Search results for: vertical coupling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1793

Search results for: vertical coupling

143 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles

Authors: Priya Jaswal, Vivek, S. K. Sinha

Abstract:

One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.

Keywords: coir, geotextile, treated, unpaved

Procedia PDF Downloads 77
142 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 22
141 Managing Shallow Gas for Offshore Platforms via Fit-For-Purpose Solutions: Case Study for Offshore Malaysia

Authors: Noorizal Huang, Christian Girsang, Mohamad Razi Mansoor

Abstract:

Shallow gas seepage was first spotted at a central processing platform offshore Malaysia in 2010, acknowledged as Platform T in this paper. Frequent monitoring of the gas seepage was performed through remotely operated vehicle (ROV) baseline survey and a comprehensive geophysical survey was conducted to understand the characteristics of the gas seepage and to ensure that the integrity of the foundation at Platform T was not compromised. The origin of the gas back then was unknown. A soil investigation campaign was performed in 2016 to study the origin of the gas seepage. Two boreholes were drilled; a composite borehole to 150m below seabed for the purpose of soil sampling and in-situ testing and a pilot hole to 155m below the seabed, which was later converted to a fit-for-purpose relief well as an alternate migration path for the gas. During the soil investigation campaign, dissipation tests were performed at several layers which were potentially the source or migration path for the gas. Five (5) soil samples were segregated for headspace test, to identify the gas type which subsequently can be used to identify the origin of the gas. Dissipation tests performed at four depth intervals indicates pore water pressure less than 20 % of the effective vertical stress and appear to continue decreasing if the test had not been stopped. It was concluded that a low to a negligible amount of excess pore pressure exist in clayey silt layers. Results from headspace test show presence of methane corresponding to the clayey silt layers as reported in the boring logs. The gas most likely comes from biogenic sources, feeding on organic matter in situ over a large depth range. It is unlikely that there are large pockets of gas in the soil due to its homogeneous clayey nature and the lack of excess pore pressure in other permeable clayey silt layers encountered. Instead, it is more likely that when pore water at certain depth encounters a more permeable path, such as a borehole, it rises up through this path due to the temperature gradient in the soil. As the water rises the pressure decreases, which could cause gases dissolved in the water to come out of solution and form bubbles. As a result, the gas will have no impact on the integrity of the foundation at Platform T. The fit-for-purpose relief well design as well as adopting headspace testing can be used to address the shallow gas issue at Platform T in a cost effective and efficient manners.

Keywords: dissipation test, headspace test, excess pore pressure, relief well, shallow gas

Procedia PDF Downloads 250
140 Therapeutic Potential of GSTM2-2 C-Terminal Domain and Its Mutants, F157A and Y160A on the Treatment of Cardiac Arrhythmias: Effect on Ca2+ Transients in Neonatal Ventricular Cardiomyocytes

Authors: R. P. Hewawasam, A. F. Dulhunty

Abstract:

The ryanodine receptor (RyR) is an intracellular ion channel that releases Ca2+ from the sarcoplasmic reticulum and is essential for the excitation-contraction coupling and contraction in striated muscle. Human muscle specific glutathione transferase M2-2 (GSTM2-2) is a highly specific inhibitor of cardiac ryanodine receptor (RyR2) activity. Single channel-lipid bilayer studies and Ca2+ release assays performed using the C-terminal half of the GSTM2-2 and its mutants F157A and Y160A confirmed the ability of the C terminal domain of GSTM2-2 to specifically inhibit the cardiac ryanodine receptor activity. Objective of the present study is to determine the effect of C terminal domain of GSTM2-2 (GSTM2-2C) and the mutants, F157A and Y160A on the Ca2+ transients of neonatal ventricular cardiomyocytes. Primary cardiomyocytes were cultured from neonatal rats. They were treated with GSTM2-2C and the two mutants F157A and Y160A at 15µM and incubated for 2 hours. Then the cells were led with Fluo-4AM, fluorescent Ca2+ indicator, and the field stimulated (1 Hz, 3V and 2ms) cells were excited using the 488 nm argon laser. Contractility of the cells were measured and the Ca2+ transients in the stained cells were imaged using Leica SP5 confocal microscope. Peak amplitude of the Ca2+ transient, rise time and decay time from the peak were measured for each transient. In contrast to GSTM2C which significantly reduced the % shortening (42.8%) in the field stimulated cells, F157A and Y160A failed to reduce the % shortening.Analysis revealed that the average amplitude of the Ca2+ transient was significantly reduced (P<0.001) in cells treated with the wild type GSTM2-2C compared to that of untreated cells. Cells treated with the mutants F157A and Y160A didn’t change the Ca2+ transient significantly compared to the control. A significant increase in the rise time (P< 0.001) and a significant reduction in the decay time (P< 0.001) were observed in cardiomyocytes treated with GSTM2-2C compared to the control but not with F157A and Y160A. These results are consistent with the observation that GSTM2-2C reduced the Ca2+ release from the cardiac SR significantly whereas the mutants, F157A and Y160A didn’t show any effect compared to the control. GSTM2-2C has an isoform-specific effect on the cardiac ryanodine receptor activity and also it inhibits RyR2 channel activity only during diastole. Selective inhibition of RyR2 by GSTM2-2C has significant clinical potential in the treatment of cardiac arrhythmias and heart failure. Since GSTM2-2C-terminal construct has no GST enzyme activity, its introduction to the cardiomyocyte would not exert any unwanted side effects that may alter its enzymatic action. The present study further confirms that GSTM2-2C is capable of decreasing the Ca2+ release from the cardiac SR during diastole. These results raise the future possibility of using GSTM2-2C as a template for therapeutics that can depress RyR2 function when the channel is hyperactive in cardiac arrhythmias and heart failure.

