Search results for: multipoint optimal minimum entropy deconvolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5291

Search results for: multipoint optimal minimum entropy deconvolution

3611 Compact Finite Difference Schemes for Fourth Order Parabolic Partial Differential Equations

Authors: Sufyan Muhammad

Abstract:

Recently, in achieving highly efficient but at the same time highly accurate solutions has become the major target of numerical analyst community. The concept is termed as compact schemes and has gained great popularity and consequently, we construct compact schemes for fourth order parabolic differential equations used to study vibrations in structures. For the superiority of newly constructed schemes, we consider range of examples. We have achieved followings i.e. (a) numerical scheme utilizes minimum number of stencil points (which means new scheme is compact); (b) numerical scheme is highly accurate (which means new scheme is reliable) and (c) numerical scheme is highly efficient (which means new scheme is fast).

Keywords: central finite differences, compact schemes, Bernoulli's equations, finite differences

Procedia PDF Downloads 288
3610 Application the Queuing Theory in the Warehouse Optimization

Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Abstract:

The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.

Keywords: queuing theory, logistics system, mathematical methods, warehouse optimization

Procedia PDF Downloads 594
3609 Efficiency of DMUs in Presence of New Inputs and Outputs in DEA

Authors: Esmat Noroozi, Elahe Sarfi, Farha Hosseinzadeh Lotfi

Abstract:

Examining the impacts of data modification is considered as sensitivity analysis. A lot of studies have considered the data modification of inputs and outputs in DEA. The issues which has not heretofore been considered in DEA sensitivity analysis is modification in the number of inputs and (or) outputs and determining the impacts of this modification in the status of efficiency of DMUs. This paper is going to present systems that show the impacts of adding one or multiple inputs or outputs on the status of efficiency of DMUs and furthermore a model is presented for recognizing the minimum number of inputs and (or) outputs from among specified inputs and outputs which can be added whereas an inefficient DMU will become efficient. Finally the presented systems and model have been utilized for a set of real data and the results have been reported.

Keywords: data envelopment analysis, efficiency, sensitivity analysis, input, out put

Procedia PDF Downloads 450
3608 Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining

Authors: Vinay Patil, Swapnil Kekade, Ashish Supare, Vinayak Pawar, Shital Jadhav, Rajkumar Singh

Abstract:

In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed.

Keywords: conventional turning, Taguchi method, S/N ratio, bainitic steel machining

Procedia PDF Downloads 332
3607 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 91
3606 Hybrid MIMO-OFDM Detection Scheme for High Performance

Authors: Young-Min Ko, Dong-Hyun Ha, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In recent years, a multi-antenna system is actively used to improve the performance of the communication. A MIMO-OFDM system can provide multiplexing gain or diversity gain. These gains are obtained in proportion to the increase of the number of antennas. In order to provide the optimal gain of the MIMO-OFDM system, various transmission and reception schemes are presented. This paper aims to propose a hybrid scheme that base station provides both diversity gain and multiplexing gain at the same time.

Keywords: DFE, diversity gain, hybrid, MIMO, multiplexing gain.

Procedia PDF Downloads 687
3605 Establishing the Optimum Location of a Single Tower Crane Using a Smart Mathematical Model

Authors: Yasser Abo El-Magd, Wael Fawzy Mohamed

Abstract:

Due to the great development in construction and building field, there are many projects and huge works appeared which consume many construction materials. Accordingly, that causes difficulty in handling traditional transportation means (ordinary cranes) due to their limited capacity; there is an urgent need to use high capacity cranes such as tower cranes. However, with regard to their high expense, we have to take into consideration selecting what type of cranes to be utilized which has been discussed by many researchers. In this research, a proposed technique was created to select the suitable type of crane and the best place for crane erection, in addition to minimum radius for requested crane in order to minimize cost. To fulfill that target, a computer program is designed to numerate these problems, demonstrating an example explaining how to apply program and the result donated the best place.

Keywords: tower crane, jib length, operating time, location, feasible area

Procedia PDF Downloads 226
3604 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes

Authors: M. J. San José, S. Alvarez, R. López

Abstract:

In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.

