Search results for: neural smith predictor
789 Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation
Authors: J. Y. Tan, L. C. Lum, M. G. Lee, S. Mansouri, K. Hapgood, X. D. Chen, M. W. Woo
Abstract:
Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapor precipitation (AVP), incorporating ethanol vapor as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility.Keywords: absorption, antisolvent vapor precipitation, dissolution rate, folic acid
Procedia PDF Downloads 445788 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 142787 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 520786 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 80785 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 141784 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 354783 Facial Recognition on the Basis of Facial Fragments
Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza
Abstract:
There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.Keywords: face recognition, labeled faces in the wild (LFW) database, random local descriptor (RLD), random features
Procedia PDF Downloads 360782 Comparison of the Anthropometric Obesity Indices in Prediction of Cardiovascular Disease Risk: Systematic Review and Meta-analysis
Authors: Saeed Pourhassan, Nastaran Maghbouli
Abstract:
Statement of the problem: The relationship between obesity and cardiovascular diseases has been studied widely(1). The distribution of fat tissue gained attention in relation to cardiovascular risk factors during lang-time research (2). American College of Cardiology/American Heart Association (ACC/AHA) is widely and the most reliable tool to be used as a cardiovascular risk (CVR) assessment tool(3). This study aimed to determine which anthropometric index is better in discrimination of high CVR patients from low risks using ACC/AHA score in addition to finding the best index as a CVR predictor among both genders in different races and countries. Methodology & theoretical orientation: The literature in PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched by two independent investigators using the keywords "anthropometric indices," "cardiovascular risk," and "obesity." The search strategy was limited to studies published prior to Jan 2022 as full-texts in the English language. Studies using ACC/AHA risk assessment tool as CVR and those consisted at least 2 anthropometric indices (ancient ones and novel ones) are included. Study characteristics and data were extracted. The relative risks were pooled with the use of the random-effect model. Analysis was repeated in subgroups. Findings: Pooled relative risk for 7 studies with 16,348 participants were 1.56 (1.35-1.72) for BMI, 1.67(1.36-1.83) for WC [waist circumference], 1.72 (1.54-1.89) for WHR [waist-to-hip ratio], 1.60 (1.44-1.78) for WHtR [waist-to-height ratio], 1.61 (1.37-1.82) for ABSI [A body shape index] and 1.63 (1.32-1.89) for CI [Conicity index]. Considering gender, WC among females and WHR among men gained the highest RR. The heterogeneity of studies was moderate (α²: 56%), which was not decreased by subgroup analysis. Some indices such as VAI and LAP were evaluated just in one study. Conclusion & significance: This meta-analysis showed WHR could predict CVR better in comparison to BMI or WHtR. Some new indices like CI and ABSI are less accurate than WHR and WC. Among women, WC seems to be a better choice to predict cardiovascular disease risk.Keywords: obesity, cardiovascular disease, risk assessment, anthropometric indices
Procedia PDF Downloads 102781 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: acoustic features, autonomous robots, feature extraction, terrain classification
Procedia PDF Downloads 369780 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 111779 Student Authenticity: A Foundation for First-Year Experience Courses
Authors: Amy L. Smith
Abstract:
This study investigates the impact of student authenticity while engaging in academic exploration of students' sense of belonging, autonomy, and persistence. Research questions include: How does incorporating authenticity in first-year academic exploration courses impact; 1) first-year students’ sense of belonging, autonomy, and persistence? 2) first-year students’ sense of belonging, autonomy, and persistence during the first and last halves of the fall semester? 3) first-year students’ sense of belonging, autonomy, and persistence among various student demographics? First-year students completed a Likert-like survey at the conclusion of eight weeks (first and last eight weeks/fall semester) academic exploration courses. Course redesign included grounding the curriculum and instruction with student authenticity and creating opportunities for students to explore, define, and reflect upon their authenticity during academic exploration. Surveys were administered at the conclusion of these eight week courses (first and last eight weeks/fall semester). Data analysis included an entropy balancing matching method and t-tests. Research findings indicate integrating authenticity into academic exploration courses for first-year students has a positive impact on students' autonomy and