Search results for: learning transitions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7461

Search results for: learning transitions

5781 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
5780 Enhancing Secondary School Mathematics Retention with Blended Learning: Integrating Concepts for Improved Understanding

Authors: Felix Oromena Egara, Moeketsi Mosia

Abstract:

The study aimed to evaluate the impact of blended learning on mathematics retention among secondary school students. Conducted in the Isoko North Local Government Area of Delta State, Nigeria, the research involved 1,235 senior class one (SS 1) students. Employing a non-equivalent control group pre-test-post-test quasi-experimental design, a sample of 70 students was selected from two secondary schools with ICT facilities through purposive sampling. Random allocation of students into experimental and control groups was achieved through balloting within each selected school. The investigation included three assessment points: pre-Mathematics Achievement Test (MAT), post-MAT, and post-post-MAT (retention), administered systematically by the researchers. Data collection utilized the established MAT instrument, which demonstrated a high reliability score of 0.86. Statistical analysis was conducted using the Statistical Package for Social Sciences (SPSS) version 28, with mean and standard deviation addressing study questions and analysis of covariance scrutinizing hypotheses at a significance level of .05. Results revealed significantly greater improvements in mathematics retention scores among students exposed to blended learning compared to those instructed through conventional methods. Moreover, noticeable differences in mean retention scores were observed, with male students in the blended learning group exhibiting notably higher performance. Based on these findings, recommendations were made, advocating for mathematics educators to integrate blended learning, particularly in geometry teaching, to enhance students’ retention of mathematical concepts.

Keywords: blended learning, flipped classroom model, secondary school students, station rotation model

Procedia PDF Downloads 41
5779 Contributions of Non-Formal Educational Spaces for the Scientific Literacy of Deaf Students

Authors: Rafael Dias Silva

Abstract:

The school is a social institution that should promote learning situations that remain throughout life. Based on this, the teaching activities promoted in museum spaces can represent an educational strategy that contributes to the learning process in a more meaningful way. This article systematizes a series of elements that guide the use of these spaces for the scientific literacy of deaf students and as experiences of this nature are favorable for the school development through the concept of the circularity. The methodology for the didactic use of these spaces of non-formal education is one of the reflections developed in this study and how such environments can contribute to the learning in the classroom. To develop in the student the idea of ​​association making him create connections with the curricular proposal and notice how the proposed activity is articulated. It is in our interest that the experience lived in the museum be shared collaborating for the construction of a scientific literacy and cultural identity through the research.

Keywords: accessibility in museums, Brazilian sign language, deaf students, teacher training

Procedia PDF Downloads 236
5778 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 197
5777 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads

Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan

Abstract:

Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.

Keywords: stream speed, urban roads, machine learning, traffic flow

Procedia PDF Downloads 69
5776 The Influence of Educational Board Games on Chinese Learning Motivation and Flow Experience

Authors: Ju May Wen, Chun Hung Lin, Eric Zhi Feng Liu

Abstract:

Flow theory implies that people are persuaded by happiness. By focusing on an activity, people turn a blind eye to external factors. This study explores the influence of educational board games and fundamental Chinese language teaching on students’ learning motivation and flow experience. Fifty-three students studying Chinese language fundamental courses were used in the study. These students were divided into three groups: (1) flash card teaching group; (2) educational original board game teaching group; and (3) educational Chinese board game teaching group. Chinese language teaching was integrated with the educational board game titled ‘Transportation GO.’ The students were observed playing this game as the teacher collected quantitative and qualitative data. Quantitative data was collected from the learning motivation scale and flow experience scale. Qualitative data was collected through observing, recording, and visiting. The first result found that the three groups integrated with Chinese language teaching could maintain students’ high learning motivation and high flow experience. Second, there was no significant difference between the flow experience of the flash card group and the educational original board game group. Third, there was a significant difference in the flow experience and learning motivation of the educational Chinese board game group vs. the other groups. This study suggests that the experimental model can be applied to advanced Chinese language teaching. Apart from oral and literacy skills, the study of educational board games integrated with Chinese language teaching to enforce student writing skills will be continued.

Keywords: Chinese language instruction, educational board game, learning motivation, flow experience

Procedia PDF Downloads 177
5775 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 374
5774 Creating a Child Friendly Environment as a Curriculum Model for Early Years Teaching

Authors: Undiyaundeye Florence Atube, Ugar Innocent A.