Keywords: biomass wastes, thermal combustion, conical spouted beds, vineyard wastes

Procedia PDF Downloads 199
3603 Supercritical CO2 Extraction of Cymbopogon martini Essential Oil and Comparison of Its Composition with Traditionally Extracted Oils

Authors: Aarti Singh, Anees Ahmad

Abstract:

Essential oil was extracted from lemon grass (Cymbopogon martini) with supercritical carbondioxide (SC-CO2) at pressure of 140 bar and temperature of 55 °C and CO2 flow rate of 8 gmin-1, and its composition and yield were compared with other conventional extraction methods of oil, HD (Hydrodistillation), SE (Solvent Extraction), UAE (Ultrasound Assisted Extraction). SC-CO2 extraction is a green and sustainable extraction technique. Each oil was analysed by GC-MS, the major constituents were neral (44%), Z-citral (43%), geranial (27%), caryophyllene (4.6%) and linalool (1%). The essential oil of lemon grass is valued for its neral and citral concentration. The oil obtained by supercritical carbon-dioxide extraction contained maximum concentration of neral (55.05%) whereas ultrasonication extracted oil contained minimum content (5.24%) and it was absent in solvent extracted oil. The antioxidant properties have been assessed by DPPH and superoxide scavenging methods.

Keywords: cymbopogon martini, essential oil, FT-IR, GC-MS, HPTLC, SC-CO2

Procedia PDF Downloads 463
3602 Assessment of Breast, Lung and Liver Effective Doses in Heart Imaging by CT-Scan 128 Dual Sources with Use of TLD-100 in RANDO Phantom

Authors: Seyedeh Sepideh Amini, Navideh Aghaei Amirkhizi, Seyedeh Paniz Amini, Seyed Soheil Sayyahi, Mohammad Reza Davar Panah

Abstract:

CT-Scan is one of the lateral and sectional imaging methods that produce 3D-images with use of rotational x-ray tube around central axis. This study is about evaluation and calculation of effective doses around heart organs such as breast, lung and liver with CT-Scan 128 dual sources with TLD_100 and RANDO Phantom by spiral, flash and conventional protocols. In results, it is showed that in spiral protocol organs have maximum effective dose and minimum in flash protocol. Thus flash protocol advised for children and risk persons.

Keywords: X-ray computed tomography, dosimetry, TLD-100, RANDO, phantom

Procedia PDF Downloads 476
3601 Prevalence of the Musculoskeletal Disorder amongst School Teachers

Authors: Nirav Vaghela, Sanket Parekh

Abstract:

Objective: Musculoskeletal disorders (MSD) represent one of the most common and important occupational health problems in working populations, being responsible for a substantial impact on quality of life and incurring a major economic burden in compensation cost and lost wages. School teachers represent an occupational group among which there appears to be a high prevalence of MSD. Design: Three hundred and fourteen teachers were enrolled in this study. Teachers were interview with the Modified Nordic Questionnaire. Result: In current study total 314 participants have been recruited in that minimum age of participants is 22 and maximum age is 59 with mean 40.5± 9.88. Total prevalence of the MSD is 71.95% among the teachers. In that Female were more affected with 72% than the males with 28%. Conclusion: The teachers here in reported a high prevalence of musculoskeletal pain in the shoulder, knee and back.

Keywords: repetitive stress injury, pain, occupational hazards, disability, abneetism, physical health, quality of life

Procedia PDF Downloads 291
3600 Synthesis of Ethoxylated Amide as Bactericide to Enhance the Storage Period of Diesel Fuel Nanoemulsions

Authors: S. M. Abd-Altwab, M. R. Noor El-Din

Abstract:

This paper aims to the synthesis of new ethoxylated amide as bactericides to prevent the growth of Gram +ve and –ve bacteria of water-in-diesel fuel nanoemulsions over a long period of time as three months. To realize it, eight kinetically stable water-in-diesel fuel nanoemulsions differing in surfactant concentrations and water contents ranging from 4 to 8 and 5 to 8 wt.,wt.,% of total weight of the nanoemulsions, respectively were formed at a temperature of 20 °C. The performance of this ethoxylated amide as bactericides agents against two strains of Gram-negative bacteria, namely, Pseudomonas aeruginosa and Escherichia coli, and two strains of Gram-positive bacteria namely, Staphylococcus aureus and Bacillus subtilis, were evaluated as antimicrobial agents. The maximum and minimum antimicrobial activities were 85 and 71 % against S. aureus and E. coli, respectively, at a concentration of 5 mg/l, pH 7, and 37 °C.

