Search results for: teaching learning model
21531 An Excellent Adventure: The Stories of National Tertiary Teaching Excellence Award Winners
Authors: Claire Goode
Abstract:
This paper reports on a doctoral research project using narrative inquiry to investigate the stories of twelve national Tertiary Teaching Excellence Award winners in New Zealand. Preliminary findings highlight awardees’ views on their identity, their professional practice, and on what they consider to be excellence in tertiary teaching. The research also reports on common themes in the personal qualities that awardees describe, and on what these nationally recognised educators would like to see in place around Tertiary Teacher Development. Educators, mentors, trainers, and curriculum designers can gain a deeper understanding of what teaching excellence looks like, and of how teachers perceive their own practice and their impact on others. This may enable different interventions to develop best practice from staff, and to raise standards. It is hoped too that, by reflecting on the stories of teachers who have been recognised for ‘excellence’, educators will relate to and recognise elements of their own practice, and will feel motivated and inspired to share these with their peers and the wider academic community.Keywords: academic identity, narrative inquiry, teacher development, teaching excellence
Procedia PDF Downloads 12221530 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project
Authors: Dorit Alt, Nirit Raichel
Abstract:
Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling
Procedia PDF Downloads 31521529 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 10921528 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.Keywords: connectivism, learning analytics, lifelong learning, social semantic web
Procedia PDF Downloads 21521527 Learning to Learn: A Course on Language Learning Strategies
Authors: Hélène Knoerr
Abstract:
In an increasingly global world, more and more international students attend academic courses and programs in a second or foreign language, and local students register in language learning classes in order to improve their employability. These students need to quickly become proficient in the new language. How can we, as administrators, curriculum developers and teachers, make sure that they have the tools they need in order to develop their language skills in an academic context? This paper will describe the development and implementation of a new course, Learning to learn, as part of the Major in French/English as a Second Language at the University of Ottawa. This academic program was recently completely overhauled in order to reflect the current approaches in language learning (more specifically, the action-oriented approach as embodied in the Common European Framework of Reference for Languages, and the concept of life-long autonomous learning). The course itself is based on research on language learning strategies, with a particular focus on the characteristics of the “good language learner”. We will present the methodological and pedagogical foundations, describe the course objectives and learning outcomes, the language learning strategies, and the classroom activities. The paper will conclude with students’ feedback and suggest avenues for further exploration.Keywords: curriculum development, language learning, learning strategies, second language
Procedia PDF Downloads 41121526 Metareasoning Image Optimization Q-Learning
Authors: Mahasa Zahirnia
Abstract:
The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process
Procedia PDF Downloads 21521525 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 5321524 E-Portfolios as a Means of Perceiving Students’ Listening and Speaking Progress
Authors: Heba Salem
Abstract:
This paper aims to share the researcher’s experience of using e-Portfolios as an assessment tool to follow up on students’ learning experiences and performance throughout the semester. It also aims at highlighting the importance of students’ self-reflection in the process of language learning. The paper begins by introducing the advanced media course, with its focus on listening and speaking skills, and introduces the students’ profiles. Then it explains the students’ role in the e-portfolio process as they are given the option to choose a listening text they studied throughout the semester and to choose a recorded oral production of their collection of artifacts throughout the semester. Students showcase and reflect on their progress in both listening comprehension and speaking. According to the research, re-listening to work given to them and to their production is a means of reflecting on both their progress and achievement. And choosing the work students want to showcase is a means to promote independent learning as well as self-expression. Students are encouraged to go back to the class learning outcomes in the process of choosing the work. In their reflections, students express how they met the specific learning outcome. While giving their presentations, students expressed how useful the experience of returning and going over what they covered to select one and going over their production as well. They also expressed how beneficial it was to listen to themselves and literally see their progress in both listening comprehension and speaking. Students also reported that they grasped more details from the texts than they did when first having it as an assignment, which coincided with one of the class learning outcomes. They also expressed the fact that they had more confidence speaking as well as they were able to use a variety of vocabulary and idiomatic expressions that students have accumulated. For illustration, this paper includes practical samples of students’ tasks and instructions as well as samples of their reflections. The results of students’ reflections coincide with what the research confirms about the effectiveness of the e-portfolios as a means of assessment. The employment of e-Portfolios has two-folded benefits; students are able to measure the achievement of the targeted learning outcomes, and teachers receive constructive feedback on their teaching methods.Keywords: e-portfolios, assessment, self assessment, listening and speaking progress, foreign language, reflection, learning out comes, sharing experience
