
Authors: Rajendra Kumar Kanojia
Abstract:
Correction of the gap created by the resection of large juxtra-articular tumours of the femur would be difficult to manage, several bone substitutes, bone grafts, and artificial bone granules were tried but the results were not as good as with the distraction osteogensis, by the help of either Ilizarov ring fixator or the mono-rail fixators. We are presenting a small study of five cases of malignant tumours of the distal femur, removed, custom made mega prosthesis was applied and that failed twice in a span of five years. We had no better option left then to apply mono-rail fixator, and start the process of distraction osteogeneis, we got the union, gap was filled with new bone and patient has been made walking in few months.Keywords: distal femur tumour, resection, defect non-union, mono-rail fixator
Procedia PDF Downloads 37817176 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network
Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar
Abstract:
Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE
Procedia PDF Downloads 36117175 Lyapunov Functions for Extended Ross Model
Authors: Rahele Mosleh
Abstract:
This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.Keywords: global stability, invariant solutions, Lyapunov function, stationary points
Procedia PDF Downloads 16817174 Tracy: A Java Library to Render a 3D Graphical Human Model
Authors: Sina Saadati, Mohammadreza Razzazi
Abstract:
Since Java is an object-oriented language, It can be used to solve a wide range of problems. One of the considerable usages of this language can be found in Agent-based modeling and simulation. Despite the significant power of Java, There is not an easy method to render a 3-dimensional human model. In this article, we are about to develop a library which helps modelers present a 3D human model and control it with Java. The library runs two server programs. The first one is a web page server that can connect to any browser and present an HTML code. The second server connects to the browser and controls the movement of the model. So, the modeler will be able to develop a simulation and display a good-looking human model without any knowledge of any graphical tools.Keywords: agent-based modeling and simulation, human model, graphics, Java, distributed systems
Procedia PDF Downloads 11517173 Impact Force Difference on Natural Grass Versus Synthetic Turf Football Fields
Authors: Nathaniel C. Villanueva, Ian K. H. Chun, Alyssa S. Fujiwara, Emily R. Leibovitch, Brennan E. Yamamoto, Loren G. Yamamoto
Abstract:
Introduction: In previous studies of high school sports, over 15% of concussions were attributed to contact with the playing surface. While artificial turf fields are increasing in popularity due to lower maintenance costs, artificial turf has been associated with more ankle and knee injuries, with inconclusive data on concussions. In this study, natural grass and artificial football fields were compared in terms of deceleration on fall impact. Methods: Accelerometers were placed on the forehead, apex of the head, and right ear of a Century Body Opponent Bag (BOB) manikin. A Riddell HITS football helmet was secured onto the head of the manikin over the accelerometers. This manikin was dropped onto natural grass (n = 10) and artificial turf (n = 9) high school football fields. The manikin was dropped from a stationary position at a height of 60 cm onto its front, back, and left side. Each of these drops was conducted 10 times at the 40-yard line, 20-yard line, and endzone. The net deceleration on impact was calculated as a net vector from each of the three accelerometers’ x, y, and z vectors from the three different locations on the manikin’s head (9 vector measurements per drop). Results: Mean values for the multiple drops were calculated for each accelerometer and drop type for each field. All accelerometers in forward and backward falls and one accelerometer in side falls showed significantly greater impact force on synthetic turf compared to the natural grass surfaces. Conclusion: Impact force was higher on synthetic fields for all drop types for at least one of the accelerometer locations. These findings suggest that concussion risk might be higher for athletes playing on artificial turf fields.Keywords: concussion, football, biomechanics, sports
Procedia PDF Downloads 16217172 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 51617171 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin
Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski
Abstract:
Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin
Procedia PDF Downloads 13117170 Transformations between Bivariate Polynomial Bases
Authors: Dimitris Varsamis, Nicholas Karampetakis
Abstract:
It is well known that any interpolating polynomial P(x,y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis etc. The aim of this paper is twofold: a) to present transformations between the coordinates of the polynomial P(x,y) in the aforementioned basis and b) to present transformations between these bases.Keywords: bivariate interpolation polynomial, polynomial basis, transformations, interpolating polynomial
Procedia PDF Downloads 40817169 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model
Authors: Jihane Bouabid
Abstract:
The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model
Procedia PDF Downloads 6517168 Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)
Authors: Hafizuddin W. Yussof, Syamsutajri S. Bahri, Adam P. Harvey
Abstract:
Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH- were prepared by suspension polymerization of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were well-described by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.Keywords: anion exchange resin, Eley-Rideal, Langmuir-Hinshelwood-Hougen-Watson, transesterification
Procedia PDF Downloads 36317167 An Efficient Process Analysis and Control Method for Tire Mixing Operation
Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park