persistence. There is a significant difference between authenticity and first-year students' autonomy (p = 0.00) and persistence (p = 0.01). Academic exploration courses with the underpinnings of authenticity are more effective in the second half of the fall semester. There is a significant difference between an academic exploration course grounding the curriculum and instruction in authenticity offered M8A (first half, fall semester) and M8B (second half, fall semester) (p = 0); M8B courses illustrate an increase of students' sense of belonging, autonomy, and persistence. Integrating authenticity into academic exploration courses for first-year students has a positive impact on varying student demographics (p = 0.00). There is a significant difference between authenticity and low-income (p = 0.04), first-generation (p = 0.00), Caucasian (p = 0.02), and American Indian/Alaskan Native (p = 0.05) first-year students' sense of belonging, autonomy, and persistence. Academic exploration courses embedded in authenticity helps develop first-year students’ sense of belonging, autonomy, and persistence, which are effective traits of college students. As first-year students engage in content courses, professors can empower students to have greater engagement in their learning process by relating content to students' authenticity and helping students think critically about how content is authentic to them — how students' authenticity relates to the content, how students can take their content expertise into the future in ways that, to the student, authentically contribute to the greater good. A broader conversation within higher education needs to include 1) designing courses that allow students to develop and reflect upon their authenticity/to formulate answers to the questions: who am I, who am I becoming, and how will I move my authentic self forward; and 2) a discussion of how to shift from the university shaping students to the university facilitating the process of students shaping themselves.Keywords: authenticity, first-year experience, sense of belonging, autonomy, persistence
Procedia PDF Downloads 137778 Regularization of Gene Regulatory Networks Perturbed by White Noise
Authors: Ramazan I. Kadiev, Arcady Ponosov
Abstract:
Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities
Procedia PDF Downloads 194777 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 215776 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand
Authors: Hamed Saremi
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: anfis, dematel, brand, cosmetic product, brand value
Procedia PDF Downloads 410775 Video Games Technologies Approach for Their Use in the Classroom
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.Keywords: virtual reality, interactive technologies, video games, educational materials
Procedia PDF Downloads 657774 Moral Reasoning among Croatian Adolescents with Different Levels of Education
Authors: Nataša Šimić, Ljiljana Gregov, Matilda Nikolić, Andrea Tokić, Ana Proroković
Abstract:
Moral development takes place in six phases which can be divided in a pre-conventional, conventional and post-conventional level. Moral reasoning, as a key concept of moral development theories, involves a process of discernment/inference in doubtful situations. In research to date, education has proved to be a significant predictor of moral reasoning. The aim of this study was to investigate differences in moral reasoning and Kohlberg's phases of moral development between Croatian adolescents with different levels of education. In Study 1 comparisons between the group of secondary school students aged 17-18 (N=192) and the group of university students aged 21-25 (N=383) were made. Study 2 included comparison between university students group (N=69) and non-students group (N=43) aged from 21 to 24 (these two groups did not differ in age). In both studies, the Croatian Test of Moral Reasoning by Proroković was applied. As a measure of moral reasoning, the Index of Moral Reasoning (IMR) was calculated. This measure has some advantages compared to other measures of moral reasoning, and includes individual assessments of deviations from the ‘optimal profile’. Results of the Study 1 did not show differences in the IMR between secondary school students and university students. Both groups gave higher assessments to the arguments that correspond to higher phases of moral development. However, group differences were found for pre-conventional and conventional phases. As expected, secondary school students gave significantly higher assessments to the arguments that correspond to lower phases of moral development. Results of the Study 2 showed that university students, in relation to non-students, have higher IMR. Respecting to phases of moral development, both groups of participants gave higher assessments to the arguments that correspond to the post-conventional phase. Consistent with expectations and previous findings, results of both studies did not confirm gender differences in moral reasoning.Keywords: education, index of moral reasoning, Kohlberg's theory of moral development, moral reasoning