Keywords: arrhythmia, cardiac muscle, cardiac ryanodine receptor, GSTM2-2

Procedia PDF Downloads 268
139 Spatial Variability of Phyotoplankton Assemblages during the Intermonsoon in Baler Bay, Outer and Inner Casiguran Sound, Aurora, Fronting Philipine Rise

Authors: Aime P. Lampad-Dela Pena, Rhodora V. Azanza, Cesar L. Villanoy, Ephrime B. Metillo, Aletta T. Yniguez

Abstract:

Phytoplankton community changes in relation to environmental parameters were compared between and within, the three interconnected basins. Phytoplankton samples were collected from thirteen stations of Baler Bay and Casiguran Sound, Aurora last May 2013 by filtering 10 L buckets of surface water and 5 L Niskin samples at 20 meters and at 30 to 40 meters depths through a 20um sieve. Duplicate samples per station were preserved, counted, and identified up to genus level, in order to determine the horizontal and vertical spatial variation of different phytoplankton functional groups during the summer ebb and flood flow. Baler Bay, Outer and Inner Casiguran Sound had a total of 89 genera from four phytoplankton groups: Diatom (62), Dinoflagellate (25), Silicoflagellate (1) and Cyanobacteria (1). Non-toxic diatom Chaetoceros spp. bloom (averaged 2.0 x 105 to 2.73 x 106 cells L⁻¹) co-existed with Bacteriastrum spp. at surface waters in Inner and Outer Casiguran. Pseudonitzschia spp. (1.73 x 106 cells L⁻¹) bloomed at bottom waters of the innermost embayment near Casiguran mangrove estuary. Cyanobacteria Trichodesmium spp. significantly increased during ebb tide at the mid-water layers (20 meters depth) in the three basins (ranged from 6, 900 to 15, 125 filaments L⁻¹), forming another bloom. Gonyaulax spp. - dominated dinoflagellate did not significantly change with depth across the three basins. Overall, diatoms and dinoflagellates community assemblages significantly changed between sites (p < 0.001) while diatoms and cyanobacteria varied within Casiguran outer and inner sites (p < 0.001) only. Tidal fluctuations significantly affected dinoflagellates and diatom groups (p < 0.001) in inner and baler sites. Chlorophyll significantly varied between (KW, p < 0.001) and within each basins (KW, p < 0.05), no tidal influence, with the highest value at inner Casiguran and at deeper waters indicating deep chlorophyll maxima. Aurora’s distinct shelf morphology favoring counterclockwise circulation pattern, advective transport, and continuous stratification of the water column could basically affect the phytoplankton assemblages and water quality of Baler Bay and Casiguran inner and outer basins. Observed spatial phytoplankton community changes with multi-species diatom and cyanobacteria bloom at different water layers of the three inter-connected embayments would be vital for any environmental management initiatives in Aurora.

Keywords: aurora fronting Philippines Rise, intermonsoon, multi-species diatom bloom, spatial variability

Procedia PDF Downloads 125
138 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications

Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan

Abstract:

In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.

Keywords: FSAE, suspension system, Adams Car, kinematic

Procedia PDF Downloads 27
137 Behavior of GRS Abutment Facing under Variable Cycles of Lateral Excitation through Physical Model Tests

Authors: Ashutosh Verma, Satyendra Mittal

Abstract:

Numerous geosynthetic reinforced soil (GRS) abutment failures over the years have been attributed to the loss of strength at the facing-reinforcement interface due to seasonal thermal expansion/contraction of the bridge deck. This causes excessive settlement below the bridge seat, causing bridge bumps along the approach road which reduces the design life of any abutment. Before designers while choosing the type of facing, a broad range of facing configurations are undoubtedly available. Generally speaking, these configurations can be divided into three groups: modular (panels/block), continuous, and full height rigid (FHR). The purpose of the current study is to use 1g physical model tests under serviceable cyclic lateral displacements to experimentally investigate the behaviour of these three facing classifications. To simulate field behaviour, a field instrumented GRS abutment prototype was modeled into a N scaled down 1g physical model (N = 5) with adjustable facing arrangements to represent these three facing classifications. For cyclic lateral displacement (d/H) of top facing at loading rate of 1mm/min, the peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) at 25, 50, 75 and 100 cycles have been measured. For a constant footing offset of x/H = 0.1, three forms of cyclic displacements have been performed to simulate active condition (CA), passive condition (CP), and active-passive condition (CAP). The findings showed that when reinforcements are integrated into the wall along with presence of gravel gabions i.e. FHR design, a rather substantial earth pressure occurs over the facing. Despite this, the FHR facing's continuous nature works in conjunction with the reinforcements' membrane resilience to reduce footing settlement. On the other hand, the pressure over the wall is released upon lateral excitation by the relative displacement between the panels in modular facing reducing the connection strength at the interface and leading to greater settlements below footing. On the contrary, continuous facing do not exhibit relative displacement along the depth of facing rather fails through rotation about the base, which extends the zone of active failure in the backfill leading to large depressions in the backfill region around the bridge seat. Conservatively, FHR facing shows relatively stable responses under lateral cyclic excitations as compared to modular or continuous type of abutment facing.