Keywords: nanoemulsion, bacteriocide, diesel fuel, emulsifier

Procedia PDF Downloads 363
3599 Leveraging Deep Q Networks in Portfolio Optimization

Authors: Peng Liu

Abstract:

Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.

Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization

Procedia PDF Downloads 36
3598 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs

Authors: Iman Farasat, Howard M. Salis

Abstract:

The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.

Keywords: biophysical model, CRISPR, Cas9, genome editing

Procedia PDF Downloads 406
3597 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 392
3596 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation

Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell

Abstract:

Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.

Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models

Procedia PDF Downloads 146
3595 Multiple Intelligences to Improve Pronunciation

Authors: Jean Pierre Ribeiro Daquila

Abstract:

This paper aims to analyze the use of the Theory of Multiple Intelligences as a tool to facilitate students’ learning. This theory, proposed by the American psychologist and educator Howard Gardner, was first established in 1983 and advocates that human beings possess eight intelligence and not only one, as defended by psychologists prior to his theory. These intelligence are bodily-kinesthetic intelligence, musical, linguistic, logical-mathematical, spatial, interpersonal, intrapersonal, and naturalist. This paper will focus on bodily-kinesthetic intelligence. Spatial and bodily-kinesthetic intelligences are sensed by athletes, dancers, and others who use their bodies in ways that exceed normal abilities. These are intelligences that are closely related. A quarterback or a ballet dancer needs to have both an awareness of body motions and abilities as well as a sense of the space involved in the action. Nevertheless, there are many reasons which make classical ballet dance more integrated with other intelligences. Ballet dancers make it look effortless as they move across the stage, from the lifts to the toe points; therefore, there is acting both in the performance of the repertoire and in hiding the pain or physical stress. The ballet dancer has to have great mathematical intelligence to perform a fast allegro; for instance, each movement has to be executed in a specific millisecond. Flamenco dancers need to rely as well on their mathematic abilities, as the footwork requires the ability to make half, two, three, four or even six movements in just one beat. However, the precision of the arm movements is freer than in ballet dance; for this reason, ballet dancers need to be more holistically aware of their movements; therefore, our experiment will test whether this greater attention required by ballet dancers makes them acquire better results in the training sessions when compared to flamenco dancers. An experiment will be carried out in this study by training ballet dancers through dance (four years of experience dancing minimum – experimental group 1); a group of flamenco dancers (four years of experience dancing minimum – experimental group 2). Both experimental groups will be trained in two different domains – phonetics and chemistry – to examine whether there is a significant improvement in these areas compared to the control group (a group of regular students who will receive the same training through a traditional method). However, this paper will focus on phonetic training. Experimental group 1 will be trained with the aid of classical music plus bodily work. Experimental group 2 will be trained with flamenco rhythm and kinesthetic work. We would like to highlight that this study takes dance as an example of a possible area of strength; nonetheless, other types of arts can and should be used to support students, such as drama, creative writing, music and others. The main aim of this work is to suggest that other intelligences, in the case of this study, bodily-kinesthetic, can be used to help improve pronunciation.

Keywords: multiple intelligences, pronunciation, effective pronunciation trainings, short drills, musical intelligence, bodily-kinesthetic intelligence

Procedia PDF Downloads 97
3594 Periodicity of Solutions to Impulsive Equations

Authors: Jin Liang, James H. Liu, Ti-Jun Xiao

Abstract:

It is known that there exist many physical phenomena where abrupt or impulsive changes occur either in the system dynamics, for example, ad-hoc network, or in the input forces containing impacts, for example, the bombardment of space antenna by micrometeorites. There are many other examples such as ultra high-speed optical signals over communication networks, the collision of particles, inventory control, government decisions, interest changes, changes in stock price, etc. These are impulsive phenomena. Hence, as a combination of the traditional initial value problems and the short-term perturbations whose duration can be negligible in comparison with the duration of the process, the systems with impulsive conditions (i.e., impulsive systems) are more realistic models for describing the impulsive phenomenon. Such a situation is also suitable for the delay systems, which include some of the past states of the system. So far, there have been a lot of research results in the study of impulsive systems with delay both in finite and infinite dimensional spaces. In this paper, we investigate the periodicity of solutions to the nonautonomous impulsive evolution equations with infinite delay in Banach spaces, where the coefficient operators (possibly unbounded) in the linear part depend on the time, which are impulsive systems in infinite dimensional spaces and come from the optimal control theory. It was indicated that the study of periodic solutions for these impulsive evolution equations with infinite delay was challenging because the fixed point theorems requiring some compactness conditions are not applicable to them due to the impulsive condition and the infinite delay. We are happy to report that after detailed analysis, we are able to combine the techniques developed in our previous papers, and some new ideas in this paper, to attack these impulsive evolution equations and derive periodic solutions. More specifically, by virtue of the related transition operator family (evolution family), we present a Poincaré operator given by the nonautonomous impulsive evolution system with infinite delay, and then show that the operator is a condensing operator with respect to Kuratowski's measure of non-compactness in a phase space by using an Amann's lemma. Finally, we derive periodic solutions from bounded solutions in view of the Sadovskii fixed point theorem. We also present a relationship between the boundedness and the periodicity of the solutions of the nonautonomous impulsive evolution system. The new results obtained here extend some earlier results in this area for evolution equations without impulsive conditions or without infinite delay.

Keywords: impulsive, nonautonomous evolution equation, optimal control, periodic solution

Procedia PDF Downloads 255
3593 Assessment of Seeding and Weeding Field Robot Performance

Authors: Victor Bloch, Eerikki Kaila, Reetta Palva

Abstract:

Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.

Keywords: agricultural robot, field robot, plant detection, robot performance

Procedia PDF Downloads 88
3592 Generic Data Warehousing for Consumer Electronics Retail Industry

Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel

Abstract:

The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.

Keywords: consumer electronics, data warehousing, dimensional data model, generic, retail industry

Procedia PDF Downloads 413
3591 Optimization and Coordination of Organic Product Supply Chains under Competition: An Analytical Modeling Perspective

Authors: Mohammadreza Nematollahi, Bahareh Mosadegh Sedghy, Alireza Tajbakhsh

Abstract:

The last two decades have witnessed substantial attention to organic and sustainable agricultural supply chains. Motivated by real-world practices, this paper aims to address two main challenges observed in organic product supply chains: decentralized decision-making process between farmers and their retailers, and competition between organic products and their conventional counterparts. To this aim, an agricultural supply chain consisting of two farmers, a conventional farmer and an organic farmer who offers an organic version of the same product, is considered. Both farmers distribute their products through a single retailer, where there exists competition between the organic and the conventional product. The retailer, as the market leader, sets the wholesale price, and afterward, the farmers set their production quantity decisions. This paper first models the demand functions of the conventional and organic products by incorporating the effect of asymmetric brand equity, which captures the fact that consumers usually pay a premium for organic due to positive perceptions regarding their health and environmental benefits. Then, profit functions with consideration of some characteristics of organic farming, including crop yield gap and organic cost factor, are modeled. Our research also considers both economies and diseconomies of scale in farming production as well as the effects of organic subsidy paid by the government to support organic farming. This paper explores the investigated supply chain in three scenarios: decentralized, centralized, and coordinated decision-making structures. In the decentralized scenario, the conventional and organic farmers and the retailer maximize their own profits individually. In this case, the interaction between the farmers is modeled under the Bertrand competition, while analyzing the interaction between the retailer and farmers under the Stackelberg game structure. In the centralized model, the optimal production strategies are obtained from the entire supply chain perspective. Analytical models are developed to derive closed-form optimal solutions. Moreover, analytical sensitivity analyses are conducted to explore the effects of main parameters like the crop yield gap, organic cost factor, organic subsidy, and percent price premium of the organic product on the farmers’ and retailer’s optimal strategies. Afterward, a coordination scenario is proposed to convince the three supply chain members to shift from the decentralized to centralized decision-making structure. The results indicate that the proposed coordination scenario provides a win-win-win situation for all three members compared to the decentralized model. Moreover, our paper demonstrates that the coordinated model respectively increases and decreases the production and price of organic produce, which in turn motivates the consumption of organic products in the market. Moreover, the proposed coordination model helps the organic farmer better handle the challenges of organic farming, including the additional cost and crop yield gap. Last but not least, our results highlight the active role of the organic subsidy paid by the government as a means of promoting sustainable organic product supply chains. Our paper shows that although the amount of organic subsidy plays a significant role in the production and sales price of organic products, the allocation method of subsidy between the organic farmer and retailer is not of that importance.