Procedia PDF Downloads 9821523 Collaborative Learning Strategies in Engineering Tuition Focused on Students’ Engagement
Authors: Maria Gonzalez Alriols, Itziar Egues, Maria A. Andres, Mirari Antxustegi
Abstract:
Peer to peer learning is an educational tool very useful to enhance teamwork and reinforce cooperation between mates. It is particularly successful to work with students of different level of previous knowledge, as it often happens among pupils of subjects in the first course of science and engineering studies. Depending on the performed pre-university academic itinerary, the acquired knowledge in disciplines as mathematics, physics, or chemistry may be quite different. This fact is an added difficulty to the tuition of first-course basic science subjects of engineering degrees, with inexperienced students that do not know each other. In this context, peer to peer learning applied in small groups facilitates the communication between mates and makes it easier for the students with low level to be helped by the ones with better prior knowledge. In this work, several collaborative learning strategies were designed to be applied in the tuition of the subject 'chemistry', which is imparted in the first course of an engineering degree. Students were organized in groups combining mates with different level of prior knowledge. The teaching role was offered to the more experienced students who were responsible for designing learning pills to help the other mates in their group. This workload was rewarded with an extra mark, and more extra points were offered to all the group mates if every student in the group reached a determined level at the end of the semester. It was very important to start these activities from the beginning of the semester in order to avoid absenteeism. The obtained results were positive as a higher percentage of mates signed up and passed the final exam, the obtained final marks were higher, and a much better atmosphere was observed in the class.Keywords: peer to peer tuition, collaborative learning, engineering instruction, chemistry
Procedia PDF Downloads 14021522 The Roles of Teachers in Promoting Self-Regulated Learning
Authors: Mine Cekin
Abstract:
Self-regulated learning (SRL), which can be defined as learning that takes place when an individual is an active controller over his cognition, behavior, and motivation in the learning process, seems to be an essential educational goal. However, it is asserted that students need an assistance to become self-regulated learners. Therefore, teachers appear to play an important role in the introduction of SRL. Even though the importance of SRL has been shown by many researchers, the issue of how teachers can introduce it in a classroom environment needs to be investigated thoroughly. When it comes to mathematics learning particularly, it seems really difficult to associate this area with self-regulated learning because of the fact that it is mainly seen as a domain that is overwhelmingly memorizing written notations. As a result, self-regulated learning in mathematics education and what roles teachers have seem to deserve a significant attention. In this study, the significance of SRL and the roles of teachers in promoting SRL in the field of mathematics education particularly with the help of current literature have been highlighted. Some of the roles of teachers are becoming self-regulated learners themselves, facilitating motivation and collaboration with their colleagues in their schools.Keywords: mathematics education, motivation, self-regulated learning, teacher self-regulation
Procedia PDF Downloads 16921521 Teaching a Senior Design Course in Industrial Engineering
Authors: Mehmet Savsar
Abstract:
Industrial Engineering is one of the engineering disciplines that deal with analysis, design, and improvement of systems, which include manufacturing, supply chain, healthcare, communication, and general service systems. Industrial engineers involve with comprehensive study of a given system, analysis of its interacting units, determination of problem areas, application of various optimization and operations research tools, and recommendation of solutions resulting in significant improvements. The Senior Design course in Industrial Engineering is the culmination of the Industrial Engineering Curriculum in a Capstone Design course, which fundamentally deals with systems analysis and design. The course at Kuwait University has been carefully designed with various course objectives and course outcomes in mind to achieve several program outcomes by practices and learning experiences, which are explicitly gained by systems analysis and design. The Senior Design Course is carried out in a selected industrial or service organization, with support from its engineering personnel, during a full semester by a team of students, who are usually in the last semester of their academic programs. A senior faculty member constantly administers the course to ensure that the students accomplish the prescribed objectives. Students work in groups to formulate issues and propose solutions and communicate, results in formal written and oral presentations. When the course is completed, they emerge as engineers that can be clearly identified as more mature, able to communicate