Keywords: GRS abutments, 1g physical model, full height rigid, cyclic lateral displacement

Procedia PDF Downloads 65
136 Unmanned Aerial System Development for the Remote Reflectance Sensing Using Above-Water Radiometers

Authors: Sunghun Jung, Wonkook Kim

Abstract:

Due to the difficulty of the utilization of satellite and an aircraft, conventional ocean color remote sensing has a disadvantage in that it is difficult to obtain images of desired places at desired times. These disadvantages make it difficult to capture the anomalies such as the occurrence of the red tide which requires immediate observation. It is also difficult to understand the phenomena such as the resuspension-precipitation process of suspended solids and the spread of low-salinity water originating in the coastal areas. For the remote sensing reflectance of seawater, above-water radiometers (AWR) have been used either by carrying portable AWRs on a ship or installing those at fixed observation points on the Ieodo ocean research station, Socheongcho base, and etc. In particular, however, it requires the high cost to measure the remote reflectance in various seawater environments at various times and it is even not possible to measure it at the desired frequency in the desired sea area at the desired time. Also, in case of the stationary observation, it is advantageous that observation data is continuously obtained, but there is the disadvantage that data of various sea areas cannot be obtained. It is possible to instantly capture various marine phenomena occurring on the coast using the unmanned aerial system (UAS) including vertical takeoff and landing (VTOL) type unmanned aerial vehicles (UAV) since it could move and hover at the one location and acquire data of the desired form at a high resolution. To remotely estimate seawater constituents, it is necessary to install an ultra-spectral sensor. Also, to calculate reflected light from the surface of the sea in consideration of the sun’s incident light, a total of three sensors need to be installed on the UAV. The remote sensing reflectance of seawater is the most basic optical property for remotely estimating color components in seawater and we could remotely estimate the chlorophyll concentration, the suspended solids concentration, and the dissolved organic amount. Estimating seawater physics from the remote sensing reflectance requires the algorithm development using the accumulation data of seawater reflectivity under various seawater and atmospheric conditions. The UAS with three AWRs is developed for the remote reflection sensing on the surface of the sea. Throughout the paper, we explain the details of each UAS component, system operation scenarios, and simulation and experiment results. The UAS consists of a UAV, a solar tracker, a transmitter, a ground control station (GCS), three AWRs, and two gimbals.

Keywords: above-water radiometers (AWR), ground control station (GCS), unmanned aerial system (UAS), unmanned aerial vehicle (UAV)

Procedia PDF Downloads 144
135 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 127
134 Investigation of the Effects of 10-Week Nordic Hamstring Exercise Training and Subsequent Detraining on Plasma Viscosity and Oxidative Stress Levels in Healthy Young Men

Authors: H. C. Ozdamar , O. Kilic-Erkek, H. E. Akkaya, E. Kilic-Toprak, M. Bor-Kucukatay

Abstract:

Nordic hamstring exercise (NHE) is used to increase hamstring muscle strength, prevent injuries. The aim of this study was to reveal the acute, long-term effects of 10-week NHE, followed by 5, 10-week detraining on anthropometric measurements, flexibility, anaerobic power, muscle architecture, damage, fatigue, oxidative stress, plasma viscosity (PV), blood lactate levels. 40 sedentary, healthy male volunteers underwent 10 weeks of progressive NHE followed by 5, 10 weeks of detraining. Muscle architecture was determined by ultrasonography, stiffness by strain elastography. Anaerobic power was assessed by double-foot standing, long jump, vertical jump, flexibility by sit-lie, hamstring flexibility tests. Creatine kinase activity, oxidant/antioxidant parameters were measured from venous blood by a commercial kit, whereas PV was determined using a cone-plate viscometer. The blood lactate level was measured from the fingertip. NHE allowed subjects to lose weight, this effect was reversed by detraining for 5 weeks. Exercise caused an increase in knee angles measured by a goniometer, which wasn’t affected by detraining. 10-week NHE caused a partially reversed increase in anaerobic performance upon detraining. NHE resulted in increment of biceps femoris long head (BFub) area, pennation angle, which was reversed by detraining of 10-weeks. Blood lactate levels, muscle pain, fatigue were increased after each exercise session. NHE didn’t change oxidant/antioxidant parameters; 5-week detraining resulted in an increase in total oxidant capacity (TOC) and oxidative stress index (OSI). Detraining of 10 weeks caused a reduction of these parameters. Acute exercise caused a reduction in PV at 1 to 10 weeks. Pre-exercise PV measured on the 10th week was lower than the basal value. Detraining caused the increment of PV. The results may guide the selection of the exercise type to increase performance and muscle strength. Knowing how much of the gains will be lost after a period of detraining can contribute to raising awareness of the continuity of the exercise. This work was supported by PAU Scientific Research Projects Coordination Unit (Project number: 2018SABE034)

Keywords: anaerobic power, detraining, Nordic hamstring exercise, oxidative stress, plasma viscosity

Procedia PDF Downloads 107
133 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 153
132 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 198
131 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 136
130 Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing

Authors: Krishna Nand, Mohammad Taufik

Abstract:

Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level.