Abstract:
Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process
Procedia PDF Downloads 26617166 3D Interactions in Under Water Acoustic Simulations
Authors: Prabu Duplex
Abstract:
Due to stringent emission regulation targets, large-scale transition to renewable energy sources is a global challenge, and wind power plays a significant role in the solution vector. This scenario has led to the construction of offshore wind farms, and several wind farms are planned in the shallow waters where the marine habitat exists. It raises concerns over impacts of underwater noise on marine species, for example bridge constructions in the ocean straits. Dangerous to aquatic life, the environmental organisations say, the bridge would be devastating, since ocean straits are important place of transit for marine mammals. One of the highest concentrations of biodiversity in the world is concentrated these areas. The investigation of ship noise and piling noise that may happen during bridge construction and in operation is therefore vital. Once the source levels are known the receiver levels can be modelled. With this objective this work investigates the key requirement of the software that can model transmission loss in high frequencies that may occur during construction or operation phases. Most propagation models are 2D solutions, calculating the propagation loss along a transect, which does not include horizontal refraction, reflection or diffraction. In many cases, such models provide sufficient accuracy and can provide three-dimensional maps by combining, through interpolation, several two-dimensional (distance and depth) transects. However, in some instances the use of 2D models may not be sufficient to accurately model the sound propagation. A possible example includes a scenario where an island or land mass is situated between the source and receiver. The 2D model will result in a shadow behind the land mass where the modelled transects intersect the land mass. Diffraction will occur causing bending of the sound around the land mass. In such cases, it may be necessary to use a 3D model, which accounts for horizontal diffraction to accurately represent the sound field. Other scenarios where 2D models may not provide sufficient accuracy may be environments characterised by a strong up-sloping or down sloping seabed, such as propagation around continental shelves. In line with these objectives by means of a case study, this work addresses the importance of 3D interactions in underwater acoustics. The methodology used in this study can also be used for other 3D underwater sound propagation studies. This work assumes special significance given the increasing interest in using underwater acoustic modeling for environmental impacts assessments. Future work also includes inter-model comparison in shallow water environments considering more physical processes known to influence sound propagation, such as scattering from the sea surface. Passive acoustic monitoring of the underwater soundscape with distributed hydrophone arrays is also suggested to investigate the 3D propagation effects as discussed in this article.Keywords: underwater acoustics, naval, maritime, cetaceans
Procedia PDF Downloads 2217165 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements
Authors: Andrey Kupriyanov
Abstract:
In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)
Procedia PDF Downloads 18517164 The Influence of Using Soft Knee Pads on Static and Dynamic Balance among Male Athletes and Non-Athletes
Authors: Yaser Kazemzadeh, Keyvan Molanoruzy, Mojtaba Izady
Abstract:
The balance is the key component of motor skills to maintain postural control and the execution of complex skills. The present study was designed to evaluate the impact of soft knee pads on static and dynamic balance of male athletes. For this aim, thirty young athletes in different sport fields with 3 years professional sport training background and thirty healthy young men nonathletic (age: 24.5 ± 2.9, 24.3 ± 2.4, weight: 77.2 ± 4.3 and 80/9 ± 6/3 and height: 175 ± 2/84, 172 ± 5/44 respectively) as subjects selected. Then, subjects in two manner (without knee and with soft knee pads made of neoprene) execute standard error test (BESS) to assess static balance and star test to assess dynamic balance. For analyze of data, t-tests and one-way ANOVA were significant 05/0 ≥ α statistical analysis. The results showed that the use of soft knee significantly reduced error rate in static balance test (p ≥ 0/05). Also, use a soft knee pads decreased score of athlete group and increased score of nonathletic group in star test (p ≥ 0/05). These findings, indicates that use of knees affects static and dynamic balance in athletes and nonathletic in different manner and may increased athletic performance in sports that rely on static balance and decreased performance in sports that rely on dynamic balance.Keywords: static balance, dynamic balance, soft knee, athletic men, non athletic men
Procedia PDF Downloads 29117163 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error
Procedia PDF Downloads 44817162 A Cohort and Empirical Based Multivariate Mortality Model
Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong
Abstract:
This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management
Procedia PDF Downloads 5817161 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models
Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg
Abstract:
Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction
Procedia PDF Downloads 31017160 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 52817159 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 16617158 Improved Processing Speed for Text Watermarking Algorithm in Color Images
Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari
Abstract:
Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.Keywords: steganography, watermarking, time complexity measurements, private keys
Procedia PDF Downloads 145