Procedia PDF Downloads 250773 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.Keywords: ANN, biosorption, cadmium, packed-bed, potable water
Procedia PDF Downloads 431772 Mobile Communication Technologies, Romantic Attachment and Relationship Quality: An Exploration of Partner Attunement
Authors: Jodie Bradnam, Mark Edwards, Bruce Watt
Abstract:
Mobile technologies have emerged as tools to create and sustain social and romantic relationships. The integration of technologies in close relationships has been of particular research interest with findings supporting the positive role of mobile phones in nurturing feelings of closeness and connection. More recently, the use of text messaging to manage conflict has become a focus of research attention. Four hundred and eleven adults in committed romantic relationships completed a series of questionnaires measuring attachment orientation, relationship quality, texting frequencies, attitudes, and response expectations. Attachment orientation, relationship length, texting for connection and disconnection were significant predictors of relationship quality, specifically relationship intimacy. Text frequency varied as a function of attachment orientation, with high attachment anxiety associated with high texting frequencies and with low relationship quality. Sending text messages of love and support was related to higher intimacy and relationship satisfaction scores, while sending critical or impersonal texts was associated with significantly lower intimacy and relationship satisfaction scores. The use of texting to manage relational conflict was a stronger negative predictor of relationship satisfaction than was the use of texting to express love and affection. Consistent with research on face-to-face communication in couples, the expression of negative sentiments via text were related to lower relationship quality, and these negative sentiments had a stronger and more enduring impact on relationship quality than did the expression of positive sentiments. Attachment orientation, relationship length and relationship status emerged as variables of interest in understanding the use of mobile technologies in romantic relationships.Keywords: attachment, destructive conflict, intimacy, mobile communication, relationship quality, relationship satisfaction, texting
Procedia PDF Downloads 385771 Umbrella Reinforcement Learning – A Tool for Hard Problems
Authors: Egor E. Nuzhin, Nikolay V. Brilliantov
Abstract:
We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming
Procedia PDF Downloads 21770 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 104769 Day-To-Day Variations in Health Behaviors and Daily Functioning: Two Intensive Longitudinal Studies
Authors: Lavinia Flueckiger, Roselind Lieb, Andrea H. Meyer, Cornelia Witthauer, Jutta Mata
Abstract:
Objective: Health behaviors tend to show a high variability over time within the same person. However, most existing research can only assess a snapshot of a person’s behavior and not capture this natural daily variability. Two intensive longitudinal studies examine the variability in health behavior over one academic year and their implications for other aspects of daily life such as affect and academic performance. Can already a single day of increased physical activity, snacking, or improved sleep have beneficial effects? Methods: In two intensive longitudinal studies with up to 65 assessment days over an entire academic year, university students (Study 1: N = 292; Study 2: N = 304) reported sleep quality, physical activity, snacking, positive and negative affect, and learning goal achievement. Results: Multilevel structural equation models showed that on days on which participants reported better sleep quality or more physical activity than usual, they also reported increased positive affect, decreased negative affect, and better learning goal achievement. Higher day-to-day snacking was only associated with increased positive affect. Both, increased day-to-day sleep quality and physical activity were indirectly associated with better learning goal achievement through changes in positive and negative affect; results for snacking were mixed. Importantly, day-to-day sleep quality was a stronger predictor for affect and learning goal achievement than physical activity or snacking. Conclusion: One day of better sleep or more physical activity than usual is associated with improved affect and academic performance. These findings have important implications for low-threshold interventions targeting the improvement of daily functioning.Keywords: sleep quality, physical activity, snacking, affect, academic performance, multilevel structural equation model
Procedia PDF Downloads 576768 3D Electrode Carrier and its Implications on Retinal Implants
Authors: Diego Luján Villarreal
Abstract:
Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge densityKeywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices
Procedia PDF Downloads 113767 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 669766 Inspection of Railway Track Fastening Elements Using Artificial Vision
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux
Abstract:
In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network
Procedia PDF Downloads 455765 Microbial Resource Research Infrastructure: A Large-Scale Research Infrastructure for Microbiological Services
Authors: R. Hurtado-Ortiz, D. Clermont, M. Schüngel, C. Bizet, D. Smith, E. Stackebrandt
Abstract:
Microbiological resources and their derivatives are the essential raw material for the advancement of human health, agro-food, food security, biotechnology, research and development in all life sciences. Microbial resources, and their genetic and metabolic products, are utilised in many areas such as production of healthy and functional food, identification of new antimicrobials against emerging and resistant pathogens, fighting agricultural disease, identifying novel energy sources on the basis of microbial biomass and screening for new active molecules for the bio-industries. The complexity of public collections, distribution and use of living biological material (not only living but also DNA, services, training, consultation, etc.) and service offer, demands the coordination and sharing of policies, processes and procedures. The Microbial Resource Research Infrastructure (MIRRI) is an initiative within the European Strategy Forum Infrastructures (ESFRI), bring together 16 partners including 13 European public microbial culture collections and biological resource centres (BRCs), supported by several European and non-European associated partners. The objective of MIRRI is to support innovation in microbiology by provision of a one-stop shop for well-characterized microbial resources and high quality services on a not-for-profit basis for biotechnology in support of microbiological research. In addition, MIRRI contributes to the structuring of microbial resources capacity both at the national and European levels. This will facilitate access to microorganisms for biotechnology for the enhancement of the bio-economy in Europe. MIRRI will overcome the fragmentation of access to current resources and services, develop harmonised strategies for delivery of associated information, ensure bio-security and other regulatory conditions to bring access and promote the uptake of these resources into European research. Data mining of the landscape of current information is needed to discover potential and drive innovation, to ensure the uptake of high quality microbial resources into research. MIRRI is in its Preparatory Phase focusing on governance and structure including technical, legal governance and financial issues. MIRRI will help the Biological Resources Centres to work more closely with policy makers, stakeholders, funders and researchers, to deliver resources and services needed for innovation.Keywords: culture collections, microbiology, infrastructure, microbial resources, biotechnology
Procedia PDF Downloads 444764 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis
Procedia PDF Downloads 485763 First-Year Growth and Development of 445 Preterm Infants: A Clinical Study
Abstract:
Aim: To study the growth pattern of preterm infants during the first year of life and explore the association between head circumference (HC) and neurodevelopment sequences and to get a general knowledge of the incidence of anemia in preterm babies in Chengdu, Southwest China. Method: We conducted a prospective longitudinal study, neonates with gestational age < 37 weeks were enrolled this study from 2012.1.1 to 2014.7.9. Anthropometry (weight, height, HC) was obtained at birth, every month before 6 months-old and every 2 months in the next half year. All the infants’ age were corrected to 40 weeks. Growth data presented as Z-scores which was calculated by WHO Anthro software. Z-score defined as (the actual value minus the average value)/standard deviation. Neurodevelopment was assessed at 12 months-old [9-11 months corrected age (CA)] by using “Denver Development Screen Test (DDST)". The hemoglobin (Hb) was examined at 6 months for CA. Result: 445 preterm infants were followed-up 1 year, including 64 very low birth weight infants (VLBW), 246 low birth weight infants (LBW) and 135 normal birth weight infants(NBW). From full-term to 12 months after birth, catch-up growth was observed in most preterm infants. From VLBW to NBW, HCZ was -1.17 (95 % CI: -1.53,-0.80; P value < 0.0001) lower during the first12 months. WAZ was-1.12(95 % CI: -1.47,-0.76; p < 0.0001) lower. WHZ and HAZ were -1.04 (95%CI:-1.38, -0.69; P<0.0001) and -0.69 (95%CI:-1.06,-0.33; P < 0.0001) lower respectively. The peak of WAZ appeared during 0-3 months CA among preterm infants. For VLBW infants, the peak of HAZ and HCZ emerged at 8-11 months CA. However, the trend of HAZ and HCZ is the same as WAZ in LBW and NBW infants. Growth in the small for gestational age (SGA) infants was poorer than appropriate for gestational age (AGA) infants. The rate of DQ < 70 in VLBW and LBW were 29.6%, 7.7%, respectively (P < 0.0001). HCZ < -1SD at 3 months emerged as an independent predictor of DQ scores below 85 at 12 months after birth. The incidence of anemia in preterm infants was 11% at 6 months for CA. Moreover, 7 children (1.7%) diagnosed with Cerebral palsy (CP). Conclusions: The catch-up growth was observed in most preterm infants. VLBW and SGA showed poor growth. There was imbalance between WAZ and HAZ in VLBW infants. The VLBW babies had higher severe abnormal scores than LBW and NBW, especially in boys. Z score for HC at 3 months < -1SDwas a significant risk factor for abnormal DQ scores at the first year. The iron supplement reduced the morbidity of anemia in preterm infants.Keywords: preterm infant, growth and development, DDST, Z-scores