Keywords: additive manufacturing, 3D Printing, filament extrusion, pellet extrusion

Procedia PDF Downloads 152
129 Investigating Sub-daily Responses of Water Flow of Trees in Tropical Successional Forests in Thailand

Authors: Pantana Tor-Ngern

Abstract:

In the global water cycle, tree water use (Tr) largely contributes to evapotranspiration which is the total amount of water evaporated from terrestrial ecosystems to the atmosphere, regulating climates. Tree water use responds to environmental factors, including atmospheric humidity and sunlight (represented by vapor pressure deficit or VPD and photosynthetically active radiation or PAR, respectively) and soil moisture. In forests, Tr responses to such factors depend on species and their spatial and temporal variations. Tropical forests in Southeast Asia (SEA) have experienced land-use conversion from abandoned agricultural practices, resulting in patches of forests at different stages including old-growth and secondary forests. Because the inherent structures, such as canopy height and tree density, significantly vary among forests at different stages and can strongly affect their respective microclimate, Tr and its responses to changing environmental conditions in successional forests may differ. Daily and seasonal variations in the environmental factors may exert significant impacts on the respective Tr patterns. Extrapolating Tr data from short periods of days to longer periods of seasons or years can be complex and is important for estimating long-term ecosystem water use which often includes normal and abnormal climatic conditions. Thus, this study aims to investigate the diurnal variation of Tr, using measured sap flux density (JS) data, with changes in VPD in eight evergreen tree species in an old-growth forest (hereafter OF; >200 years old) and a young forest (hereafter YF, <10 years old) in Khao Yai National Park, Thailand. The studied species included Sysygium syzygoides, Aquilaria crassna, Cinnamomum subavenium, Nephelium melliferum, Altingia excelsa in OF, and Syzygium nervosum and Adinandra integerrima in YF. Only Sysygium antisepticum was found in both forest stages. Specifically, hysteresis, which indicates the asymmetrical changes of JS in response to changing VPD across daily timescale, was examined in these species. Results showed no hysteresis in all species in OF, except Altingia excelsa which exhibited a 3-hour delayed JS response to VPD. In contrast, JS of all species in YF displayed one-hour delayed responses to VPD. The OF species that showed no hysteresis indicated their well-coupling of their canopies with the atmosphere, facilitating the gas exchange which is essential for tree growth. The delayed responses in Altingia excelsa in OF and all species in YF were associated with higher JS in the morning than that in the afternoon. This implies that these species were sensitive to drying air, closing stomata relatively rapidly compared to the decreasing atmospheric humidity (VPD). Such behavior is often observed in trees growing in dry environments. This study suggests that detailed investigation of JS at sub-daily timescales is imperative for better understanding of mechanistic responses of trees to the changing climate, which will benefit the improvement of earth system models.

Keywords: sap flow, tropical forest, forest succession, thermal dissipcation probe

Procedia PDF Downloads 41
128 The Effects of Geographical and Functional Diversity of Collaborators on Quality of Knowledge Generated

Authors: Ajay Das, Sandip Basu

Abstract:

Introduction: There is increasing recognition that diverse streams of knowledge can often be recombined in novel ways to generate new knowledge. However, knowledge recombination theory has not been applied to examine the effects of collaborator diversity on the quality of knowledge such collaborators produce. This is surprising because one would expect that a collaborative team with certain aspects of diversity should be able to recombine process elements related to knowledge development, which are relatively tacit, but also complementary because of the collaborator’s varying backgrounds. Theory and Hypotheses: We propose to examine two aspects of diversity in the environments of collaborative teams to try and capture such potential recombinations of relatively tacit, process knowledge. The first aspect of diversity in team members’ environments is geographical. Collaborators with more geographical distance between them (perhaps working in different countries) often have more autonomy in the processes they adopt for knowledge development. In the absence of overt monitoring, such collaborators are likely to adopt differing approaches to knowledge development. The sharing of such varying approaches among collaborators is likely to result in greater quality of the common collaborative pursuit. The second aspect is diversity in the work backgrounds of team members. Such diversity can also increase the potential for knowledge recombination. For example, if one or more members are from a manufacturing center (versus all of them being from a purely R&D center), such members will provide unique perspectives on the implementation of innovative ideas. Again, knowledge that has been evaluated from these diverse perspectives is likely to be of a higher quality. In addition to the above aspects of environmental diversity among team members, we also plan to examine the extent to which individual collaborators are in different environments from the primary innovation center of their employing firms. Proposed Methods: We will test our model on a sample of firms in the semiconductor industry. Our level of analysis will be individual patents generated by these firms and the teams involved in the generation of these. Information on manufacturing activities of our sample firms will be obtained from SEMI, a proprietary database of the semiconductor industry, as well as company 10-K reports. Conclusion: We believe that our results will represent a preliminary attempt to understand how various forms of diversity in collaborative teams impact the knowledge development process. Our dependent variable of knowledge quality is important to study since higher values of this variable can not only drive firm performance but the broader development of regions and societies through spillover impacts on future innovation. The results of this study will, therefore, inform future research and practice in innovation, geographical location, and vertical integration.

