Search results for: minimum root mean square (RMS) error matching algorithm
7650 Combined Localization, Beamforming, and Interference Threshold Estimation in Underlay Cognitive System
Authors: Omar Nasr, Yasser Naguib, Mohamed Hafez
Abstract:
This paper aims at providing an innovative solution for blind interference threshold estimation in an underlay cognitive network to be used in adaptive beamforming by secondary user Transmitter and Receiver. For the task of threshold estimation, blind detection of modulation and SNR are used. For the sake of beamforming several localization algorithms are compared to settle on best one for cognitive environment. Beamforming algorithms as LCMV (Linear Constraint Minimum Variance) and MVDR (Minimum Variance Distortion less) are also proposed and compared. The idea of just nulling the primary user after knowledge of its location is discussed against the idea of working under interference threshold.Keywords: cognitive radio, underlay, beamforming, MUSIC, MVDR, LCMV, threshold estimation
Procedia PDF Downloads 5827649 Visualization of Interaction between Pochonia Chlamydosporia and Meloidogyne Incognita and Their Impact on Tomato Crop
Authors: Saifullah K., Muhammad Naziruddin Saifullah, Muhammad N.
Abstract:
The bio control potential and mechanism of P. chlamydosporia against Meloidogyne incognita was evaluated in the present study. Under invitro conditions, P. chlamydosporia was tested for parasitism of eggs and females of M. incognita. The results indicated that this fungus parasitized 87% eggs and 82% females. Culture filtrate (CF) of P. chlamydosporia was tested for its larvicide activity against M. incognita 2nd stage juvenile. The maximum mortality was 97.3% at 100% concentration of the culture filtrate while minimum mortality was 7.3% in 25% concentration after 24 hrs. The result of the pot experiment proved that P. chlamydosporia has reduced the incidence of RKN and improved all tested agronomic growth parameters. The treatment with inoculated M. incognita alone reduced plant height, fresh shoot, and fresh root weight by 44.7%, 29.8%, and 32.8% respectively over uninoculated healthy control. Histopathological studies on the interaction of Pochonia chlamydosporia and Meloidogyne incognita on tomato roots revealed anatomical changes among treatments. Less number of galls with small in size and scarcer abnormalities in the vascular cylinder was observed in plants inoculated with P. chlamydosporia and M. incognita than the plants treated with nematode only. The fungus was seen in in the intercellular spaces of cortical and epidermal cells while the vascular bundles of the plant remain intact, inoculated only with P. chlamydosporia. In the infected roots, many mature females were seen which feed on giant cells. The findings also revealed that control healthy plants were not affected and no histological changes were noted.Keywords: histopathology, Pochonia chlamydosporia, Meloidogyne incognita, tomato
Procedia PDF Downloads 1047648 Renewable Integration Algorithm to Compensate Photovoltaic Power Using Battery Energy Storage System
Authors: Hyung Joo Lee, Jin Young Choi, Gun Soo Park, Kyo Sun Oh, Dong Jun Won
Abstract:
The fluctuation of the output of the renewable generator caused by weather conditions must be mitigated because it imposes strain on the system and adversely affects power quality. In this paper, we focus on mitigating the output fluctuation of the photovoltaic (PV) using battery energy storage system (BESS). To satisfy tight conditions of system, proposed algorithm is developed. This algorithm focuses on adjusting the integrated output curve considering state of capacity (SOC) of the battery. In this paper, the simulation model is PSCAD / EMTDC software. SOC of the battery and the overall output curve are shown using the simulation results. We also considered losses and battery efficiency.Keywords: photovoltaic generation, battery energy storage system, renewable integration, power smoothing
Procedia PDF Downloads 2817647 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm
Authors: Saeed Kamarian, Mahmoud Shakeri
Abstract:
Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm
Procedia PDF Downloads 5697646 An Introductory Study on Optimization Algorithm for Movable Sensor Network-Based Odor Source Localization
Authors: Yossiri Ariyakul, Piyakiat Insom, Poonyawat Sangiamkulthavorn, Takamichi Nakamoto
Abstract:
In this paper, the method of optimization algorithm for sensor network comprised of movable sensor nodes which can be used for odor source localization was proposed. A sensor node is composed of an odor sensor, an anemometer, and a wireless communication module. The odor intensity measured from the sensor nodes are sent to the processor to perform the localization based on optimization algorithm by which the odor source localization map is obtained as a result. The map can represent the exact position of the odor source or show the direction toward it remotely. The proposed method was experimentally validated by creating the odor source localization map using three, four, and five sensor nodes in which the accuracy to predict the position of the odor source can be observed.Keywords: odor sensor, odor source localization, optimization, sensor network
Procedia PDF Downloads 2997645 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm
Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava
Abstract:
Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)
Procedia PDF Downloads 3127644 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm
Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu
Abstract:
Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model
Procedia PDF Downloads 2027643 Solving Linear Systems Involved in Convex Programming Problems
Authors: Yixun Shi
Abstract:
Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.Keywords: convex programming, interior point method, linear systems, vector division
Procedia PDF Downloads 4027642 Development of a Work-Related Stress Management Program Guaranteeing Fitness-For-Duty for Human Error Prevention
Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee
Abstract:
Human error is one of the most dreaded factors that may result in unexpected accidents, especially in nuclear power plants. For accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Out of lots factors, stress has been reported to have a significant influence on human performance. Therefore, this research aimed to develop a work-related stress management program which can guarantee Fitness-for-Duty (FFD) of the workers in nuclear power plants, especially those working in main control rooms. Major stress factors were elicited through literal surveys and classified into major categories such as demands, supports, and relationships. To manage those factors, a test and intervention program based on 4-level approaches was developed over the whole employment cycle including selection and screening of workers, job allocation, and job rotation. In addition, a managerial care program was introduced with the concept of Employee-Assistance-Program (EAP) program. Reviews on the program conducted by ex-operators in nuclear power plants showed responses in the affirmative, and suggested additional treatment to guarantee high performance of human workers, not in normal operations but also in emergency situations.Keywords: human error, work performance, work stress, Fitness-For-Duty (FFD), Employee Assistance Program (EAP)
Procedia PDF Downloads 4047641 Screening the Best Integrated Pest Management Treatments against Helicoverpa armigera
Authors: Ajmal Khan Kassi, Humayun Javed, Tariq Mukhtar
Abstract:
The research was conducted to screen out resistance and susceptibility of okra varieties against Helicoverpa armigera under field conditions 2016. In this experiment, the different management practices viz. release Trichogramma chilonis, hoeing, and weeding, clipping, and lufenuron were tested individually and with all possible combinations for the controlling of American bollworm at 3 diverse localities viz. University research farm Koont, National Agriculture Research Centre (NARC) and farmer field Taxila by using resistant variety Arka Anamika. All the treatment combinations regarding damage of shoot and fruit showed significant results. The minimum fruit infestation, i.e., 3.20% and 3.58% was recorded with combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in two different localities. The minimum shoot infestation, i.e., 7.18%, 7.08%, and 6.85% was also observed with (T. chilonis + hoeing + weeding + lufenuron) combined treatment at all three different localities. The above-combined treatment (T. chilonis + hoeing + weeding + lufenuron) also resulted in maximum yield at NARC and Taxila, i.e., 57.67 and 62.66 q/ha respectively. On the basis of combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in three different localities, Arka Anamika variety proved to be comparatively resistant against H. armigera. So this variety is recommended for the cultivation in Pothwar region to get maximum yield and minimum losses against H. armigera.Keywords: okra, screening, combine treatment, Helicoverpa armigera
Procedia PDF Downloads 1557640 Development of an Index for Asset Class in Ex-Ante Portfolio Management
Authors: Miang Hong Ngerng, Noor Diyana Jasme, May Jin Theong
Abstract:
Volatile market environment is inevitable. Fund managers are struggling to choose the right strategy to survive and overcome uncertainties and adverse market movement. Therefore, finding certainty in the mist of uncertainty future is one of the key performance objectives for fund managers. Current available theoretical results are not practical due to strong reliance on the investment assumption made. This paper is to identify the component that can be forecasted in Ex-ante setting which is the realistic situation facing a fund manager in the actual execution of asset allocation in portfolio management. Partial lease square method was used to generate an index with 10 years accounting data from 191 companies listed in KLSE. The result shows that the index reflects the inner nature of the business and up to 30% of the stock return can be explained by the index.Keywords: active portfolio management, asset allocation ex-ante investment, asset class, partial lease square
Procedia PDF Downloads 2707639 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 1997638 Image Rotation Using an Augmented 2-Step Shear Transform
Authors: Hee-Choul Kwon, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition
Procedia PDF Downloads 2777637 Phytochemical Composition, Antimicrobial Potential and Antioxidant Activity of Peganum harmala L. Extracts
Authors: Narayana Bhat, Majda Khalil, Hamad Al-Mansour, Anitha Manuvel, Vimla Yeddu
Abstract:
The aim of this study was to assess the antimicrobial and antioxidant potential and phytochemical composition of Peganum harmala L. For this purpose, powdered shoot, root, and seed samples were extracted in an accelerated solvent extractor (ASE) with methanol, ethanol, acetone, and dichloromethane. The residues were reconstituted in the above solvents and 10% dimethyl sulphoxide (DMSO). The antimicrobial activity of these extracts was tested against two bacterial (Escherichia coli E49 and Staphylococcus aureus CCUG 43507) and two fungi Candida albicans ATCC 24433, Candida glabrata ATCC 15545) strains using the well-diffusion method. The minimum inhibitory concentration (MIC) and growth pattern of these test strains were determined using microbroth dilution method, and the phospholipase assay was performed to detect tissue damage in the host cells. Results revealed that ethanolic, methanolic, and dichloromethane extracts of seeds exhibited significant antimicrobial activities against all tested strains, whereas the acetone extract of seeds was effective against E. coli only. Similarly, ethanolic and methanolic extracts of roots were effective against two bacterial strains only. One sixth of percent (0.6%) yield of methanol extract of seeds was found to be the MIC for Escherichia coli E49, Staphylococcus aureus CCUG 43507, and Candida glabrata ATCC 15545. Overall, seed extracts had greater antimicrobial activities compared to roots and shoot extracts. The original plant extract and MIC dilutions prevented phospholipase secretion in Staphylococcus aureus CCUG 43507 and Candida albicans ATCC 24433. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed radical scavenging activities ranging from 71.80 ± 4.36% to 87.75 ± 1.70%. The main compound present in the root extract was 1-methyl-7-methoxy-beta-carboline (RT: 44.171), followed by norlapachol (3.62%), benzopyrazine (2.20%), palmitic acid (2.12%) and vasicinone (1.96%). In contrast, phenol,4-ethenyl-2-methoxy was in abundance in the methonolic extract of the shoot, whereas 1-methyl-7-methoxy-beta-carboline (79.59%), linoleic acid (9.05%), delta-tocopherol (5.02%), 9,12-octadecadienoic acid, methyl ester (2.65%), benzene, 1,1-1,2 ethanediyl bis 3,4dimethyl (1.15%), anthraquinone (0.58%), hexadecanoic acid, methyl ester (0.54%), palmitic acid (0.35%) and methyl stearate (0.18%) were present in the methanol extract of seeds. Major findings of this study, along with their relevance to developing effective, safe drugs, will be discussed in this presentation.Keywords: medicinal plants, secondary metabolites, phytochemical screening, bioprospecting, radical scavenging
Procedia PDF Downloads 1777636 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid
Procedia PDF Downloads 3807635 Optimal Number of Reconfigurable Robots in a Transport System
Authors: Mari Chaikovskaia, Jean-Philippe Gayon, Alain Quilliot
Abstract:
We consider a fleet of elementary robots that can be connected in different ways to transport loads of different types. For instance, a single robot can transport a small load, and the association of two robots can either transport a large load or two small loads. We seek to determine the optimal number of robots to transport a set of loads in a given time interval, with or without reconfiguration. We show that the problem with reconfiguration is strongly NP-hard by a reduction to the bin-packing problem. Then, we study a special case with unit capacities and derive simple formulas for the minimum number of robots, up to 3 types of loads. For this special case, we compare the minimum number of robots with or without reconfiguration and show that the gain is limited in absolute value but may be significant for small fleets.Keywords: fleet sizing, reconfigurability, robots, transportation
Procedia PDF Downloads 867634 Proximal Method of Solving Split System of Minimization Problem
Authors: Anteneh Getachew Gebrie, Rabian Wangkeeree
Abstract:
The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.Keywords: Hilbert Space, minimization problems, Moreau-Yosida approximate, split feasibility problem
Procedia PDF Downloads 1447633 Rehabilitation of the Blind Using Sono-Visualization Tool
Authors: Ashwani Kumar
Abstract:
In human beings, eyes play a vital role. A very less research has been done for rehabilitation of blindness for the blind people. This paper discusses the work that helps blind people for recognizing the basic shapes of the objects like circle, square, triangle, horizontal lines, vertical lines, diagonal lines and the wave forms like sinusoidal, square, triangular etc. This is largely achieved by using a digital camera, which is used to capture the visual information present in front of the blind person and a software program, which achieves the image processing operations, and finally the processed image is converted into sound. After the sound generation process, the generated sound is fed to the blind person through headphones for visualizing the imaginary image of the object. For visualizing the imaginary image of the object, it needs to train the blind person. Various training process methods had been applied for recognizing the object.Keywords: image processing, pixel, pitch, loudness, sound generation, edge detection, brightness
Procedia PDF Downloads 3887632 Optimization of Vertical Axis Wind Turbine Based on Artificial Neural Network
Authors: Mohammed Affanuddin H. Siddique, Jayesh S. Shukla, Chetan B. Meshram
Abstract:
The neural networks are one of the power tools of machine learning. After the invention of perceptron in early 1980's, the neural networks and its application have grown rapidly. Neural networks are a technique originally developed for pattern investigation. The structure of a neural network consists of neurons connected through synapse. Here, we have investigated the different algorithms and cost function reduction techniques for optimization of vertical axis wind turbine (VAWT) rotor blades. The aerodynamic force coefficients corresponding to the airfoils are stored in a database along with the airfoil coordinates. A forward propagation neural network is created with the input as aerodynamic coefficients and output as the airfoil co-ordinates. In the proposed algorithm, the hidden layer is incorporated into cost function having linear and non-linear error terms. In this article, it is observed that the ANNs (Artificial Neural Network) can be used for the VAWT’s optimization.Keywords: VAWT, ANN, optimization, inverse design
Procedia PDF Downloads 3247631 Engineering Optimization Using Two-Stage Differential Evolution
Authors: K. Y. Tseng, C. Y. Wu
Abstract:
This paper employs a heuristic algorithm to solve engineering problems including truss structure optimization and optimal chiller loading (OCL) problems. Two different type algorithms, real-valued differential evolution (DE) and modified binary differential evolution (MBDE), are successfully integrated and then can obtain better performance in solving engineering problems. In order to demonstrate the performance of the proposed algorithm, this study adopts each one testing case of truss structure optimization and OCL problems to compare the results of other heuristic optimization methods. The result indicates that the proposed algorithm can obtain similar or better solution in comparing with previous studies.Keywords: differential evolution, Truss structure optimization, optimal chiller loading, modified binary differential evolution
Procedia PDF Downloads 1687630 Two Points Crossover Genetic Algorithm for Loop Layout Design Problem
Authors: Xu LiYun, Briand Florent, Fan GuoLiang
Abstract:
The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.Keywords: crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization
Procedia PDF Downloads 2797629 Acclimation of in vitro-Propagated Apple Plantlets as Affected by Light Intensity
Authors: Guem-Jae Chung, Jin-Hui Lee, Myung-Min Oh
Abstract:
Environmental control of in vitro-propagated apple plantlets is required for successful acclimation to ex vitro due to its low survival rate. This study aimed to determine the proper lighting condition for ex vitro acclimation of the apple plantlets in plant factories. In vitro-propagated M9 apple plantlets treated with pre-acclimatization for 1 week were exposed to following light treatments for additional 6 weeks; 60 μmol·m⁻²·s⁻¹ (A), 100 μmol·m⁻²·s⁻¹ (B), 140 μmol·m⁻²·s⁻¹ (C), 180 μmol·m⁻²·s⁻¹ (D), 60 μmol·m⁻²·s⁻¹ → 100 μmol·m⁻²·s⁻¹ at 2 weeks (E) or 4 weeks (F), 60 μmol·m⁻²·s⁻¹ → 100 μmol·m⁻²·s⁻¹ at 2 weeks → 140 μmol·m⁻²·s⁻¹ at 4 weeks (G) and 60 μmol·m⁻²·s⁻¹ → 140 μmol·m⁻²·s⁻¹ at 4 weeks (H). Shoot height, total leaf area, soil-plant analysis development (SPAD) value, root length, fresh and dry weights of shoots and roots were measured every 2 weeks after transplanting. In addition, the photosynthetic rate was measured at 5 weeks after transplanting. At 6 weeks after transplanting, shoot height of B was significantly higher than the other treatments. SPAD value, total leaf area and root length of B and F were relatively higher than the other treatments. Root fresh weights of B, D, F, and G were relatively higher than those in the other treatments. D induced the highest value in shoot fresh weight probably due to stem hardening, but it also resulted in shoot damage in the early stage of acclimation. Photosynthetic rate at 5 weeks after the transplanting was significantly increased as the light intensity increased. These results suggest that 100 μmol·m⁻²·s⁻¹ for 6 weeks (B) or gradually increased treatment from 60 μmol·m⁻²·s⁻¹ to 140 μmol·m⁻²·s⁻¹ at 2 weeks interval (F) were the proper lighting conditions for successful acclimation of in vitro-propagated apple plantlets. Acknowledgment: This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (315003051SB020).Keywords: acclimation, in vitro-propagated apple plantlets, light intensity, plant factory
Procedia PDF Downloads 1337628 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters
Authors: Renkai Wang, Tingcun Wei
Abstract:
In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.Keywords: digitally-controlled DC-DC switching converter, digital voltage compensator, delta-operator, finite word length, stability
Procedia PDF Downloads 4127627 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 1867626 Application of Fourier Series Based Learning Control on Mechatronic Systems
Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt
Abstract:
A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.Keywords: climbing stairs, FSBLC, ILC, service robot
Procedia PDF Downloads 3147625 Implications of Oxidative Stress for Monoterpenoid Oxindole Alkaloid Production in Uncaria tomentosa Cultures
Authors: Ana C. Ramos Valdivia, Ileana Vera-Reyes, Ariana A. Huerta-Heredia
Abstract:
The conditions of biotic and abiotic stress in plants can lead to the generation of high amounts of reactive oxygen species (ROS), which leads through a signaling cascade and second messengers to different antioxidant defense responses including the production of secondary metabolites. A limited number of species of plants like Uncaria tomentosa (cat claw) typical of the Amazon region produce monoterpenoid oxindole alkaloids (MOA) such as isopteropodine, mitraphylline, rhynchophylline and its isomers. Moreover, in cultivated roots, the glucoindole alkaloid 3α-dihydrocadambine (DHC) is also accumulated. Several studies have demonstrated that MAO has antioxidant properties and possess important pharmacological activities such as antitumor and immunostimulant while DHC, has hypotensive and hypolipidemic effects. In order the study the regulatory concerns operating in MAO production, the links between oxidative stress and antioxidant alkaloid production in U. tomentosa root cultures were examined. Different amount of hydrogen peroxide between 0.2 -1.0 mM was added to 12 days old roots cultures showing that, this substance had a differential effect on the production of DHC and MOA whereas the viability remained in 80% after six days. Addition of 0.2 mM hydrogen peroxide increased approximately 65% MAO and DHC production (0,540 ± 0.018 and 0.618 ± 0.029 mg per g dry weight, respectively) relative to the control. On contrast, after the addition of 0.6 mM and 1 mM hydrogen peroxide, DHC accumulation into the roots gradually decreased to 53% and 93% respectively, without changes in MAO concentration, which was in relation to a twice increase of the intracellular hydrogen peroxide content. On the other hand, concentrations of DHC (0.1, 0.5 and 1.0 mM in methanol) demonstrated free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The calculated IC50 for all tested concentrations was 0.180 mg per ml (0.33 mM) while the calculated TE50 was 276 minutes. Our results suggest that U. tomentosa root cultures both MAO and DHC have antioxidant capacities and respond to oxidative stress with a stimulation of their production; however, in presence of a higher concentration of ROS into the roots, DHC could be oxidized.Keywords: monoterpenoid indole alkaloid, oxidative stress, root cultures, uncaria tomentosa