better, able to participate in team work, able to see systems perspective in analysis and design, and more importantly, able to assume responsibility at entry level as engineers. The accomplishments are mainly due to real life experiences gained during the course of their design study. This paper presents methods, procedures, and experiences in teaching a Senior Design Course in Industrial Engineering Curriculum. A detailed description of the course, its role, its objectives, outcomes, learning practices, and assessments are explained in relation to other courses in Industrial Engineering Curriculum. The administration of the course, selected organizations where the course project is carried out, problems and solution tools utilized, student accomplishments and obstacles faced are presented. Issues discussed in this paper could help instructors in teaching the course as well as in clarifying the contribution of a design course to the industrial engineering education in general. In addition, the methods and teaching procedures presented could facilitate future improvements in industrial engineering curriculum.Keywords: senior design course, industrial engineering, capstone design, education
Procedia PDF Downloads 13421520 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 15721519 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 7321518 Learning and Practicing Assessment in a Pre-Service Teacher Education Program: Comparative Perspective of UK and Pakistani Universities
Authors: Malik Ghulam Behlol, Alison Fox, Faiza Masood, Sabiha Arshad
Abstract:
This paper explores the barriers to the application of learning-supportive assessment at teaching practicum while investigating the role of university teachers (UT), cooperative teachers (CT), prospective teachers ( PT) and heads of the practicum schools (HPS) in the selected universities of Pakistan and the UK. It is a qualitative case study and data were collected through the lesson observation of UT in the pre-service teacher education setting and PT in practicum schools. Interviews with UT, HPS, and Focus Group Discussions with PT were conducted too. The study has concluded that as compared to the UK counterpart, PT in Pakistan faces significant barriers in applying learning-supportive assessment in the school practicum settings because of large class sizes, lack of institutionalised collaboration between universities and schools, poor modelling of the lesson, ineffective feedback practices, lower order thinking assignments, and limited opportunities to use technology in school settings.Keywords: assessment, pre-service teacher education, theory-practice gap, teacher education
Procedia PDF Downloads 12321517 Developing Writing Skills of Learners with Persistent Literacy Difficulties through the Explicit Teaching of Grammar in Context: Action Research in a Welsh Secondary School
Authors: Jean Ware, Susan W. Jones
Abstract:
Background: The benefits of grammar instruction in the teaching of writing is contested in most English speaking countries. A majority of Anglophone countries abandoned the teaching of grammar in the 1950s based on the conclusions that it had no positive impact on learners’ development of reading, writing, and language. Although the decontextualised teaching of grammar is not helpful in improving writing, a curriculum with a focus on grammar in an embedded and meaningful way can help learners develop their understanding of the mechanisms of language. Although British learners are generally not taught grammar rules explicitly, learners in schools in France, the Netherlands, and Germany are taught explicitly about the structure of their own language. Exposing learners to grammatical analysis can help them develop their understanding of language. Indeed, if learners are taught that each part of speech has an identified role in the sentence. This means that rather than have to memorise lists of words or spelling patterns, they can focus on determining each word or phrase’s task in the sentence. These processes of categorisation and deduction are higher order thinking skills. When considering definitions of dyslexia available in Great Britain, the explicit teaching of grammar in context could help learners with persistent literacy difficulties. Indeed, learners with dyslexia often develop strengths in problem solving; the teaching of grammar could, therefore, help them develop their understanding of language by using analytical and logical thinking. Aims: This study aims at gaining a further understanding of how the explicit teaching of grammar in context can benefit learners with persistent literacy difficulties. The project is designed to identify ways of adapting existing grammar focussed teaching materials so that learners with specific learning difficulties such as dyslexia can use them to further develop their writing skills. It intends to improve educational practice through action, analysis and reflection. Research Design/Methods: The project, therefore, uses an action research design and multiple sources of evidence. The data collection tools used were standardised test data, teacher assessment data, semi-structured interviews, learners’ before and after attempts at a writing task at the beginning and end of the cycle, documentary data and lesson observation carried out by a specialist teacher. Existing teaching materials were adapted for use with five Year 9 learners who had experienced persistent literacy difficulties from primary school onwards. The initial adaptations included reducing the amount of content to be taught in each lesson, and pre teaching some of the metalanguage needed. Findings: Learners’ before and after attempts at the writing task were scored by a colleague who did not know the order of the attempts. All five learners’ scores were higher on the second writing task. Learners reported that they had enjoyed the teaching approach. They also made suggestions to be included in the second cycle, as did the colleague who carried out observations. Conclusions: Although this is a very small exploratory study, these results suggest that adapting grammar focused teaching materials shows promise for helping learners with persistent literacy difficulties develop their writing skills.Keywords: explicit teaching of grammar in context, literacy acquisition, persistent literacy difficulties, writing skills