Procedia PDF Downloads 226762 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.Keywords: CNN, deep-learning, facial emotion recognition, machine learning
Procedia PDF Downloads 95761 House Price Index Predicts a Larger Impact of Habitat Loss than Primary Productivity on the Biodiversity of North American Avian Communities
Authors: Marlen Acosta Alamo, Lisa Manne, Richard Veit
Abstract:
Habitat loss due to land use change is one of the leading causes of biodiversity loss worldwide. This form of habitat loss is a non-random phenomenon since the same environmental factors that make an area suitable for supporting high local biodiversity overlap with those that make it attractive for urban development. We aimed to compare the effect of two non-random habitat loss predictors on the richness, abundance, and rarity of nature-affiliated and human-affiliated North American breeding birds. For each group of birds, we simulated the non-random habitat loss using two predictors: the House Price Index as a measure of the attractiveness of an area for humans and the Normalized Difference Vegetation Index as a proxy for primary productivity. We compared the results of the two non-random simulation sets and one set of random habitat loss simulations using an analysis of variance and followed up with a Tukey-Kramer test when appropriate. The attractiveness of an area for humans predicted estimates of richness loss and increase of rarity higher than primary productivity and random habitat loss for nature-affiliated and human-affiliated birds. For example, at 50% of habitat loss, the attractiveness of an area for humans produced estimates of richness at least 5% lower and of a rarity at least 40% higher than primary productivity and random habitat loss for both groups of birds. Only for the species abundance of nature-affiliated birds, the attractiveness of an area for humans did not outperform primary productivity as a predictor of biodiversity following habitat loss. We demonstrated the value of the House Price Index, which can be used in conservation assessments as an index of the risks of habitat loss for natural communities. Thus, our results have relevant implications for sustainable urban land-use planning practices and can guide stakeholders and developers in their efforts to conserve local biodiversity.Keywords: biodiversity loss, bird biodiversity, house price index, non-random habitat loss
Procedia PDF Downloads 87760 Age Estimation from Teeth among North Indian Population: Comparison and Reliability of Qualitative and Quantitative Methods
Authors: Jasbir Arora, Indu Talwar, Daisy Sahni, Vidya Rattan
Abstract:
Introduction: Age estimation is a crucial step to build the identity of a person, both in case of deceased and alive. In adults, age can be estimated on the basis of six regressive (Attrition, Secondary dentine, Dentine transparency, Root resorption, Cementum apposition and Periodontal Disease) changes in teeth qualitatively using scoring system and quantitatively by micrometric method. The present research was designed to establish the reliability of qualitative (method 1) and quantitative (method 2) of age estimation among North Indians and to compare the efficacy of these two methods. Method: 250 single-rooted extracted teeth (18-75 yrs.) were collected from Department of Oral Health Sciences, PGIMER, Chandigarh. Before extraction, periodontal score of each tooth was noted. Labiolingual sections were prepared and examined under light microscope for regressive changes. Each parameter was scored using Gustafson’s 0-3 point score system (qualitative), and total score was calculated. For quantitative method, each regressive change was measured quantitatively in form of 18 micrometric parameters under microscope with the help of measuring eyepiece. Age was estimated using linear and multiple regression analysis in Gustafson’s method and Kedici’s method respectively. Estimated age was compared with actual age on the basis of absolute mean error. Results: In pooled data, by Gustafson’s method, significant correlation (r= 0.8) was observed between total score and actual age. Total score generated an absolute mean error of ±7.8 years. Whereas, for Kedici’s method, a value of correlation coefficient of r=0.5 (p<0.01) was observed between all the eighteen micrometric parameters and known age. Using multiple regression equation, age was estimated, and an absolute mean error of age was found to be ±12.18 years. Conclusion: Gustafson’s (qualitative) method was found to be a better predictor for age estimation among North Indians.Keywords: forensic odontology, age estimation, North India, teeth
Procedia PDF Downloads 242