Abstract:

Young children are active learners who use all their senses to build concepts and ideas from their experiences. The process of learning, the content and the outcomes, is vital for young children. They need time to explore whether they are satisfied with what is learnt. Of all levels of education, early childhood education is considered to be most critical for the social, emotional, cognitive and physical development. For this reason, the teachers for early years need to play a significant role in the teaching and learning process through the provision of a friendly environment in the school. A case study approach was used in this study. The information was gathered through various methods like class observation, field notes, documents analysis, group processes, and semi structured interviews. The group processes participants and interviewees were taken from some stakeholders such as parents, students, teachers, and head teachers from public schools, to have a broad and comprehensive analysis, informal interaction with different stakeholders and self-reflection was used to clarify aspects of varying issues and findings. The teachers’ roles in developing a child friendly environment in personal capacity to learning were found to improve a pupils learning ability. Prior to early child development education, learning experiences and pedagogical content knowledge played a vital role in engaging teachers in developing their thinking and teaching practice. Children can be helped to develop independent self-control and self-reliance with careful planning and development of the child’s experience with sensitive and appropriate interaction by the educator to propel eagerness to learn through the provision of a friendly environment.

Keywords: child friendly environment, early childhood, education and development, teaching, learning and the curriculum

Procedia PDF Downloads 374
5773 The Case of ESPRIT (HigherSchool of Engineering)

Authors: Amira Potter

Abstract:

Since three years, ESPRIT has adopted project-based learning across its curricula. The philosophy behind this reform is to prepare its future engineers to become more operational once they integrate the workplace. It allows them to learn all the required skills expected from them by their future employers. This learner-centered method helps the students take responsibility for their own learning, solve real-world problems and carry out muli-faceted projects. Therefore, the teacher who used to be considered as the detainer of the knowledge has become more of a facilitator and a coach, encouraging their students’ learning process. This innovative way to English teaching has enabled the students to learn the English language differently. The target language is learnt cooperatively through group work, presentations, debating and many other communicative activities. The speaking skill in English language remains by far the most challenging skill for Tunisian students with an educational background based on Arabic as a first language and French as a second language. The student’s initial resistance to speak English in front of their classmates and the way they end up performing their work, shows the real progress they managed to achieve through PBL approach. The article will focus on the positive impact PBL has had on oral fluency among Esprit engineering students and how it has been achieved. It will also describe how speaking skill is taught and assessed at ESPRIT.

Keywords: cooperative, engineer, innovative, project-based learning

Procedia PDF Downloads 317
5772 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example

Authors: Guantao Bai

Abstract:

Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.

Keywords: computer vision, deep learning, public spaces, using features

Procedia PDF Downloads 69
5771 Automatic Measurement of Garment Sizes Using Deep Learning

Authors: Maulik Parmar, Sumeet Sandhu

Abstract:

The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.

Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints

Procedia PDF Downloads 307
5770 Endoscopic Pituitary Surgery: Learning Curve and Nasal Quality of Life

Authors: Martin Dupuy, Solange Grunenwald, Pierre-Louis Colombo, Laurence Mahieu, Pomone Richard, Philippe Bartoli

Abstract:

Endonasal endoscopic trans-sphenoidal surgery for pituitary tumours has become a mainstay of treatment over the last two decades. Although it is generally accepted that there is no significant difference between endoscopic versus microscopic approach for surgical outcomes (endocrine and ophthalmologic status), nasal morbidity seems to the benefit of endoscopic procedures. Minimally invasive endoscopic surgery needs an operative learning curve to achieve surgeon’s efficiency. This learning curve is now well known for surgical outcomes and complications rate, however, few data are available for nasal morbidity. The aim of our series is to document operative experience and nasal quality of life after (NQOL) endoscopic trans-sphenoidal surgery. The prospective pituitary surgical cohort consisted of 525 consecutives patients referred to our Skull Base Diseases Department. Endoscopic procedures were performed by a single neurosurgeon using an uninostril approach. NQOL was evaluated using the Sino-Nasal Test (SNOT-22), the Anterior Base Nasal Inventory (ASBNI) and the Skull Base Inventory Score (SBIS). Data were collected before surgery during hospital stay and 3 months after the surgery. The seventy first patients were compared to the latest 70 patients. There was no significant difference between comparison score before versus after surgery for SNOT-22, ASBNI and SBIS during the single surgeon’s learning curve. Our series demonstrates that in our institution there is no statistically significant learning curve for NQOL after uninostril endoscopic pituitary surgery. A careful progression through sinonasal structures with very limited mucosal incision is associated with minimal morbidity and preserves nasal function. Conservative and minimal invasive approach could be achieved early during learning curve.

