Search results for: dynamic stiffness
2899 Integrating Dynamic Energy Models and Life Cycle Assessment Tools: Overcoming Challenges and Unlocking Opportunities
Authors: Ali Badiei
Abstract:
The increasing urgency of climate change mitigation underscores the necessity for integrating advanced analytical frameworks that encompass both energy dynamics and environmental impacts. This study focuses on the convergence of Dynamic Energy Models (DEMs) and Life Cycle Assessment (LCA) tools, highlighting their combined potential to address the dual challenges of accurate energy system modelling and comprehensive sustainability evaluation. While DEMs excel in simulating time-dependent energy performance, LCAs provide insights into the cumulative environmental impacts over a product or system's lifecycle, including embodied and operational emissions. The integration of these methodologies is fraught with challenges. Discrepancies in data granularity, temporal resolutions, and system boundaries often lead to inconsistencies that hinder seamless interoperability. Furthermore, the computational complexity of merging time-sensitive energy simulations with lifecycle inventories demands innovative approaches to data harmonization and software compatibility. Despite these barriers, such integration offers substantial opportunities for enhancing the precision of sustainability assessments and informing evidence-based policy decisions. This paper examines the state of the art through a comprehensive review of existing frameworks and applications. UK case studies on energy-efficient buildings, particularly those adhering to Passivhaus standards, serve as focal points for evaluating the combined use of DEMs and LCA tools. The findings reveal that, while Passivhaus buildings significantly reduce operational energy consumption—meeting ultra-low energy targets—their embodied carbon emissions often offset initial gains. This underscores the importance of using integrated tools to optimize both operational and embodied carbon reduction strategies. Key outcomes of this research include the identification of gaps in current methodologies and the proposition of a unified framework to bridge these gaps. The study also highlights opportunities to utilize these integrated tools for policy formation and industrial practice innovation. By facilitating a lifecycle-focused understanding of energy systems, the integration of DEMs and LCAs can inform policies that incentivize sustainable construction practices and guide investments in low-carbon technologies. In conclusion, overcoming the technical and methodological challenges of linking DEMs and LCAs is critical for achieving holistic energy system optimization and supporting global net-zero carbon goals. This research advocates for multidisciplinary collaboration between energy modelers, environmental scientists, and policymakers to unlock the full potential of these tools in fostering sustainable development.Keywords: energy, modelling, life cycle assessment, dynamic
Procedia PDF Downloads 102898 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel
Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung
Abstract:
Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent
Procedia PDF Downloads 3752897 Dynamic of an Invasive Insect Gut Microbiome When Facing to Abiotic Stress
Authors: Judith Mogouong, Philippe Constant, Robert Lavallee, Claude Guertin
Abstract:
The emerald ash borer (EAB) is an exotic wood borer insect native from China, which is associated with important environmental and economic damages in North America. Beetles are known to be vectors of microbial communities related to their adaptive capacities. It is now established that environmental stress factors may induce physiological events on the host trees, such as phytochemical changes. Consequently, that may affect the establishment comportment of herbivorous insect. Considering the number of insects collected on ash trees (insects’ density) as an abiotic factor related to stress damage, the aim of our study was to explore the dynamic of EAB gut microbial community genome (microbiome) when facing that factor and to monitor its diversity. Insects were trapped using specific green Lindgren© traps. A gradient of the captured insect population along the St. Lawrence River was used to create three levels of insects’ density (low, intermediate, and high). After dissection, total DNA extracted from insect guts of each level has been sent for amplicon sequencing of bacterial 16S rRNA gene and fungal ITS2 region. The composition of microbial communities among sample appeared largely diversified with the Simpson index significantly different across the three levels of density for bacteria. Add to that; bacteria were represented by seven phyla and twelve classes, whereas fungi were represented by two phyla and seven known classes. Using principal coordinate analysis (PCoA) based on Bray Curtis distances of 16S rRNA sequences, we observed a significant variation between the structure of the bacterial communities depending on insects’ density. Moreover, the analysis showed significant correlations between some bacterial taxa and the three classes of insects’ density. This study is the first to present a complete overview of the bacterial and fungal communities associated with the gut of EAB base on culture-independent methods, and to correlate those communities with a potential stress factor of the host trees.Keywords: gut microbiome, DNA, 16S rRNA sequences, emerald ash borer
