Search results for: spatial multi-criteria analysis model
37863 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics
Authors: Nurudeen Oluwasola Lasisi
Abstract:
Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis
Procedia PDF Downloads 4537862 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information
Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin
Abstract:
The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation
Procedia PDF Downloads 49437861 Popularization of Persian Scientific Articles in the Public Media: An Analysis Based on Experimental Meta-function View Point
Authors: Behnaz Zolfaghari
Abstract:
In civilized societies, linguists seek to find suitable equivalents for scientific terms in the common language of their society. Many researches have conducted surveys about language of science on one hand and media discourse on the other, but the goal of this research is the comparative analysis of science discourse in Persian academic media and public discourse in the general Persian media by applying experimental meta-function as one of the four theoretical tools introduced by Holiday’s Systemic Functional Grammar .The said analysis aims to explore the processes that can convert the language in which scientific facts are published to a language well suited to the interested layman. The results of comparison show that these two discourses use differently six processes of experimental meta-function. Comparing the redundancy of different processes, the researcher tried to re-identify these differences in these two discourses and present a model for the procedures of converting science discourse to popularized discourse. This model can be useful for those journalists and textbook authors who want to restate scientific technical texts in a simple style for inexpert addresser including general people and students.Keywords: systemic functional grammar, discourse analysis, science language, popularization, media discourse
Procedia PDF Downloads 19437860 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses
Authors: André Jesus, Yanjie Zhu, Irwanda Laory
Abstract:
Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process
Procedia PDF Downloads 32637859 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications
Authors: Farhad Salek, Shahaboddin Resalati
Abstract:
The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.Keywords: second life battery, electric vehicles, degradation, neural network
Procedia PDF Downloads 6537858 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals
Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti
Abstract:
Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.Keywords: neuroinformatics, bioinformatics, network tools, brain mapping
Procedia PDF Downloads 18237857 Delivery of Positively Charged Proteins Using Hyaluronic Acid Microgels
Authors: Elaheh Jooybar, Mohammad J. Abdekhodaie, Marcel Karperien, Pieter J. Dijkstra
Abstract:
In this study, hyaluronic acid (HA) microgels were developed for the goal of protein delivery. First, a hyaluronic acid-tyramine conjugate (HA-TA) was synthesized with a degree of substitution of 13 TA moieties per 100 disaccharide units. Then, HA-TA microdroplets were produced using a water in oil emulsion method and crosslinked in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). Loading capacity and the release kinetics of lysozyme and BSA, as model proteins, were investigated. It was shown that lysozyme, a cationic protein, can be incorporated efficiently in the HA microgels, while the loading efficiency for BSA, as a negatively charged protein, is low. The release profile of lysozyme showed a sustained release over a period of one month. The results demonstrated that the HA-TA microgels are a good carrier for spatial delivery of cationic proteins for biomedical applications.Keywords: microgel, inverse emulsion, protein delivery, hyaluronic acid, crosslinking
Procedia PDF Downloads 17037856 Website Evaluation of Travel Agencies Class A in Saudi Arabia and Egypt Using Extended Version of Internet Commerce Adoption Model: A Comparative Study
Authors: Tarek Abdel Azim Ahmed, Eman Sarhan Shaker
Abstract:
This research aims to explore how well the extended model of internet commerce adoption (eMICA) model is often used to determine the extent of internet commerce adoption in the travel agencies sector in both Egypt and Kingdom of Saudi Arabia (KSA). The web content analysis method was used to analyze the level of adoption of Egyptian travel agencies and Saudi travel agencies according to data immensely available on their websites. Therefore, each site was categorized according to the phases and levels proposed. In order to achieve this, 120 websites were evaluated by the two authors over a three-month period, from August to October 2020, and then categorized according to the phases and levels of (eMICA). The results show that there are deficiencies in the application of the eMICA model by both KSA and Egyptian travel agencies, generally, updating their websites, the absence of quality certification, offering secure online payment, virtual tours, and videos using Flash animation. In general, the Egyptian companies slightly outperformed the KSA ones in applying eMICA model.Keywords: e-commerce, internet marketing, eMICA, travel agencies, websites