Keywords: pituitary surgery, quality of life, minimal invasive surgery, learning curve, pituitary tumours, skull base surgery, endoscopic surgery

Procedia PDF Downloads 122
5769 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes

Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari

Abstract:

The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.

Keywords: Arabic language acquisition and learning, natural language processing, morphological analyzer, part-of-speech

Procedia PDF Downloads 150
5768 Active Learning Techniques in Engineering Education

Authors: H. M. Anitha, Anusha N. Rao

Abstract:

The current developments in technology and ideas have given entirely new dimensions to the field of research and education. New delivery methods are proposed which is an added feature to the engineering education. Particularly, more importance is given to new teaching practices such as Information and Communication Technologies (ICT). It is vital to adopt the new ICT methods which lead to the emergence of novel structure and mode of education. The flipped classroom, think pair share and peer instruction are the latest pedagogical methods which give students to learn the course. This involves students to watch video lectures outside the classroom and solve the problems at home. Students are engaged in group discussions in the classroom. These are the active learning methods wherein the students are involved diversely to learn the course. This paper gives a comprehensive study of past and present research which is going on with flipped classroom, thinks pair share activity and peer instruction.

Keywords: flipped classroom, think pair share, peer instruction, active learning

Procedia PDF Downloads 385
5767 Education System Development: Challenges and Barriers

Authors: Kumar Vikas

Abstract:

Education is to be anticipated for Human resource development and then national development. However, in most of the developing countries, due to the inadequacy of resources it is almost unattainable to educate all of their citizens through on-campus teaching. Huge amount of money is necessary to establish the infrastructure for on-campus teaching which is out of the reach of the developing countries. In these circumstances, to educate their huge inhabitants the developing countries are to depend on open learning and distance education system. However, a question still stands: can the educators dissimulate knowledge to the learners smoothly through this new system of education? Some recent research shows that the graduates of the open and distance learning institutions in the developing countries are treated as second-grade graduates. This paper aims to identify the challenges or barriers in the development of distance and Open learning system in India and suggest possible alternatives may be followed to overcome the barriers.

Keywords: barriers, distance education, developing countries, motivation, alternative solutions

Procedia PDF Downloads 246
5766 A Systems-Level Approach towards Transition to Electrical Vehicles

Authors: Mayuri Roy Choudhury, Deepti Paul

Abstract:

Many states in the United States are aiming for high renewable energy targets by the year 2045. In order to achieve this goal, they must do transition to Electrical Vehicles (EVS). We first applied the Multi-Level perspective framework to describe the inter-disciplinary complexities associated with the transition to EVs. Thereafter we addressed these complexities by creating an inter-disciplinary policy framework that uses data science algorithms to create evidence-based policies in favor of EVs. Our policy framework uses a systems level approach as it addresses transitions to EVs from a technology, economic, business and social perspective. By Systems-Level we mean approaching a problem from a multi-disciplinary perspective. Our systems-level approach could be a beneficial decision-making tool to a diverse number of stakeholders such as engineers, entrepreneurs, researchers, and policymakers. In addition, it will add value to the literature of electrical vehicles, sustainable energy, energy economics, and management as well as efficient policymaking.

Keywords: transition, electrical vehicles, systems-level, algorithms

Procedia PDF Downloads 226
5765 Deploying a Transformative Learning Model in Technological University Dublin to Assess Transversal Skills

Authors: Sandra Thompson, Paul Dervan

Abstract:

Ireland’s first Technological University (TU Dublin) was established on 1st January 2019, and its creation is an exciting new milestone in Irish Higher Education. TU Dublin is now Ireland’s biggest University supporting 29,000 students across three campuses with 3,500 staff. The University aspires to create work-ready graduates who are socially responsible, open-minded global thinkers who are ambitious to change the world for the better. As graduates, they will be enterprising and daring in all their endeavors, ready to play their part in transforming the future. Feedback from Irish employers and students coupled with evidence from other authoritative sources such as the World Economic Forum points to a need for greater focus on the development of students’ employability skills as they prepare for today’s work environment. Moreover, with an increased focus on Universal Design for Learning (UDL) and inclusiveness, there is recognition that students are more than a numeric grade value. Robust grading systems have been developed to track a student’s performance around discipline knowledge but there is little or no global consensus on a definition of transversal skills nor on a unified framework to assess transversal skills. Education and industry sectors are often assessing one or two skills, and some are developing their own frameworks to capture the learner’s achievement in this area. Technological University Dublin (TU Dublin) have discovered and implemented a framework to allow students to develop, assess and record their transversal skills using transformative learning theory. The model implemented is an adaptation of Student Transformative Learning Record - STLR which originated in the University of Central Oklahoma (UCO). The purpose of this paper therefore, is to examine the views of students, staff and employers in the context of deploying a Transformative Learning model within the University to assess transversal skills. It will examine the initial impact the transformative learning model is having socially, personally and on the University as an organization. Crucially also, to identify lessons learned from the deployment in order to assist other Universities and Higher Education Institutes who may be considering a focused adoption of Transformative Learning to meet the challenge of preparing students for today’s work environment.

Keywords: assessing transversal skills, higher education, transformative learning, students

Procedia PDF Downloads 127
5764 Teachers’ Incorporation of Emerging Communication Technologies in Higher Education in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

Never has a revolution influenced all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aims to fill the void of research conducted around that topic. The study explores teachers’ acceptance of incorporating communication technologies in higher education in Kuwait. Teachers’ responses to survey questions present an overview of the e-learning experience in this country, and draw a framework through which implications and suggestions for future research can be discussed to better serve the advancement of e-education in developing countries.

Keywords: communication technologies, E-learning, Kuwait, social media

Procedia PDF Downloads 281
5763 Teachers Tolerance of Using Emerging Communication Technologies in Higher Education in Kuwait

Authors: Bashaiar Alsana

Abstract:

Never has a revolution influenced all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aims to fill the void of research conducted around that topic. The study explores teachers’ acceptance of incorporating communication technologies in higher education in Kuwait. Teachers’ responses to survey questions present an overview of the e-learning experience in this country, and draw a framework through which implications and suggestions for future research can be discussed to better serve the advancement of e-education in developing countries.

Keywords: communication technologies, e-learning, Kuwait, social media

Procedia PDF Downloads 260
5762 The Difference of Learning Outcomes in Reading Comprehension between Text and Film as The Media in Indonesian Language for Foreign Speaker in Intermediate Level

Authors: Siti Ayu Ningsih

Abstract:

This study aims to find the differences outcomes in learning reading comprehension with text and film as media on Indonesian Language for foreign speaker (BIPA) learning at intermediate level. By using quantitative and qualitative research methods, the respondent of this study is a single respondent from D'Royal Morocco Integrative Islamic School in grade nine from secondary level. Quantitative method used to calculate the learning outcomes that have been given the appropriate action cycle, whereas qualitative method used to translate the findings derived from quantitative methods to be described. The technique used in this study is the observation techniques and testing work. Based on the research, it is known that the use of the text media is more effective than the film for intermediate level of Indonesian Language for foreign speaker learner. This is because, when using film the learner does not have enough time to take note the difficult vocabulary and don't have enough time to look for the meaning of the vocabulary from the dictionary. While the use of media texts shows the better effectiveness because it does not require additional time to take note the difficult words. For the words that are difficult or strange, the learner can immediately find its meaning from the dictionary. The presence of the text is also very helpful for Indonesian Language for foreign speaker learner to find the answers according to the questions more easily. By matching the vocabulary of the question into the text references.

Keywords: Indonesian language for foreign speaker, learning outcome, media, reading comprehension

Procedia PDF Downloads 196
5761 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning

Authors: Chia Wei Lim, Ning Yan

Abstract:

The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.

Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning

Procedia PDF Downloads 91
5760 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 134
5759 The Effect of Students’ Social and Scholastic Background and Environmental Impact on Shaping Their Pattern of Digital Learning in Academia: A Pre- and Post-COVID Comparative View

Authors: Nitza Davidovitch, Yael Yossel-Eisenbach

Abstract:

The purpose of the study was to inquire whether there was a change in the shaping of undergraduate students’ digitally-oriented study pattern in the pre-Covid (2016-2017) versus post-Covid period (2022-2023), as affected by three factors: social background characteristics, high school, and academic background characteristics. These two-time points were cauterized by dramatic changes in teaching and learning at institutions of higher education. The data were collected via cross-sectional surveys at two-time points, in the 2016-2017 academic school year (N=443) and in the 2022-2023 school year (N=326). The questionnaire was distributed on social media and it includes questions on demographic background characteristics, previous studies in high school and present academic studies, and questions on learning and reading habits. Method of analysis: A. Statistical descriptive analysis, B. Mean comparison tests were conducted to analyze the variations in the mean score for the digitally-oriented learning pattern variable at two-time points (pre- and post-Covid) in relation to each of the independent variables. C. Analysis of variance was performed to test the main effects and the interactions. D. Applying linear regression, the research aimed to examine the combined effect of the independent variables on shaping students' digitally-oriented learning habits. The analysis includes four models. In all four models, the dependent variable is students’ perception of digitally oriented learning. The first model included social background variables; the second model included scholastic background as well. In the third model, the academic background variables were added, and the fourth model includes all the independent variables together with the variable of period (pre- and post-COVID). E. Factor analysis confirms using the principal component method with varimax rotation; the variables were constructed by a weighted mean of all the relevant statements merged to form a single variable denoting a shared content world. The research findings indicate a significant rise in students’ perceptions of digitally-oriented learning in the post-COVID period. From a gender perspective, the impact of COVID on shaping a digital learning pattern was much more significant for female students. The socioeconomic status perspective is eliminated when controlling for the period, and the student’s job is affected - more than all other variables. It may be assumed that the student’s work pattern mediates effects related to the convenience offered by digital learning regarding distance and time. The significant effect of scholastic background on shaping students’ digital learning patterns remained stable, even when controlling for all explanatory variables. The advantage that universities had over colleges in shaping a digital learning pattern in the pre-COVID period dissipated. Therefore, it can be said that after COVID, there was a change in how colleges shape students’ digital learning patterns in such a way that no institutional differences are evident with regard to shaping the digital learning pattern. The study shows that period has a significant independent effect on shaping students’ digital learning patterns when controlling for the explanatory variables.

Keywords: learning pattern, COVID, socioeconomic status, digital learning

Procedia PDF Downloads 62
5758 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 440
5757 Churn Prediction for Savings Bank Customers: A Machine Learning Approach

Authors: Prashant Verma

Abstract:

Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.

Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling

Procedia PDF Downloads 142
5756 Pedagogy of Possibility: Exploring the TVET of Southern African Workers on Foreign Vessels Mediated by Ubiquitous Google and Microsoft apps

Authors: Robin Ferguson

Abstract:

The context which this paper explores is the provision of Technical Vocational Education and Training (TVET) of southern African workers at sea on local and foreign vessels using a blended learning approach. The pedagogical challenge of providing quality education in this context is that multiple African and foreign languages and cultural norms are found amongst the all-male crew; and there are widely differing levels of education, low levels of digital literacy and limited connectivity. The methodology used is a nested case study. The study describes the mechanisms used to provide ongoing, real-time workplace TVET on two foreign vessels. Some training was done in person when the vessels came into port, however, the majority of the TVET was achieved from shore to ship using a combination of commonly available Google and Microsoft Apps and WhatsApp. Voice, video and text in multiple languages were used to accommodate different learning styles. The learning was supported by the development of learning networks using social media. This paper also reflects on the shore-based organisational change processes required to support sea learning. The conceptual framework used is the Theory of Practice Architectures (TPA) as is provides a site-ontological perspective of the sayings/thinkings, doings and relatings of this workplace training which is multiplanar as it plays out at sea and ashore, in-person and on-line. Using TPA, the overarching practice architectures and supporting structures which confound or enable these learning practices are revealed. The contribution which this paper makes is an insight into an innovative vocational pedagogy which promotes ICT-mediated learning amongst workers who suffer from low levels of literacies and limited ICT-access and who work and live in remote places. It is a pedagogy of possibility which crosses the digital divide.

Keywords: theory of practice architecture, microsoft, google, whatsapp, vocational pedagogy, mariners, distributed workplaces

Procedia PDF Downloads 80
5755 Concentrated Solar Energy Sintering of Multifunctional Metallic Alloys

Authors: Catalin Croitoru, Ionut Claudiu Roata

Abstract:

Employing concentrated solar energy (CSE) for sintering metallic parts offers distinct advantages, notably in the rapid thermal cycling that significantly influences their microstructure and phase transitions. This study uses the thermal control that CSE affords, enhancing the mechanical properties and tailoring the functionality of nickel-based alloys. We synthesized bulk alloys by sintering Ni-Cr-Al-Y powders in varied ratios using a vertical solar furnace at PROMES-CNRS, Font-Romeu Odeillo, France. The process achieved optimal fusion at 800°C for 10 minutes, resulting in materials with a notable hydrophilic surface due to oxide formation. The alloys’ performance was evaluated through corrosion resistance tests in a 3.5% wt. NaCl solution, utilizing potentiodynamic scanning and electrochemical impedance spectroscopy. Our findings demonstrate the potential of CSE in advancing the material properties of nickel-based alloys for diverse applications.