Procedia PDF Downloads 4042896 Determination Optimum Strike Price of FX Option Call Spread with USD/IDR Volatility and Garman–Kohlhagen Model Analysis
Authors: Bangkit Adhi Nugraha, Bambang Suripto
Abstract:
On September 2016 Bank Indonesia (BI) release regulation no.18/18/PBI/2016 that permit bank clients for using the FX option call spread USD/IDR. Basically, this product is a combination between clients buy FX call option (pay premium) and sell FX call option (receive premium) to protect against currency depreciation while also capping the potential upside with cheap premium cost. BI classifies this product as a structured product. The structured product is combination at least two financial instruments, either derivative or non-derivative instruments. The call spread is the first structured product against IDR permitted by BI since 2009 as response the demand increase from Indonesia firms on FX hedging through derivative for protecting market risk their foreign currency asset or liability. The composition of hedging products on Indonesian FX market increase from 35% on 2015 to 40% on 2016, the majority on swap product (FX forward, FX swap, cross currency swap). Swap is formulated by interest rate difference of the two currency pairs. The cost of swap product is 7% for USD/IDR with one year USD/IDR volatility 13%. That cost level makes swap products seem expensive for hedging buyers. Because call spread cost (around 1.5-3%) cheaper than swap, the most Indonesian firms are using NDF FX call spread USD/IDR on offshore with outstanding amount around 10 billion USD. The cheaper cost of call spread is the main advantage for hedging buyers. The problem arises because BI regulation requires the call spread buyer doing the dynamic hedging. That means, if call spread buyer choose strike price 1 and strike price 2 and volatility USD/IDR exchange rate surpass strike price 2, then the call spread buyer must buy another call spread with strike price 1’ (strike price 1’ = strike price 2) and strike price 2’ (strike price 2’ > strike price 1‘). It could make the premium cost of call spread doubled or even more and dismiss the purpose of hedging buyer to find the cheapest hedging cost. It is very crucial for the buyer to choose best optimum strike price before entering into the transaction. To help hedging buyer find the optimum strike price and avoid expensive multiple premium cost, we observe ten years 2005-2015 historical data of USD/IDR volatility to be compared with the price movement of the call spread USD/IDR using Garman–Kohlhagen Model (as a common formula on FX option pricing). We use statistical tools to analysis data correlation, understand nature of call spread price movement over ten years, and determine factors affecting price movement. We select some range of strike price and tenor and calculate the probability of dynamic hedging to occur and how much it’s cost. We found USD/IDR currency pairs is too uncertain and make dynamic hedging riskier and more expensive. We validated this result using one year data and shown small RMS. The study result could be used to understand nature of FX call spread and determine optimum strike price for hedging plan.Keywords: FX call spread USD/IDR, USD/IDR volatility statistical analysis, Garman–Kohlhagen Model on FX Option USD/IDR, Bank Indonesia Regulation no.18/18/PBI/2016
Procedia PDF Downloads 3802895 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool
Authors: Yongrong Li, Ralf Domroes
Abstract:
Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining
Procedia PDF Downloads 2062894 Thermomechanical Behavior of Asphalt Modified with Thermoplastic Polymer and Nanoclay Dellite 43B
Authors: L. F. Tamele Jr., G. Buonocore, H. F. Muiambo
Abstract:
Asphalt binders play an essential role in the performance and properties of asphalt mixtures. The increase in heavy loads, greater traffic volume, and high tire pressure, combined with a substantial variation in daily and seasonal pavement temperatures, are the main responsible for the failure of asphalt pavements. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, HDPE and LLDPE, and nanoclay Dellite 43B for modification of asphalt in order to improve its thermomechanical and rheological properties. The nanocomposites were prepared by the solution intercalation method in a high shear mixer for a mixing time of 2 h, at 180℃ and 5000 rpm. The addition of Dellite 43B improved the physical, rheological, and thermal properties of asphalt, either separated or in the form of polymer/bitumen blends. The results of the physical characterization showed a decrease in penetration and an increase in softening point, thermal susceptibility, viscosity, and stiffness. On the other hand, thermal characterization showed that the nanocomposites have greater stability at higher temperatures by exhibiting greater amounts of residues and improved initial and final decomposition temperatures. Thus, the modification of asphalt by polymers and nanoclays seems to be a suitable solution for road pavement in countries which experiment with high temperatures combined with long heavy rain seasons.Keywords: asphalt, nanoclay dellite 43B, polymer modified asphalt, thermal and rheological properties