Keywords: analytical game-theoretic model, product competition, supply chain coordination, sustainable organic supply chain

Procedia PDF Downloads 112
3590 Practical Application of Business Processes Simulation

Authors: M. Gregušová, V. Schindlerová, I. Šajdlerová, P. Mohyla, J. Kedroň

Abstract:

Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. Maintain your place among the successful companies on the market today or come up with a revolutionary business idea; it is much more difficult than before. Each new or improved method, tools, or the approach that can improve the functioning of business processes or even the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk to find the optimal parameters of manufacturing processes and systems. The paper presents an example of using simulation to solve the bottleneck problem in concrete company.

Keywords: practical applications, business processes, systems, simulation

Procedia PDF Downloads 638
3589 Study of Temperature and Precipitation Changes Based on the Scenarios (IPCC) in the Caspian Sea City: Case Study in Gillan Province

Authors: Leila Rashidian, Mina Rajabali

Abstract:

Industrialization has made progress and comfort for human beings in many aspects. It is not only achievement for the global environment but also factor for destruction and disruption of the Earth's climate. In this study, we used LARS.WG model and down scaling of general circulation climate model HADCM-3 daily precipitation amounts, minimum and maximum temperature and daily sunshine hours. These data are provided by the meteorological organization for Caspian Sea coastal station such as Anzali, Manjil, Rasht, Lahijan and Astara since their establishment is from 1982 until 2010. According to the IPCC scenarios, including series A1b, A2, B1, we tried to simulate data from 2010 to 2040. The rainfall pattern has changed. So we have a rainfall distribution inappropriate in different months.

Keywords: climate change, Lars.WG, HADCM3, Gillan province, climatic parameters, A2 scenario

Procedia PDF Downloads 285
3588 Channel Estimation for LTE Downlink

Authors: Rashi Jain

Abstract:

The LTE systems employ Orthogonal Frequency Division Multiplexing (OFDM) as the multiple access technology for the Downlink channels. For enhanced performance, accurate channel estimation is required. Various algorithms such as Least Squares (LS), Minimum Mean Square Error (MMSE) and Recursive Least Squares (RLS) can be employed for the purpose. The paper proposes channel estimation algorithm based on Kalman Filter for LTE-Downlink system. Using the frequency domain pilots, the initial channel response is obtained using the LS criterion. Then Kalman Filter is employed to track the channel variations in time-domain. To suppress the noise within a symbol, threshold processing is employed. The paper draws comparison between the LS, MMSE, RLS and Kalman filter for channel estimation. The parameters for evaluation are Bit Error Rate (BER), Mean Square Error (MSE) and run-time.

Keywords: LTE, channel estimation, OFDM, RLS, Kalman filter, threshold

Procedia PDF Downloads 358
3587 Research on the Spatio-Temporal Evolution Pattern of Traffic Dominance in Shaanxi Province

Authors: Leng Jian-Wei, Wang Lai-Jun, Li Ye

Abstract:

In order to measure and analyze the transportation situation within the counties of Shaanxi province over a certain period of time and to promote the province's future transportation planning and development, this paper proposes a reasonable layout plan and compares model rationality. The study uses entropy weight method to measure the transportation advantages of 107 counties in Shaanxi province from three dimensions: road network density, trunk line influence and location advantage in 2013 and 2021, and applies spatial autocorrelation analysis method to analyze the spatial layout and development trend of county-level transportation, and conducts ordinary least square (OLS)regression on transportation impact factors and other influencing factors. The paper also compares the regression fitting degree of the Geographically weighted regression(GWR) model and the OLS model. The results show that spatially, the transportation advantages of Shaanxi province generally show a decreasing trend from the Weihe Plain to the surrounding areas and mainly exhibit high-high clustering phenomenon. Temporally, transportation advantages show an overall upward trend, and the phenomenon of spatial imbalance gradually decreases. People's travel demands have changed to some extent, and the demand for rapid transportation has increased overall. The GWR model regression fitting degree of transportation advantages is 0.74, which is higher than the OLS regression model's fitting degree of 0.64. Based on the evolution of transportation advantages, it is predicted that this trend will continue for a period of time in the future. To improve the transportation advantages of Shaanxi province increasing the layout of rapid transportation can effectively enhance the transportation advantages of Shaanxi province. When analyzing spatial heterogeneity, geographic factors should be considered to establish a more reliable model

Keywords: traffic dominance, GWR model, spatial autocorrelation analysis, temporal and spatial evolution

Procedia PDF Downloads 89
3586 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics

Authors: Jatin Gupta, Bishakh Bhattacharya

Abstract:

With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.

Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design

Procedia PDF Downloads 202
3585 Define Immersive Need Level for Optimal Adoption of Virtual Words with BIM Methodology

Authors: Simone Balin, Cecilia M. Bolognesi, Paolo Borin

Abstract:

In the construction industry, there is a large amount of data and interconnected information. To manage this information effectively, a transition to the immersive digitization of information processes is required. This transition is important to improve knowledge circulation, product quality, production sustainability and user satisfaction. However, there is currently a lack of a common definition of immersion in the construction industry, leading to misunderstandings and limiting the use of advanced immersive technologies. Furthermore, the lack of guidelines and a common vocabulary causes interested actors to abandon the virtual world after the first collaborative steps. This research aims to define the optimal use of immersive technologies in the AEC sector, particularly for collaborative processes based on the BIM methodology. Additionally, the research focuses on creating classes and levels to structure and define guidelines and a vocabulary for the use of the " Immersive Need Level." This concept, matured by recent technological advancements, aims to enable a broader application of state-of-the-art immersive technologies, avoiding misunderstandings, redundancies, or paradoxes. While the concept of "Informational Need Level" has been well clarified with the recent UNI EN 17412-1:2021 standard, when it comes to immersion, current regulations and literature only provide some hints about the technology and related equipment, leaving the procedural approach and the user's free interpretation completely unexplored. Therefore, once the necessary knowledge and information are acquired (Informational Need Level), it is possible to transition to an Immersive Need Level that involves the practical application of the acquired knowledge, exploring scenarios and solutions in a more thorough and detailed manner, with user involvement, via different immersion scales, in the design, construction or management process of a building or infrastructure. The need for information constitutes the basis for acquiring relevant knowledge and information, while the immersive need can manifest itself later, once a solid information base has been solidified, using the senses and developing immersive awareness. This new approach could solve the problem of inertia among AEC industry players in adopting and experimenting with new immersive technologies, expanding collaborative iterations and the range of available options.

Keywords: AECindustry, immersive technology (IMT), virtual reality, augmented reality, building information modeling (BIM), decision making, collaborative process, information need level, immersive level of need

Procedia PDF Downloads 102
3584 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System

Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang

Abstract:

Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.

Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube

Procedia PDF Downloads 114
3583 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip

Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum

Abstract:

3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.

Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits

Procedia PDF Downloads 305
3582 Performance Analysis of Solar Air Heater with Fins and Perforated Twisted Tape Insert

Authors: Rajesh Kumar, Prabha Chand

Abstract:

The present paper deals with the analytical investigation on the thermal and thermo-hydraulic performance of the solar air collector fitted with fins and perforated twisted tapes (PTT) of twist ratio 2 with different axial pitch ratio. The mathematical models are presented, and the effect of mass flow rate and axial pitch ratios on the thermal and effective efficiency has been discussed. The results obtained are compared with the results of the solar air heater without fins and twisted tapes. Results conveyed that the collectors with fins and perforated twisted tape perform better but at the expense of increased pressure drop. Also, twisted tape with minimum axial pitch ratio is found to be more efficient than others.

Keywords: solar air heater, thermal efficiency, twisted tape, twist ratio

Procedia PDF Downloads 267