Procedia PDF Downloads 13837855 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 7437854 An Elbow Biomechanical Model and Its Coefficients Adjustment
Authors: Jie Bai, Yongsheng Gao, Shengxin Wang, Jie Zhao
Abstract:
Through the establishment of the elbow biomechanical model, it can provide theoretical guide for rehabilitation therapy on the upper limb of the human body. A biomechanical model of the elbow joint can be built by the connection of muscle force model and elbow dynamics. But there are many undetermined coefficients in the model like the optimal joint angle and optimal muscle force which are usually specified as the experimental parameters of other workers. Because of the individual differences, there is a certain deviation of the final result. To this end, the RMS value of the deviation between the actual angle and calculated angle is considered. A set of coefficients which lead to the minimum RMS value will be chosen to be the optimal parameters. The direct search method and the conjugacy search method are used to get the optimal parameters, thus the model can be more accurate and mode adaptability.Keywords: elbow biomechanical model, RMS, direct search, conjugacy search
Procedia PDF Downloads 54937853 Modal Analysis of Power System with a Microgrid
Authors: Burak Yildirim, Muhsin Tunay Gençoğlu
Abstract:
A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed.Keywords: eigenvalue analysis, microgrid, modal analysis, voltage stability
Procedia PDF Downloads 37237852 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, financial returns, predictive distribution, quantile function model
Procedia PDF Downloads 36737851 The History of Sambipitu Formation Temperature during the Early Miocene Epooch at Kali Ngalang, Nglipar, Gunung Kidul Regency
Authors: R. Harman Dwi, Ryan Avirsa, P. Abraham Ivan
Abstract:
Understanding of temperatures in the past, present, and future temperatures can be possible to do by analysis abundance of fossil foraminifera. This research was conducted in Sambipitu Formation, Ngalang River, Nglipar, Gunung Kidul Regency. The research method is divided into 3 stages: 1) study of literature, research based on previous researchers, 2) spatial, observation and sampling every 5-10 meters, 3) descriptive, analyzing samples consisting of a 10-gram sample weight, washing sample using 30% peroxide, biostratigraphy analysis, paleotemperature analysis using abundance of fossil, diversity analysis using Simpson diversity index method, and comparing current temperature data. There are two phases based on the appearance of Globorotalia menardii and Pulleniatina obliqueculata pointed to Phase Tropical Area, and the appearance of fossil Globigerinoides ruber and Orbulina universa fossil shows the phase of Subtropical Area. Paleotemperatur based on the appearance of Globorotalia menardii, Globigerinoides trilobus, Globigerinoides ruber, Orbulina universa, and Pulleniatina obliqueculata pointed to Warm Water Area and Warm Water Area (average surface water approximate 25°C).Keywords: abundance, biostratigraphy, Simpson diversity index method, paleotemperature
Procedia PDF Downloads 17237850 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling
Authors: Mehdi Fuladipanah
Abstract:
Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution
Procedia PDF Downloads 37237849 Gas-Solid Nitrocarburizing of Steels: Kinetic Modelling and Experimental Validation
Authors: L. Torchane
Abstract:
This study is devoted to defining the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3-Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.Keywords: gaseous nitrocarburizing, kinetic model, diffusion, layer growth kinetic
Procedia PDF Downloads 53437848 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies
Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani
Abstract:
The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a)synthesizing such PTMDs for particular applications and b)evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.Keywords: active tuned mass damper, high-rise building, multi-frequency tuning, vibration control
Procedia PDF Downloads 10537847 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports
Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel
Abstract:
The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.Keywords: biomechanics, inertial sensors, motion capture, rehabilitation
Procedia PDF Downloads 14037846 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 16137845 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor
Authors: Ejaz Ahmed, Huang Yong
Abstract:
The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.Keywords: CFD, combustion, gas turbine combustor, lean blowout
Procedia PDF Downloads 26837844 Numerical Approach for Characterization of Flow Field in Pump Intake Using Two Phase Model: Detached Eddy Simulation
Authors: Rahul Paliwal, Gulshan Maheshwari, Anant S. Jhaveri, Channamallikarjun S. Mathpati
Abstract:
Large pumping facility is the necessary requirement of the cooling water systems for power plants, process and manufacturing facilities, flood control and water or waste water treatment plant. With a large capacity of few hundred to 50,000 m3/hr, cares must be taken to ensure the uniform flow to the pump to limit vibration, flow induced cavitation and performance problems due to formation of air entrained vortex and swirl flow. Successful prediction of these phenomena requires numerical method and turbulence model to characterize the dynamics of these flows. In the past years, single phase shear stress transport (SST) Reynolds averaged Navier Stokes Models (like k-ε, k-ω and RSM) were used to predict the behavior of flow. Literature study showed that two phase model will be more accurate over single phase model. In this paper, a 3D geometries simulated using detached eddy simulation (LES) is used to predict the behavior of the fluid and the results are compared with experimental results. Effect of different grid structure and boundary condition is also studied. It is observed that two phase flow model can more accurately predict the mean flow and turbulence statistics compared to the steady SST model. These validate model will be used for further analysis of vortex structure in lab scale model to generate their frequency-plot and intensity at different location in the set-up. This study will help in minimizing the ill effect of vortex on pump performance.Keywords: grid structure, pump intake, simulation, vibration, vortex
Procedia PDF Downloads 17537843 Towards Safety-Oriented System Design: Preventing Operator Errors by Scenario-Based Models
Authors: Avi Harel
Abstract:
Most accidents are commonly attributed in hindsight to human errors, yet most methodologies for safety focus on technical issues. According to the Black Swan theory, this paradox is due to insufficient data about the ways systems fail. The article presents a study of the sources of errors, and proposes a methodology for utility-oriented design, comprising methods for coping with each of the sources identified. Accident analysis indicates that errors typically result from difficulties of operating in exceptional conditions. Therefore, following STAMP, the focus should be on preventing exceptions. Exception analysis indicates that typically they involve an improper account of the operational scenario, due to deficiencies in the system integration. The methodology proposes a model, which is a formal definition of the system operation, as well as principles and guidelines for safety-oriented system integration. The article calls to develop and integrate tools for recording and analysis of the system activity during the operation, required to implement validate the model.Keywords: accidents, complexity, errors, exceptions, interaction, modeling, resilience, risks
Procedia PDF Downloads 19637842 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life
Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi
Abstract:
Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model
Procedia PDF Downloads 45737841 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria
Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah
Abstract:
Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria
Procedia PDF Downloads 7137840 Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry
Authors: S. Y. Cicekli
Abstract:
In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model.Keywords: close- range photogrammetry, forest, tree, three-dimensional model
Procedia PDF Downloads 38937839 A Mathematical-Based Formulation of EEG Fluctuations
Authors: Razi Khalafi
Abstract:
Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.Keywords: Brain, stimuli, partial differential equation, response, eeg signal
Procedia PDF Downloads 43337838 Efficiency Measurement of Turkish via the Stochastic Frontier Model
Authors: Yeliz Mert Kantar, İsmail Yeni̇lmez, Ibrahim Arik
Abstract:
In this study, the efficiency measurement of the top fifty Turkish Universities has been conducted. The top fifty Turkish Universities are listed by The Scientific and Technological Research Council of Turkey (TÜBITAK) according to the Entrepreneur and Innovative University Index every year. The index is calculated based on four components since 2018. Four components are scientific and technological research competency, intellectual property pool, cooperation and interaction, and economic and social contribution. The four components consist of twenty-three sub-components. The 2021 list announced in January 2022 is discussed in this study. Efficiency analysis have been carried out using the Stochastic Frontier Model. Statistical significance of the sub-components that make up the index with certain weights has been examined in terms of the efficiency measurement calculated through the Stochastic Frontier Model. The relationship between the efficiency ranking estimated based on the Stochastic Frontier Model and the Entrepreneur and Innovative University Index ranking is discussed in detail.Keywords: efficiency, entrepreneur and innovative universities, turkish universities, stochastic frontier model, tübi̇tak
Procedia PDF Downloads 8937837 The Role of Transport Investment and Enhanced Railway Accessibility in Regional Efficiency Improvement in Saudi Arabia: Data Envelopment Analysis
Authors: Saleh Alotaibi, Mohammed Quddus, Craig Morton, Jobair Bin Alam
Abstract:
This paper explores the role of large-scale investment in transport sectors and the impact of increased railway accessibility on the efficiency of the regional economic productivity in the Kingdom of Saudi Arabia (KSA). There are considerable differences among the KSA regions in terms of their levels of investment and productivity due to their geographical scale and location, which in turn greatly affect their relative efficiency. The study used a non-parametric linear programming technique - Data Envelopment Analysis (DEA) - to measure the regional efficiency change over time and determine the drivers of inefficiency and their scope of improvement. In addition, Window DEA analysis is carried out to compare the efficiency performance change for various time periods. Malmquist index (MI) is also analyzed to identify the sources of productivity change between two subsequent years. The analysis involves spatial and temporal panel data collected from 1999 to 2018 for the 13 regions of the country. Outcomes reveal that transport investment and improved railway accessibility, in general, have significantly contributed to regional economic development. Moreover, the endowment of the new railway stations has spill-over effects. The DEA Window analysis confirmed the dynamic improvement in the average regional efficiency over the study periods. MI showed that the technical efficiency change was the main source of regional productivity improvement. However, there is evidence of investment allocation discrepancy among regions which could limit the achievement of development goals in the long term. These relevant findings will assist the Saudi government in developing better strategic decisions for future transport investments and their allocation at the regional level.Keywords: data envelopment analysis, transport investment, railway accessibility, efficiency
Procedia PDF Downloads 14937836 Assessing the Utility of Unmanned Aerial Vehicle-Borne Hyperspectral Image and Photogrammetry Derived 3D Data for Wetland Species Distribution Quick Mapping
Authors: Qiaosi Li, Frankie Kwan Kit Wong, Tung Fung
Abstract:
Lightweight unmanned aerial vehicle (UAV) loading with novel sensors offers a low cost approach for data acquisition in complex environment. This study established a framework for applying UAV system in complex environment quick mapping and assessed the performance of UAV-based hyperspectral image and digital surface model (DSM) derived from photogrammetric point clouds for 13 species classification in wetland area Mai Po Inner Deep Bay Ramsar Site, Hong Kong. The study area was part of shallow bay with flat terrain and the major species including reedbed and four mangroves: Kandelia obovata, Aegiceras corniculatum, Acrostichum auerum and Acanthus ilicifolius. Other species involved in various graminaceous plants, tarbor, shrub and invasive species Mikania micrantha. In particular, invasive species climbed up to the mangrove canopy caused damage and morphology change which might increase species distinguishing difficulty. Hyperspectral images were acquired by Headwall Nano sensor with spectral range from 400nm to 1000nm and 0.06m spatial resolution image. A sequence of multi-view RGB images was captured with 0.02m spatial resolution and 75% overlap. Hyperspectral image was corrected for radiative and geometric distortion while high resolution RGB images were matched to generate maximum dense point clouds. Furtherly, a 5 cm grid digital surface model (DSM) was derived from dense point clouds. Multiple feature reduction methods were compared to identify the efficient method and to explore the significant spectral bands in distinguishing different species. Examined methods including stepwise discriminant analysis (DA), support vector machine (SVM) and minimum noise fraction (MNF) transformation. Subsequently, spectral subsets composed of the first 20 most importance bands extracted by SVM, DA and MNF, and multi-source subsets adding extra DSM to 20 spectrum bands were served as input in maximum likelihood classifier (MLC) and SVM classifier to compare the classification result. Classification results showed that feature reduction methods from best to worst are MNF transformation, DA and SVM. MNF transformation accuracy was even higher than all bands input result. Selected bands frequently laid along the green peak, red edge and near infrared. Additionally, DA found that chlorophyll absorption red band and yellow band were also important for species classification. In terms of 3D data, DSM enhanced the discriminant capacity among low plants, arbor and mangrove. Meanwhile, DSM largely reduced misclassification due to the shadow effect and morphological variation of inter-species. In respect to classifier, nonparametric SVM outperformed than MLC for high dimension and multi-source data in this study. SVM classifier tended to produce higher overall accuracy and reduce scattered patches although it costs more time than MLC. The best result was obtained by combining MNF components and DSM in SVM classifier. This study offered a precision species distribution survey solution for inaccessible wetland area with low cost of time and labour. In addition, findings relevant to the positive effect of DSM as well as spectral feature identification indicated that the utility of UAV-borne hyperspectral and photogrammetry deriving 3D data is promising in further research on wetland species such as bio-parameters modelling and biological invasion monitoring.Keywords: digital surface model (DSM), feature reduction, hyperspectral, photogrammetric point cloud, species mapping, unmanned aerial vehicle (UAV)