Procedia PDF Downloads 1502893 Design and Implementation of A 10-bit SAR ADC with A Programmable Reference
Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh
Abstract:
This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. A single ended 38.5 kS/s 10-bit programmable reference SAR ADC was proposed and implemented in a 0.35 µm CMOS technology and consumed less than 7.5 mW power with a 3 V supply.Keywords: successive approximation register analog-to-digital converter, SAR ADC, resistive DAC, programmable reference
Procedia PDF Downloads 5202892 Low-Power Digital Filters Design Using a Bypassing Technique
Authors: Thiago Brito Bezerra
Abstract:
This paper presents a novel approach to reduce power consumption of digital filters based on dynamic bypassing of partial products in their multipliers. The bypassing elements incorporated into the multiplier hardware eliminate redundant signal transitions, which appear within the carry-save adders when the partial product is zero. This technique reduces the power consumption by around 20%. The circuit implementation was made using the AMS 0.18 um technology. The bypassing technique applied to the circuits is outlined.Keywords: digital filter, low-power, bypassing technique, low-pass filter
Procedia PDF Downloads 3822891 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project
Authors: Kanagarajah Ravishankar
Abstract:
This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design
Procedia PDF Downloads 1402890 In Search of Good Fortune: Individualization, Youth and the Spanish Labour Market within a Context of Crisis
Authors: Matthew Lee Turnbough
Abstract:
In 2007 Spain began to experience the effects of a deep economic crisis, which would generate a situation characterised by instability and uncertainty. This has been an obstacle, especially acute for the youth of this country seeking to enter the workforce. As a result of the impact of COVID-19, the youth in Spain are now suffering the effects of a new crisis that has deepened an already fragile labour environment. In this paper, we analyse the discourses that have emerged from a precarious labour market, specifically from two companies dedicated to operating job portals and job listings in Spain, Job Today, and CornerJob. These two start-up businesses have developed mobile applications geared towards young adults in search of employment in the service sector, two of the companies with the highest user rates in Spain. Utilizing a discourse analysis approach, we explore the impact of individualization and how the process of psychologization may contribute to an increasing reliance on individual solutions to social problems. As such, we seek to highlight the expectations and demands that are placed upon young workers and the type of subjectivity that this dynamic could foster, all this within an unstable framework seemingly marked by chance, a context which is key for the emergence of individualization. Furthermore, we consider the extent to which young adults incorporate these discourses and the strategies they employ basing our analysis on the VULSOCU (New Forms of Socio-Existential Vulnerability, Supports, and Care in Spain) research project, specifically the results of nineteen in-depth interviews and three discussion groups with young adults in this country. Consequently, we seek to elucidate the argumentative threads rooted in the process of individualization and underline the implications of this dynamic for the young worker and his/her labour insertion while also identifying manifestations of the goddess of fortune as a representation of chance in this context. Finally, we approach this panorama of social change in Spain from the perspective of the individuals or young adults who find themselves immersed in this transition from one crisis to another.Keywords: chance, crisis, discourses, individualization, work, youth
Procedia PDF Downloads 1172889 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).Keywords: concrete jackets, steel jackets, RC buildings, pushover analysis, non-Linear analysis
Procedia PDF Downloads 3672888 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 2722887 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy
Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan
Abstract:
Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.Keywords: biomechanical energy management, knee exosuit, gait rehabilitation, wearable robotics
Procedia PDF Downloads 1632886 Anisotropic Behavior of Sand Stabilized with Colloidal Silica
Authors: Eleni Maria Pavlopoulou, Vasiliki N. Georgiannou, Filippos C. Chortis
Abstract:
The response of M31 sand stabilized with colloidal silica (CS) aqueous gel is investigated in the laboratory. CS is introduced in the water regime, forming a hydrosol. The low viscosity hydrosol thickens in a controllable manner to form a stable, non-toxic gel; the gel fills the pore space, retains the pore water, and supports the grain structure. The role of colloidal silica on subsequent sand behavior is examined with the aid of direct shear, triaxial, and normal compression tests. Under the examined loading modes, while the strength of the treated sand is enhanced, its stiffness may reduce, and its compressibility increase. However, in most geotechnical problems, the loading conditions are complex, involving changes in both stress magnitude and direction. Rotation of principal stresses (σ1, σ2, σ3) in varying amounts expressed as angle α, (from α=0° to 90°) in concurrence with increasing shear stress loading is commonly encountered in soil structures such as foundations, embankments, underwater slopes. To assess the influence of anisotropy on the response of sands before and after their stabilization, hollow cylinder tests were performed. The behavior of stabilized sand is compared with the characteristic sand behavior, i.e., a reduction in peak stress ratio associated with a softer stress-strain response with the increasing angle a. The influence of the magnitude of the intermediate principal stress (σ2) on the mechanical response of treated and untreated sand is also examined.Keywords: anisotropy, colloidal silica, laboratory tests, sands, soil stabilization
Procedia PDF Downloads 1362885 Research and Development of Net-Centric Information Sharing Platform
Authors: Wang Xiaoqing, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong
Abstract:
Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.Keywords: net-centric environment, information sharing, metadata registry and catalog, cross-domain data access control
Procedia PDF Downloads 5712884 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation
Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang
Abstract:
Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation
Procedia PDF Downloads 602883 Identification of Stakeholders and Practices of Inclusive Education
Authors: Luis Javier Serrano-Tamayo
Abstract:
This paper focuses on the recent interest in the concept of inclusion from multiple areas of social sciences, but particularly from the academic studies on what do scholars mean when they refer to inclusive education. Therefore, this paper has been based on a three-year systematic review of near two hundred peer-reviewed documents in the last two decades. The results illustrate some of the use, misuse, and abuse of inclusive education as well as shed some light on the identification of the different stakeholders involved in the dynamic concept of inclusive education and their suggested practices.Keywords: inclusion, inclusive education, inclusive practices, education stakeholders
Procedia PDF Downloads 2412882 Voice Quality in Italian-Speaking Children with Autism
Authors: Patrizia Bonaventura, Magda Di Renzo
Abstract:
This project aims to measure and assess the voice quality in children with autism. Few previous studies exist which have analyzed the voice quality of individuals with autism: abnormal voice characteristics have been found, like a high pitch, great pitch range, and sing-song quality. Existing studies did not focus specifically on Italian-speaking children’s voices and provided analysis of a few acoustic parameters. The present study aimed to gather more data and to perform acoustic analysis of the voice of children with autism in order to identify patterns of abnormal voice features that might shed some light on the causes of the dysphonia and possibly be used to create a pediatric assessment tool for early identification of autism. The participants were five native Italian-speaking boys with autism between the age of 4 years and 10 years (mean 6.8 ± SD 1.4). The children had a diagnosis of autism, were verbal, and had no other comorbid conditions (like Down syndrome or ADHD). The voices of the autistic children were recorded in the production of sustained vowels [ah] and [ih] and of sentences from the Italian version of the CAPE-V voice assessment test. The following voice parameters, representative of normal quality, were analyzed by acoustic spectrography through Praat: Speaking Fundamental Frequency, F0 range, average intensity, and dynamic range. The results showed that the pitch parameters (Speaking Fundamental Frequency and F0 range), as well as the intensity parameters (average intensity and dynamic range), were significantly different from the relative normal reference thresholds. Also, variability among children was found, so confirming a tendency revealed in previous studies of individual variation in these aspects of voice quality. The results indicate a general pattern of abnormal voice quality characterized by a high pitch and large variations in pitch and intensity. These acoustic voice characteristics found in Italian-speaking autistic children match those found in children speaking other languages, indicating that autism symptoms affecting voice quality might be independent of the native language of the children.Keywords: autism, voice disorders, speech science, acoustic analysis of voice
Procedia PDF Downloads 722881 Internal Migration and Poverty Dynamic Analysis Using a Bayesian Approach: The Tunisian Case
Authors: Amal Jmaii, Damien Rousseliere, Besma Belhadj
Abstract:
We explore the relationship between internal migration and poverty in Tunisia. We present a methodology combining potential outcomes approach with multiple imputation to highlight the effect of internal migration on poverty states. We find that probability of being poor decreases when leaving the poorest regions (the west areas) to the richer regions (greater Tunis and the east regions).Keywords: internal migration, potential outcomes approach, poverty dynamics, Tunisia
Procedia PDF Downloads 3122880 Reliability and Validity of a Portable Inertial Sensor and Pressure Mat System for Measuring Dynamic Balance Parameters during Stepping
Authors: Emily Rowe
Abstract:
Introduction: Balance assessments can be used to help evaluate a person’s risk of falls, determine causes of balance deficits and inform intervention decisions. It is widely accepted that instrumented quantitative analysis can be more reliable and specific than semi-qualitative ordinal scales or itemised scoring methods. However, the uptake of quantitative methods is hindered by expense, lack of portability, and set-up requirements. During stepping, foot placement is actively coordinated with the body centre of mass (COM) kinematics during pre-initiation. Based on this, the potential to use COM velocity just prior to foot off and foot placement error as an outcome measure of dynamic balance is currently being explored using complex 3D motion capture. Inertial sensors and pressure mats might be more practical technologies for measuring these parameters in clinical settings. Objective: The aim of this study was to test the criterion validity and test-retest reliability of a synchronised inertial sensor and pressure mat-based approach to measure foot placement error and COM velocity while stepping. Methods: Trials were held with 15 healthy participants who each attended for two sessions. The trial task was to step onto one of 4 targets (2 for each foot) multiple times in a random, unpredictable order. The stepping target was cued using an auditory prompt and electroluminescent panel illumination. Data was collected using 3D motion capture and a combined inertial sensor-pressure mat system simultaneously in both sessions. To assess the reliability of each system, ICC estimates and their 95% confident intervals were calculated based on a mean-rating (k = 2), absolute-agreement, 2-way mixed-effects model. To test the criterion validity of the combined inertial sensor-pressure mat system against the motion capture system multi-factorial two-way repeated measures ANOVAs were carried out. Results: It was found that foot placement error was not reliably measured between sessions by either system (ICC 95% CIs; motion capture: 0 to >0.87 and pressure mat: <0.53 to >0.90). This could be due to genuine within-subject variability given the nature of the stepping task and brings into question the suitability of average foot placement error as an outcome measure. Additionally, results suggest the pressure mat is not a valid measure of this parameter since it was statistically significantly different from and much less precise than the motion capture system (p=0.003). The inertial sensor was found to be a moderately reliable (ICC 95% CIs >0.46 to >0.95) but not valid measure for anteroposterior and mediolateral COM velocities (AP velocity: p=0.000, ML velocity target 1 to 4: p=0.734, 0.001, 0.000 & 0.376). However, it is thought that with further development, the COM velocity measure validity could be improved. Possible options which could be investigated include whether there is an effect of inertial sensor placement with respect to pelvic marker placement or implementing more complex methods of data processing to manage inherent accelerometer and gyroscope limitations. Conclusion: The pressure mat is not a suitable alternative for measuring foot placement errors. The inertial sensors have the potential for measuring COM velocity; however, further development work is needed.Keywords: dynamic balance, inertial sensors, portable, pressure mat, reliability, stepping, validity, wearables
Procedia PDF Downloads 1532879 The Effect of Crack Size, Orientation and Number on the Elastic Modulus of a Cracked Body
Authors: Mark T. Hanson, Alan T. Varughese
Abstract:
Osteoporosis is a disease affecting bone quality which in turn can increase the risk of low energy fractures. Treatment of osteoporosis using Bisphosphonates has the beneficial effect of increasing bone mass while at the same time has been linked to the formation of atypical femoral fractures. This has led to the increased study of micro-fractures in bones of patients using Bisphosphonate treatment. One of the mechanics related issues which have been identified in this regard is the loss in stiffness of bones containing one or many micro-fractures. Different theories have been put forth using fracture mechanics to determine the effect of crack presence on elastic properties such as modulus. However, validation of these results in a deterministic way has not been forthcoming. The present analysis seeks to provide this deterministic evaluation of fracture’s effect on the elastic modulus. In particular, the effect of crack size, crack orientation and crack number on elastic modulus is investigated. In particular, the Finite Element method is used to explicitly determine the elastic modulus reduction caused by the presence of cracks in a representative volume element. Single cracks of various lengths and orientations are examined as well as cases of multiple cracks. Cracks in tension as well as under shear stress are considered. Although the focus is predominantly two-dimensional, some three-dimensional results are also presented. The results obtained show the explicit reduction in modulus caused by the parameters of crack size, orientation and number noted above. The present results allow the interpretation of the various theories which currently exist in the literature.Keywords: cracks, elastic, fracture, modulus