Keywords: concentrated solar energy, sintering, corrosion resistance, surface properties

Procedia PDF Downloads 19
5754 Learning at Workplace: Competences and Contexts in Sensory Evaluation

Authors: Ulriikka Savela-Huovinen, Hanni Muukkonen, Auli Toom

Abstract:

The development of workplace as a learning environment has been emphasized in research field of workplace learning. The prior literature on sensory performance emphasized the individual’s competences as assessor, while the competences in the collaborative interactional and knowledge creation practices as workplace learning method are not often mentioned. In the present study aims to find out what kinds of competences and contexts are central when assessor conducts food sensory evaluation in authentic professional context. The aim was to answer the following questions: first, what kinds of competences does sensory evaluation require according to assessors? And second, what kinds of contexts for sensory evaluation do assessors report? Altogether thirteen assessors from three Finnish food companies were interviewed by using semi-structural thematic interviews to map practices and development intentions as well as to explicate already established practices. The qualitative data were analyzed by following the principles of abductive and inductive content analysis. Analysis phases were combined and their results were considered together as a cross-analysis. When evaluated independently required competences were perception, knowledge of specific domains and methods and cognitive skills e.g. memory. Altogether, 42% of analysis units described individual evaluation contexts, 53% of analysis units described collaborative interactional contexts, and 5% of analysis units described collaborative knowledge creation contexts. Related to collaboration, analysis reviewed learning, sharing and reviewing both external and in-house consumer feedback, developing methods to moderate small-panel evaluation and developing product vocabulary collectively between the assessors. Knowledge creation contexts individualized from daily practices especially in cases product defects were sought and discussed. The study findings contribute to the explanation that sensory assessors learn extensively from one another in the collaborative interactional and knowledge creation context. Assessors learning and abilities to work collaboratively in the interactional and knowledge creation contexts need to be ensured in the development of the expertise.

Keywords: assessor, collaboration, competences, contexts, learning and practices, sensory evaluation

Procedia PDF Downloads 236
5753 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 357
5752 Interactive Teaching and Learning Resources for Bilingual Education

Authors: Sarolta Lipóczi, Ildikó Szabó

Abstract:

The use of ICT in European Schools has increased over the last decade but there is still room for improvement. Also interactive technology is often used below its technical and pedagogical potentials. The pedagogical potential of interactive technology in classrooms has not yet reached classrooms in different countries and in a substantial way. To develop these materials cooperation between educational researchers and teachers from different backgrounds is necessary. INTACT project brings together experts from science education, mathematics education, social science education and foreign language education – with a focus on bilingual education – and teachers in secondary and primary schools to develop a variety of pedagogically qualitative interactive teaching and learning resources. Because of the backgrounds of the consortium members INTACT project focuses on the areas of science, mathematics and social sciences. To combine these two features (science/math and foreign language) the project focuses on bilingual education. A big issue supported by ‘interactiveness’ is social and collaborative learning. The easy way to communicate and collaborate offered by web 2.0 tools, mobile devices connected to the learning material allows students to work and learn together. There will be a wide range of possibilities for school co-operations at regional, national and also international level that allows students to communicate and cooperate with other students beyond the classroom boarders while using these interactive teaching materials. Opening up the learning scenario enhance the social, civic and cultural competences of the students by advocating their social skills and improving their cultural appreciation for other nations in Europe. To enable teachers to use the materials in indented ways descriptions of successful learning scenarios (i.e. using design patterns) will be provided as well. These materials and description will be made available to teachers by teacher trainings, teacher journals, booklets and online materials. The resources can also be used in different settings including the use of a projector and a touchpad or other technical interactive devices for the input i.e. mobile phones. Kecskemét College as a partner of INTACT project has developed two teaching and learning resources in the area of foreign language teaching. This article introduces these resources as well.

Keywords: bilingual educational settings, international cooperation, interactive teaching and learning resources, work across culture

Procedia PDF Downloads 395