Keywords: innovation, manufacturing strategy, knowledge, diversity

Procedia PDF Downloads 329
127 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts

Authors: Ewelina Grabowska, Martyna Marchelek

Abstract:

Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.

Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation

Procedia PDF Downloads 202
126 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 381
125 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics

Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere

Abstract:

Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciences

Keywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet

Procedia PDF Downloads 116
124 Calibration of Contact Model Parameters and Analysis of Microscopic Behaviors of Cuxhaven Sand Using The Discrete Element Method

Authors: Anjali Uday, Yuting Wang, Andres Alfonso Pena Olare

Abstract:

The Discrete Element Method is a promising approach to modeling microscopic behaviors of granular materials. The quality of the simulations however depends on the model parameters utilized. The present study focuses on calibration and validation of the discrete element parameters for Cuxhaven sand based on the experimental data from triaxial and oedometer tests. A sensitivity analysis was conducted during the sample preparation stage and the shear stage of the triaxial tests. The influence of parameters like rolling resistance, inter-particle friction coefficient, confining pressure and effective modulus were investigated on the void ratio of the sample generated. During the shear stage, the effect of parameters like inter-particle friction coefficient, effective modulus, rolling resistance friction coefficient and normal-to-shear stiffness ratio are examined. The calibration of the parameters is carried out such that the simulations reproduce the macro mechanical characteristics like dilation angle, peak stress, and stiffness. The above-mentioned calibrated parameters are then validated by simulating an oedometer test on the sand. The oedometer test results are in good agreement with experiments, which proves the suitability of the calibrated parameters. In the next step, the calibrated and validated model parameters are applied to forecast the micromechanical behavior including the evolution of contact force chains, buckling of columns of particles, observation of non-coaxiality, and sample inhomogeneity during a simple shear test. The evolution of contact force chains vividly shows the distribution, and alignment of strong contact forces. The changes in coordination number are in good agreement with the volumetric strain exhibited during the simple shear test. The vertical inhomogeneity of void ratios is documented throughout the shearing phase, which shows looser structures in the top and bottom layers. Buckling of columns is not observed due to the small rolling resistance coefficient adopted for simulations. The non-coaxiality of principal stress and strain rate is also well captured. Thus the micromechanical behaviors are well described using the calibrated and validated material parameters.

Keywords: discrete element model, parameter calibration, triaxial test, oedometer test, simple shear test

Procedia PDF Downloads 103
123 Comparison between Photogrammetric and Structure from Motion Techniques in Processing Unmanned Aerial Vehicles Imageries

Authors: Ahmed Elaksher

Abstract:

Over the last few years, significant progresses have been made and new approaches have been proposed for efficient collection of 3D spatial data from Unmanned aerial vehicles (UAVs) with reduced costs compared to imagery from satellite or manned aircraft. In these systems, a low-cost GPS unit provides the position, velocity of the vehicle, a low-quality inertial measurement unit (IMU) determines its orientation, and off-the-shelf cameras capture the images. Structure from Motion (SfM) and photogrammetry are the main tools for 3D surface reconstruction from images collected by these systems. Unlike traditional techniques, SfM allows the computation of calibration parameters using point correspondences across images without performing a rigorous laboratory or field calibration process and it is more flexible in that it does not require consistent image overlap or same rotation angles between successive photos. These benefits make SfM ideal for UAVs aerial mapping. In this paper, a direct comparison between SfM Digital Elevation Models (DEM) and those generated through traditional photogrammetric techniques was performed. Data was collected by a 3DR IRIS+ Quadcopter with a Canon PowerShot S100 digital camera. Twenty ground control points were randomly distributed on the ground and surveyed with a total station in a local coordinate system. Images were collected from an altitude of 30 meters with a ground resolution of nine mm/pixel. Data was processed with PhotoScan, VisualSFM, Imagine Photogrammetry, and a photogrammetric algorithm developed by the author. The algorithm starts with performing a laboratory camera calibration then the acquired imagery undergoes an orientation procedure to determine the cameras’ positions and orientations. After the orientation is attained, correlation based image matching is conducted to automatically generate three-dimensional surface models followed by a refining step using sub-pixel image information for high matching accuracy. Tests with different number and configurations of the control points were conducted. Camera calibration parameters estimated from commercial software and those obtained with laboratory procedures were comparable. Exposure station positions were within less than few centimeters and insignificant differences, within less than three seconds, among orientation angles were found. DEM differencing was performed between generated DEMs and few centimeters vertical shifts were found.