Procedia PDF Downloads 1827624 Finding Data Envelopment Analysis Target Using the Multiple Objective Linear Programming Structure in Full Fuzzy Case
Authors: Raziyeh Shamsi
Abstract:
In this paper, we present a multiple objective linear programming (MOLP) problem in full fuzzy case and find Data Envelopment Analysis(DEA) targets. In the presented model, we are seeking the least inputs and the most outputs in the production possibility set (PPS) with the variable return to scale (VRS) assumption, so that the efficiency projection is obtained for all decision making units (DMUs). Then, we provide an algorithm for finding DEA targets interactively in the full fuzzy case, which solves the full fuzzy problem without defuzzification. Owing to the use of interactive methods, the targets obtained by our algorithm are more applicable, more realistic, and they are according to the wish of the decision maker. Finally, an application of the algorithm in 21 educational institutions is provided.Keywords: DEA, MOLP, full fuzzy, target
Procedia PDF Downloads 3027623 Improving Human Resources Management in Indian Civil Service
Authors: Anant Deogaonkar, Archana Nanoty
Abstract:
The term civil service plays a vital role in functioning of any government. In today’s modern era of globalization civil services essentially contribute for the success of the good governance system. The civil service in India refers to the body of government officials employed in civil occupations that are neither political nor judicial. The Indian Civil Services were created to foster the idea of unity in diversity with the expectation of giving continuity and change in administration independent of the political scenario and turmoil affecting the country. The civil service is an integral part of administration and the structures of administration to determine the way civil service functions. The concept of good governance necessarily precludes the effective human resource management ensuring the root level reach of the good governance. The serious matter of concern is the element of change. The civil service in general has maintained status quo instead of sweeping changes in social and economic scenario. One may disagree for this but it is a fact on the street that the Indian civil service was not able to deliver up to the expectations of the people and was lacking on the service front. The effective management of human resources at civil service needs to be prioritized and will form a key factor in successful delivery of the desired results may be in minimum duration. This paper focuses on the various ways of effective management of human resources in civil services. It also highlights the importance of improvement in human resource management in civil services with the detailed discussion of positives and negatives if any of the human resource management in civil services.Keywords: civil services, human resources management, India, governance
Procedia PDF Downloads 3187622 Optimal Closed-loop Input Shaping Control Scheme for a 3D Gantry Crane
Authors: Mohammad Javad Maghsoudi, Z. Mohamed, A. R. Husain
Abstract:
Input shaping has been utilized for vibration reduction of many oscillatory systems. This paper presents an optimal closed-loop input shaping scheme for control of a three dimensional (3D) gantry crane system including. This includes a PID controller and Zero Vibration shaper which consider two control objectives concurrently. The control objectives are minimum sway of a payload and fast and accurate positioning of a trolley. A complete mathematical model of a lab-scaled 3D gantry crane is simulated in Simulink. Moreover, by utilizing PSO algorithm and a proposed scheme the controller is designed to cater both control objectives concurrently. Simulation studies on a 3D gantry crane show that the proposed optimal controller has an acceptable performance. The controller provides good position response with satisfactory payload sway in both rail and trolley responses.Keywords: 3D gantry crane, input shaping, closed-loop control, optimal scheme, PID
Procedia PDF Downloads 4147621 Automatic Content Curation of Visual Heritage
Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz
Abstract:
Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research
Procedia PDF Downloads 184