Procedia PDF Downloads 15621516 A Comparative Analysis of Vocabulary Learning Strategies among EFL Freshmen and Senior Medical Sciences Students across Different Fields of Study
Authors: M. Hadavi, Z. Hashemi
Abstract:
Learning strategies play an important role in the development of language skills. Vocabulary learning strategies as the backbone of these strategies have become a major part of English language teaching. This study is a comparative analysis of Vocabulary Learning Strategies (VLS) use and preference among freshmen and senior EFL medical sciences students with different fields of study. 449 students (236 freshman and 213 seniors) participated in the study. 64.6% were female and 35.4% were male. The instrument utilized in this research was a questionnaire consisting of 41 items related to the students’ approach to vocabulary learning. The items were classified under eight sections as dictionary strategies, guessing strategies, study preferences, memory strategies, autonomy, note- taking strategies, selective attention, and social strategies. The participants were asked to answer each item with a 5-point Likert-style frequency scale as follows:1) I never or almost never do this, 2) I don’t usually do this, 3) I sometimes do this, 4) I usually do this, and 5)I always or almost always do this. The results indicated that freshmen students and particularly surgical technology students used more strategies compared to the seniors. Overall guessing and dictionary strategies were the most frequently used strategies among all the learners (p=0/000). The mean and standard deviation of using VLS in the students who had no previous history of participating in the private English language classes was less than the students who had attended these type of classes (p=0/000). Female students tended to use social and study preference strategies whereas male students used mostly guessing and dictionary strategies. It can be concluded that the senior students under instruction from the university have learned to rely on themselves and choose the autonomous strategies more, while freshmen students use more strategies that are related to the study preferences.Keywords: vocabulary leaning strategies, medical sciences, students, linguistics
Procedia PDF Downloads 45121515 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 18621514 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria
Authors: Mairo Musa Galadima, Phoebe Mshelia
Abstract:
In Nigeria, the national policy of education stipulates that the kindergarten primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5(five) selected secondary school in Bauchi. It was discover that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequate qualified teachers and relevant materials including text-books. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.Keywords: kindergarten, stress, phonetic and intonation, Nigeria
Procedia PDF Downloads 30021513 Effectiveness of Cold Calling on Students’ Behavior and Participation during Class Discussions: Punishment or Opportunity to Shine
Authors: Maimuna Akram, Khadija Zia, Sohaib Naseer
Abstract:
Pedagogical objectives and the nature of the course content may lead instructors to take varied approaches to selecting a student for the cold call, specifically in a studio setup where students work on different projects independently and show progress work time to time at scheduled critiques. Cold-calling often proves to be an effective tool in eliciting a response without enforcing judgment onto the recipients. While there is a mixed range of behavior exhibited by students who are cold-called, a classification of responses from anxiety-provoking to inspiring may be elicited; there is a need for a greater understanding of utilizing the exchanges in bringing about fruitful and engaging outcomes of studio discussions. This study aims to unravel the dimensions of utilizing the cold-call approach in a didactic exchange within studio pedagogy. A questionnaire survey was conducted in an undergraduate class at Arts and Design School. The impact of cold calling on students’ participation was determined through various parameters, including course choice, participation frequency, students’ comfortability, and teaching methodology. After analyzing the surveys, specific classroom teachers were interviewed to provide a qualitative perspective of the faculty. It was concluded that cold-calling increases students’ participation frequency and also increases preparation for class. Around 67% of students responded that teaching methods play an important role in learning activities and students’ participation during class discussions. 84% of participants agreed that cold calling is an effective way of learning. According to research, cold-calling can be done in large numbers without making students uncomfortable. As a result, the findings of this study support the use of this instructional method to encourage more students to participate in class discussions.Keywords: active learning, class discussion, class participation, cold calling, pedagogical methods, student engagement
Procedia PDF Downloads 3821512 Didactic Suitability and Mathematics Through Robotics and 3D Printing
Authors: Blanco T. F., Fernández-López A.