Keywords: UAV, photogrammetry, SfM, DEM

Procedia PDF Downloads 268
122 Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay

Authors: Sharifullah Ahmed, Sarwar Jahan Md. Yasin

Abstract:

Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45.

Keywords: design charts, ground improvement, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 106
121 The Risk of Deaths from Viral Hepatitis among the Female Workers in the Beauty Service Industry

Authors: Byeongju Choi, Sanggil Lee, Kyung-Eun Lee

Abstract:

Introduction: In the republic of Korea, the number of workers in the beauty industry has been increasing. Because the prevalence of hepatitis B carriers in Korea is higher than in other countries, the risk of blood-borne infection including viral hepatitis B and C, among the workers by using the sharp and contaminated instruments during procedure can be expected among beauty salon workers. However, the health care policies for the workers to prevent the blood-borne infection are not established due to the lack of evidences. Moreover, the workers in hair and nail salon were mostly employed at small businesses, where national mandatory systems or policies for workers’ health management are not applied. In this study, the risk of the viral hepatitis B and C from the job experiencing the hair and nail procedures in the mortality was assessed. Method: We conducted a retrospective review of the job histories and causes of death in the female deaths from 2006-2016. 132,744 of female deaths who had one more job experiences during their lifetime were included in this study. Job histories were assessed using the employment insurance database in Korea Employment Information Service (KEIS) and the causes of death were in death statistics produced by Statistics Korea. Case group (n= 666) who died from viral hepatitis was classified the death having record involved in ‘B15-B19’ as a cause of deaths based on Korean Standard Classification of Diseases(KCD) with the deaths from other causes, control group (n=132,078). The group of the workers in the beauty service industry were defined as the employees who had ever worked in the industry coded as ‘9611’ based on Korea Standard Industry Classification (KSIC) and others were others. Other than job histories, birth year, marital status, education level were investigated from the death statistics. Multiple logistic regression analysis were used to assess the risk of deaths from viral hepatitis in the case and control group. Result: The number of the deaths having ever job experiences at the hair and nail salon was 255. After adjusting confounders of age, marital status and education, the odds ratio(OR) for deaths from viral hepatitis was quite high in the group having experiences with working in the beauty service industry with 3.14(95% confidence interval(CI) 1.00-9.87). Other associated factors with increasing the risk of deaths from viral hepatitis were low education level(OR=1.34, 95% CI 1.04-1.73), married women (OR=1.42, 95% CI 1.02-1.97). Conclusion: The risk of deaths from viral hepatitis were high in the workers in the beauty service industry but not statistically significant, which might attributed from the small number of workers in beauty service industry. It was likely that the number of workers in beauty service industry could be underestimated due to their temporary job position. Further studies evaluating the status and the incidence of viral infection among the workers with consideration of the vertical transmission would be required.

Keywords: beauty service, viral hepatitis, blood-borne infection, viral infection

Procedia PDF Downloads 108
120 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation

Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent

Abstract:

Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.

Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene

Procedia PDF Downloads 189
119 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution

Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko

Abstract:

Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.

Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking

Procedia PDF Downloads 51
118 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator

Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah

Abstract:

The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.

Keywords: unconventional, resource, hydraulic, fracturing

Procedia PDF Downloads 280
117 Dynamics of Hepatitis B Infection Prevention Practices among Pregnant Women Attending Antenatal Care in Central Uganda Using the Constructs of Information-Motivation-Behavioral Skills Model: A Case of Lubaga Hospital Kampala

Authors: Ismail Bamidele Afolabi, Abdulmujeeb Babatunde Aremu, Lawal Abdurraheem Maidoki, Nnodimele Onuigbo Atulomah

Abstract:

Background: Hepatitis B virus infection remains a significant global public health challenge with infectivity as well as the potential for transmission more than 50 to 100 times that of HIV. Annually, global HBV-related mortality is linked primarily to cirrhosis and liver carcinoma. The ever-increasing endemicity of HBV among children under-5-years, owing to vertical transmission and its lingering chronicity in developing countries, will hamper the global efforts concertedly endorsed towards eliminating viral hepatitis as a global public health threat by 2030. Objective: This study assessed information motivation behavioral skills model constructs as predictors of HBV infection prevention practices among consenting expectant mothers attending antenatal care in Central Uganda as a focal point of intervention towards breaking materno-foetal transmission of HBV. Methods: A cross-sectional study with a quantitative data collection approach based on the constructs of the IMB model was used to capture data on the study variables among 385 randomly selected pregnant women between September and October 2020. Data derived from the quantitative instrument were transformed into weighted aggregate scores using SPSS version 26. ANOVA and regression analysis were done to ascertain the study hypotheses with a significance level set as (p ≤ 0.05). Results: Relatively 60% of the respondents were aged between 18 and 28. Expectant mothers with secondary education (42.3%) were predominant. Furthermore, an average but inadequate knowledge (X ̅=5.97±6.61; B=0.57; p<.001), incorrect perception (X ̅=17.10±18.31; B=0.97; p=.014), and good behavioral skills (X ̅=12.39±13.37; B=0.56; p<.001) for adopting prevention practices all statistically predicted the unsatisfactory level of prevention practices (X ̅=15.03±16.20) among the study respondents as measured on rating scales of 12, 33, 21 and 30 respectively. Conclusion: Evidence from this study corroborates the imperativeness of IMB constructs in reducing the burden of HBV infection in developing countries. Therefore, the inadequate HBV knowledge and misperception among obstetric populations necessitate personalized health education during antenatal visits and subsequent health campaigns in order to inform better prevention practices and, in turn, reduce the lingering chronicity of HBV infection in developing countries.