Procedia PDF Downloads 25737835 Numerical Modeling on the Vehicle Interior Noise Produced by Rain-the-Roof Excitation
Authors: Zilong Peng, Jun Fan
Abstract:
With the improvement of the living standards, the requirement on the acoustic comfort of the vehicle interior environment is becoming higher. The rain-the-roof producing interior noise is a common phenomenon for the vehicle, which usually discourages the conversation, especially for the heavy rain. This paper presents some numerical results about the rain-the-roof noise. The impact of each water drop is modeled as a short pulse, and the excitation locations on the roof are generated randomly. The vehicle body is simplified to a box closed with some certain-thickness shells. According to the main frequency components of the rain excitation, the analyzing frequency range is divided as low, high and middle frequency domains, which makes the vehicle body are modeled using finite element method (FEM), statistical energy analysis (SEA) and hybrid FE-SEA method, respectively. Furthermore, the effect of spatial distribution density and size of the rain on the sound pressure level are also discussed. These results may provide a guide for designing a more silent vehicle in the special weather.Keywords: rain-the-roof noise, vehicle, finite element method, statistical energy analysis
Procedia PDF Downloads 20237834 Structured-Ness and Contextual Retrieval Underlie Language Comprehension
Authors: Yao-Ying Lai, Maria Pinango, Ashwini Deo
Abstract:
While grammatical devices are essential to language processing, how comprehension utilizes cognitive mechanisms is less emphasized. This study addresses this issue by probing the complement coercion phenomenon: an entity-denoting complement following verbs like begin and finish receives an eventive interpretation. For example, (1) “The queen began the book” receives an agentive reading like (2) “The queen began [reading/writing/etc.…] the book.” Such sentences engender additional processing cost in real-time comprehension. The traditional account attributes this cost to an operation that coerces the entity-denoting complement to an event, assuming that these verbs require eventive complements. However, in closer examination, examples like “Chapter 1 began the book” undermine this assumption. An alternative, Structured Individual (SI) hypothesis, proposes that the complement following aspectual verbs (AspV; e.g. begin, finish) is conceptualized as a structured individual, construed as an axis along various dimensions (e.g. spatial, eventive, temporal, informational). The composition of an animate subject and an AspV such as (1) engenders an ambiguity between an agentive reading along the eventive dimension like (2), and a constitutive reading along the informational/spatial dimension like (3) “[The story of the queen] began the book,” in which the subject is interpreted as a subpart of the complement denotation. Comprehenders need to resolve the ambiguity by searching contextual information, resulting in additional cost. To evaluate the SI hypothesis, a questionnaire was employed. Method: Target AspV sentences such as “Shakespeare began the volume.” were preceded by one of the following types of context sentence: (A) Agentive-biasing, in which an event was mentioned (…writers often read…), (C) Constitutive-biasing, in which a constitutive meaning was hinted (Larry owns collections of Renaissance literature.), (N) Neutral context, which allowed both interpretations. Thirty-nine native speakers of English were asked to (i) rate each context-target sentence pair from a 1~5 scale (5=fully understandable), and (ii) choose possible interpretations for the target sentence given the context. The SI hypothesis predicts that comprehension is harder for the Neutral condition, as compared to the biasing conditions because no contextual information is provided to resolve an ambiguity. Also, comprehenders should obtain the specific interpretation corresponding to the context type. Results: (A) Agentive-biasing and (C) Constitutive-biasing were rated higher than (N) Neutral conditions (p< .001), while all conditions were within the acceptable range (> 3.5 on the 1~5 scale). This suggests that when lacking relevant contextual information, semantic ambiguity decreases comprehensibility. The interpretation task shows that the participants selected the biased agentive/constitutive reading for condition (A) and (C) respectively. For the Neutral condition, the agentive and constitutive readings were chosen equally often. Conclusion: These findings support the SI hypothesis: the meaning of AspV sentences is conceptualized as a parthood relation involving structured individuals. We argue that semantic representation makes reference to spatial structured-ness (abstracted axis). To obtain an appropriate interpretation, comprehenders utilize contextual information to enrich the conceptual representation of the sentence in question. This study connects semantic structure to human’s conceptual structure, and provides a processing model that incorporates contextual retrieval.Keywords: ambiguity resolution, contextual retrieval, spatial structured-ness, structured individual
Procedia PDF Downloads 333