Abstract:
Nowadays, education, motivated by the new demands of the 21st century, acquires a dimension that converts the skills that new generations may need into a huge and uncertain set of knowledge too broad to be entirety covered. Within this set, and as tools to reach them, we find Learning and Knowledge Technologies (LKT). Thus, in order to prepare students for an everchanging society in which the technological boom involves everything, it is essential to develop digital competence. Nevertheless LKT seems not to have found their place in the educational system. This work is aimed to go a step further in the research of the most appropriate procedures and resources for technological integration in the classroom. The main objective of this exploratory study is to analyze the didactic suitability (epistemic, cognitive, affective, interactional, mediational and ecological) for teaching and learning processes of mathematics with robotics and 3D printing. The analysis carried out is drawn from a STEAM (Science, Technology, Engineering, Art and Mathematics) project that has the Pilgrimage way to Santiago de Compostela as a common thread. The sample is made up of 25 Primary Education students (10 and 11 years old). A qualitative design research methodology has been followed, the sessions have been distributed according to the type of technology applied. Robotics has been focused towards learning two-dimensional mathematical notions while 3D design and printing have been oriented towards three-dimensional concepts. The data collection instruments used are evaluation rubrics, recordings, field notebooks and participant observation. Indicators of didactic suitability proposed by Godino (2013) have been used for the analysis of the data. In general, the results show a medium-high level of didactic suitability. Above these, a high mediational and cognitive suitability stands out, which led to a better understanding of the positions and relationships of three-dimensional bodies in space and the concept of angle. With regard to the other indicators of the didactic suitability, it should be noted that the interactional suitability would require more attention and the affective suitability a deeper study. In conclusion, the research has revealed great expectations around the combination of teaching-learning processes of mathematics and LKT. Although there is still a long way to go in terms of the provision of means and teacher training.Keywords: 3D printing, didactic suitability, educational design, robotics
Procedia PDF Downloads 10421511 Introducing Data-Driven Learning into Chinese Higher Education English for Academic Purposes Writing Instructional Settings
Authors: Jingwen Ou
Abstract:
Writing for academic purposes in a second or foreign language is one of the most important and the most demanding skills to be mastered by non-native speakers. Traditionally, the EAP writing instruction at the tertiary level encompasses the teaching of academic genre knowledge, more specifically, the disciplinary writing conventions, the rhetorical functions, and specific linguistic features. However, one of the main sources of challenges in English academic writing for L2 students at the tertiary level can still be found in proficiency in academic discourse, especially vocabulary, academic register, and organization. Data-Driven Learning (DDL) is defined as “a pedagogical approach featuring direct learner engagement with corpus data”. In the past two decades, the rising popularity of the application of the data-driven learning (DDL) approach in the field of EAP writing teaching has been noticed. Such a combination has not only transformed traditional pedagogy aided by published DDL guidebooks in classroom use but also triggered global research on corpus use in EAP classrooms. This study endeavors to delineate a systematic review of research in the intersection of DDL and EAP writing instruction by conducting a systematic literature review on both indirect and direct DDL practice in EAP writing instructional settings in China. Furthermore, the review provides a synthesis of significant discoveries emanating from prior research investigations concerning Chinese university students’ perception of Data-Driven Learning (DDL) and the subsequent impact on their academic writing performance following corpus-based training. Research papers were selected from Scopus-indexed journals and core journals from two main Chinese academic databases (CNKI and Wanfang) published in both English and Chinese over the last ten years based on keyword searches. Results indicated an insufficiency of empirical DDL research despite a noticeable upward trend in corpus research on discourse analysis and indirect corpus applications for material design by language teachers. Research on the direct use of corpora and corpus tools in DDL, particularly in combination with genre-based EAP teaching, remains a relatively small fraction of the whole body of research in Chinese higher education settings. Such scarcity is highly related to the prevailing absence of systematic training in English academic writing registers within most Chinese universities' EAP syllabi due to the Chinese English Medium Instruction policy, where only English major students are mandated to submit English dissertations. Findings also revealed that Chinese learners still held mixed attitudes towards corpus tools influenced by learner differences, limited access to language corpora, and insufficient pre-training on corpus theoretical concepts, despite their improvements in final academic writing performance.Keywords: corpus linguistics, data-driven learning, EAP, tertiary education in China
Procedia PDF Downloads 6021510 Preparing K-12 Practitioners for Diversity and Use of Evidence-Based Practices and Strategies in Teaching Learners with Autism Spectrum Disorder (ASD)
Authors: Inuusah Mahama
Abstract:
The study focused on the importance of diversity and the use of evidence-based practices and strategies in teaching learners with ASD. The study employed a mixed-methods design, including surveys, interviews, and observations. A total of 500 K-12 practitioners participated in the study, including teachers, administrators, and support staff. The study sought to investigate the current understanding and knowledge level of K-12 practitioners regarding diversity, evidence-based practices, and strategies for teaching learners with ASD. The study also examined the challenges that K-12 practitioners face in preparing learners with ASD and the resources they require to improve their practice. The results indicated that K-12 practitioners in Ghana have limited knowledge and skills in teaching learners with ASD, particularly in using evidence-based practices and strategies. Therefore, there is a need for providing training and professional development opportunities for K-12 practitioners, developing and implementing evidence-based practices and strategies, and increasing awareness of ASD and the need for effective teaching strategies. This would go a long way to improve the quality of education for learners with ASD in Ghana and ultimately lead to better outcomes for these students.Keywords: autism, practitioners, diversity, evidence-based practises
Procedia PDF Downloads 9221509 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome
Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis
Abstract:
Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.Keywords: protein-interactions, machine-learning, metagenomics, microbiome
Procedia PDF Downloads 37621508 An Electronic and Performance Test for the Applicants to Faculty of Education for Early Childhood in Egypt for Measuring the Skills of Teacher Students
Authors: Ahmed Amin Mousa, Gehan Azam
Abstract:
The current study presents an electronic test to measure teaching skills. This test is a part of the admission system of the Faculty of Education for Early Childhood, Cairo University. The test has been prepared to evaluate university students who apply for admission the Faculty. It measures some social and physiological skills which are important for successful teachers, such as emotional adjustment and problem solving; moreover, the extent of their love for children and their capability to interact with them. The test has been approved by 13 experts. Finally, it has been introduced to 1,100 students during the admission system of the academic year 2016/2017. The results showed that most of the applicants have an auditory learning style. In addition, 97% of them have the minimum requirement skills for teaching children.Keywords: electronic test, performance, early childhood, skills, teacher student
Procedia PDF Downloads 25321507 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 8621506 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 5521505 Brain Networks and Mathematical Learning Processes of Children
Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke
Abstract:
Neurological findings provide foundational results for many different disciplines. In this article we want to discuss these with a special focus on mathematics education. The intention is to make neuroscience research useful for the description of cognitive mathematical learning processes. A key issue of mathematics education is that students often behave as if their mathematical knowledge is constructed in isolated compartments with respect to the specific context of the original learning situation; supporting students to link these compartments to form a coherent mathematical society of mind is a fundamental task not only for mathematics teachers. This aspect goes hand in hand with the question if there is such a thing as abstract general mathematical knowledge detached from concrete reality. Educational Neuroscience may give answers to the question why students develop their mathematical knowledge in isolated subjective domains of experience and if it is generally possible to think in abstract terms. To address these questions, we will provide examples from different fields of mathematics education e.g. students’ development and understanding of the general concept of variables or the mathematical notion of universal proofs. We want to discuss these aspects in the reflection of functional studies which elucidate the role of specific brain regions in mathematical learning processes. In doing this the paper addresses concept formation processes of students in the mathematics classroom and how to support them adequately considering the results of (educational) neuroscience.Keywords: brain regions, concept formation processes in mathematics education, proofs, teaching-learning processes
Procedia PDF Downloads 14921504 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint
Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu
Abstract:
With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning
Procedia PDF Downloads 7821503 A Study of Various Ontology Learning Systems from Text and a Look into Future
Authors: Fatima Al-Aswadi, Chan Yong
Abstract:
With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web
Procedia PDF Downloads 52321502 Use of Artificial Intelligence Should Be Centred Around Emotions to Create Effective Learning Environment in the Corporate Workplace
Authors: Artur Willoński
Abstract:
This research introduces the concept of Emotions Based Collaborative Prompting (EBCP) as a response to the need for a unified learning environment in the corporate workplace. The first section examines the key characteristics of workplace learning, presenting three core propositions: (1) workplace learning is both informal and diverse, requiring adaptable approaches; (2) corporate settings provide inherent structures that can be leveraged for collaborative learning; and (3) emotional engagement and human interaction play a central role in effective learning processes. The second section describes how EBCP framework creates an environment that helps identify emotions, assign emotions with parameters, and allows these parameters to be collected, analysed, and turned into a context-aware learning environment. It concludes that EBCP allows people who come from different social backgrounds, age groups, and positions in the organisation to collaborate and generate knowledge based on both formal and informal interactions.Keywords: collaborative learning, self-regulated learning, emotions, AI
Procedia PDF Downloads 6