Keywords: behavioral skills, HBV infection, knowledge, perception, pregnant women, prevention practices

Procedia PDF Downloads 63
116 Infectivity of Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) to Various Tsetse Species

Authors: Guler D. Uzel, Andrew G. Parker, Robert L. Mach, Adly Abd-Alla

Abstract:

Several tsetse fly species (Diptera: Glossinidae) in natural or colonized populations can be infected with the salivary gland hypertrophy virus (SGHV), a circular dsDNA virus (Hytrosaviridae). The virus infection is mainly asymptomatic but, in some species under certain conditions, the infection can produce salivary gland hypertrophy (SGH) symptoms. In the laboratory colonized tsetse, flies with SGH have reduced fertility, which negatively affects colony performance. Therefore, a high prevalence of SGH in insect mass rearing represents a major challenge for tsetse control using the sterile insect technique. The main objective of this study is to analyze the impact of Glossina pallidipes SGHV infection in various tsetse species on mortality and productivity and its impact on the symbiotic bacteria. Hypertropied salivary glands (SG) were collected from G. pallidipes into phosphate buffered saline (PBS) to prepare suspension; 2 µl aliquots were injected into adults of several tsetse species (G. pallidipes (Gp), G. p. gambiensis (Gpg), G. brevipalpis (Gb), G. morsitans morsitans (Gmm), G. morsitans centralis (Gmc) and G. fuscipes (Gf)) and the change in virus and symbiont titers were analyzed using qPCR. The development of SGH in the F1 was detected by dissection 10 days after emergence and virus infection was confirmed by PCR. The impact of virus infection on fly mortality and productivity was recorded. 2 µl aliquots were also injected into 3rd instar larvae of the different species and the adult SGs assayed by PCR for virus. Virus positive SGs from each species were homogenized in PBS and pooled within species for injection into larvae of the same species. Flies injected with PBS were used as control. Injecting teneral flies with SGHV caused increasing virus titer over time in all species but no SGH was detected. Dissection of the F1 also showed no development of SGH except in Gp (the homologous host). Injection of SGHV did not have any impact on the prevalence of the tsetse symbionts, but an increase in Sodalis titer was observed correlated with fly age regardless of virus infection. The virus infection had a negative impact on productivity and mortality. SGHV injection into larvae of the different species produced SGHV infected glands in the adults determined by PCR with a rate of 60%, 27%, 16%, 7% and 7% for Gp, Gf, Gpg, Gmm and Gmc, respectively. Virus positive SGs observed in the heterologous species were smaller than SGH found in Gp. No virus positive SG was detected by PCR in Gb and no SGH was observed in any adults except in Gp. Injecting virus suspension from the virus positive SGs into conspecific larvae did not produce any adults with infected SGs (except in Gp). SGHV can infect all tested tsetse species. Although the virus can infect and increase in titer in other tsetse species and affect fly mortality and productivity, no vertical virus transmission was observed in other tsetse species with might indicate a transmission barrier in these species, and virus collected from flies injected as larvae was not infective by injection.

Keywords: DNA viruses, glossina, hytrosaviridae, symbiotic bacteria, tsetse

Procedia PDF Downloads 197
115 Analyzing the Impact of Bariatric Surgery in Obesity Associated Chronic Kidney Disease: A 2-Year Observational Study

Authors: Daniela Magalhaes, Jorge Pedro, Pedro Souteiro, Joao S. Neves, Sofia Castro-Oliveira, Vanessa Guerreiro, Rita Bettencourt- Silva, Maria M. Costa, Ana Varela, Joana Queiros, Paula Freitas, Davide Carvalho

Abstract:

Introduction: Obesity is an independent risk factor for renal dysfunction. Our aims were: (1) evaluate the impact of bariatric surgery (BS) on renal function; (2) clarify the factors determining the postoperative evolution of the glomerular filtration rate (GFR); (3) access the occurrence of oxalate-mediated renal complications. Methods: We investigated a cohort of 1448 obese patients who underwent bariatric surgery. Those with basal GFR (GFR0) < 30mL/min or without information about the GFR 2-year post-surgery (GFR2) were excluded. Results: We included 725 patients, of whom 647 (89.2%) women, with 41 (IQR 34-51) years, a median weight of 112.4 (IQR 103.0-125.0) kg and a median BMI of 43.4 (IQR 40.6-46.9) kg/m2. Of these, 459 (63.3%) performed gastric bypass (RYGB), 144 (19.9%) placed an adjustable gastric band (AGB) and 122 (16.8%) underwent vertical gastrectomy (VG). At 2-year post-surgery, excess weight loss (EWL) was 60.1 (IQR 43.7-72.4) %. There was a significant improve of metabolic and inflammatory status, as well as a significant decrease in the proportion of patients with diabetes, arterial hypertension and dyslipidemia (p < 0.0001). At baseline, 38 (5.2%) of subjects had hyperfiltration with a GFR0 ≥ 125mL/min/1.73m2, 492 (67.9%) had a GFR0 90-124 mL/min/1.73m2, 178 (24.6%) had a GFR0 60-89 mL/min/1.73m2, and 17 (2.3%) had a GFR0 < 60 mL/min/1.73m2. GFR decreased in 63.2% of patients with hyperfiltration (ΔGFR=-2.5±7.6), and increased in 96.6% (ΔGFR=22.2±12.0) and 82.4% (ΔGFR=24.3±30.0) of the subjects with GFR0 60-89 and < 60 mL/min/1.73m2, respectively ( p < 0.0001). This trend was maintained when adjustment was made for the type of surgery performed. Of 321 patients, 10 (3.3%) had a urinary albumin excretion (UAE) > 300 mg/dL (A3), 44 (14.6%) had a UAE 30-300 mg/dL (A2) and 247 (82.1%) has a UAE < 30 mg/dL (A1). Albuminuria decreased after surgery and at 2-year follow-up only 1 (0.3%) patient had A3, 17 (5.6%) had A2 and 283 (94%) had A1 (p < 0,0001). In multivariate analysis, the variables independently associated with ΔGFR were BMI (positively) and fasting plasma glucose (negatively). During the 2-year follow-up, only 57 of the 725 patients had transient urinary excretion of calcium oxalate crystals. None has records of oxalate-mediated renal complications at our center. Conclusions: The evolution of GFR after BS seems to depend on the initial renal function, as it decreases in subjects with hyperfiltration, but tends to increase in those with renal dysfunction. Our results suggest that BS is associated with improvement of renal outcomes, without significant increase of renal complications. So, apart the clear benefits in metabolic and inflammatory status, maybe obese adults with nondialysis-dependent CKD should be referred for bariatric surgery evaluation.

Keywords: albuminuria, bariatric surgery, glomerular filtration rate, renal function

Procedia PDF Downloads 339
114 Deep Mill Level Zone (DMLZ) of Ertsberg East Skarn System, Papua; Correlation between Structure and Mineralization to Determined Characteristic Orebody of DMLZ Mine

Authors: Bambang Antoro, Lasito Soebari, Geoffrey de Jong, Fernandy Meiriyanto, Michael Siahaan, Eko Wibowo, Pormando Silalahi, Ruswanto, Adi Budirumantyo

Abstract:

The Ertsberg East Skarn System (EESS) is located in the Ertsberg Mining District, Papua, Indonesia. EESS is a sub-vertical zone of copper-gold mineralization hosted in both diorite (vein-style mineralization) and skarn (disseminated and vein style mineralization). Deep Mill Level Zone (DMLZ) is a mining zone in the lower part of East Ertsberg Skarn System (EESS) that product copper and gold. The Deep Mill Level Zone deposit is located below the Deep Ore Zone deposit between the 3125m to 2590m elevation, measures roughly 1,200m in length and is between 350 and 500m in width. DMLZ planned start mined on Q2-2015, being mined at an ore extraction rate about 60,000 tpd by the block cave mine method (the block cave contain 516 Mt). Mineralization and associated hydrothermal alteration in the DMLZ is hosted and enclosed by a large stock (The Main Ertsberg Intrusion) that is barren on all sides and above the DMLZ. Late porphyry dikes that cut through the Main Ertsberg Intrusion are spatially associated with the center of the DMLZ hydrothermal system. DMLZ orebody hosted in diorite and skarn, both dominantly by vein style mineralization. Percentage Material Mined at DMLZ compare with current Reserves are diorite 46% (with 0.46% Cu; 0.56 ppm Au; and 0.83% EqCu); Skarn is 39% (with 1.4% Cu; 0.95 ppm Au; and 2.05% EqCu); Hornfels is 8% (with 0.84% Cu; 0.82 ppm Au; and 1.39% EqCu); and Marble 7 % possible mined waste. Correlation between Ertsberg intrusion, major structure, and vein style mineralization is important to determine characteristic orebody in DMLZ Mine. Generally Deep Mill Level Zone has 2 type of vein filling mineralization from both hosted (diorite and skarn), in diorite hosted the vein system filled by chalcopyrite-bornite-quartz and pyrite, in skarn hosted the vein filled by chalcopyrite-bornite-pyrite and magnetite without quartz. Based on orientation the stockwork vein at diorite hosted and shallow vein in skarn hosted was generally NW-SE trending and NE-SW trending with shallow-moderate dipping. Deep Mill Level Zone control by two main major faults, geologist founded and verified local structure between major structure with NW-SE trending and NE-SW trending with characteristics slickenside, shearing, gauge, water-gas channel, and some has been re-healed.

Keywords: copper-gold, DMLZ, skarn, structure

Procedia PDF Downloads 484