Procedia PDF Downloads 1092878 The Material Behavior in Curved Glulam Beam of Jabon Timber
Authors: Erma Desmaliana, Saptahari Sugiri
Abstract:
Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.Keywords: curved glulam beam, HTR&HTI, load carrying, strength
Procedia PDF Downloads 2992877 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads
Authors: Nuo Duan, Yi Pik Cheng
Abstract:
This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.Keywords: cyclic loading, DEM, numerical modelling, sands
Procedia PDF Downloads 3212876 Role of Consultancy in Engineering Education
Authors: V. Nalina, P. Jayarekha
Abstract:
Consultancy by an engineering faculty member of an institution undertakes consulting assignments to provide professional or technical solutions to specific fields. Consulting is providing an opportunity for the engineering faculty to share their insights for the real world problems. It is a dynamic learning process with respect to students and faculty as it increases the teaching and research activities. In this paper, we discuss the need for consultancy in engineering education with faculty contribution towards consultancy and advantages of consultancy to institutions. Balance the workload of the faculty consulting with the responsibilities of academics defined by the universities.Keywords: consultancy, academic consulting, engineering consultancy, faculty consulting
Procedia PDF Downloads 4402875 Development of an Auxetic Tissue Implant
Authors: Sukhwinder K. Bhullar, M. B. G. Jun
Abstract:
The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues
Procedia PDF Downloads 4592874 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls
Authors: Akhila Palat, B. Umashankar
Abstract:
Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement
Procedia PDF Downloads 3032873 Dynamic Model for Forecasting Rainfall Induced Landslides
Authors: R. Premasiri, W. A. H. A. Abeygunasekara, S. M. Hewavidana, T. Jananthan, R. M. S. Madawala, K. Vaheeshan
Abstract:
Forecasting the potential for disastrous events such as landslides has become one of the major necessities in the current world. Most of all, the landslides occurred in Sri Lanka are found to be triggered mostly by intense rainfall events. The study area is the landslide near Gerandiella waterfall which is located by the 41st kilometer post on Nuwara Eliya-Gampala main road in Kotmale Division in Sri Lanka. The landslide endangers the entire Kotmale town beneath the slope. Geographic Information System (GIS) platform is very much useful when it comes to the need of emulating the real-world processes. The models are used in a wide array of applications ranging from simple evaluations to the levels of forecast future events. This project investigates the possibility of developing a dynamic model to map the spatial distribution of the slope stability. The model incorporates several theoretical models including the infinite slope model, Green Ampt infiltration model and Perched ground water flow model. A series of rainfall values can be fed to the model as the main input to simulate the dynamics of slope stability. Hydrological model developed using GIS is used to quantify the perched water table height, which is one of the most critical parameters affecting the slope stability. Infinite slope stability model is used to quantify the degree of slope stability in terms of factor of safety. DEM was built with the use of digitized contour data. Stratigraphy was modeled in Surfer using borehole data and resistivity images. Data available from rainfall gauges and piezometers were used in calibrating the model. During the calibration, the parameters were adjusted until a good fit between the simulated ground water levels and the piezometer readings was obtained. This model equipped with the predicted rainfall values can be used to forecast of the slope dynamics of the area of interest. Therefore it can be investigated the slope stability of rainfall induced landslides by adjusting temporal dimensions.Keywords: factor of safety, geographic information system, hydrological model, slope stability
Procedia PDF Downloads 4242872 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material
Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi
Abstract:
The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio
Procedia PDF Downloads 2772871 Computational Assistance of the Research, Using Dynamic Vector Logistics of Processes for Critical Infrastructure Subjects Continuity
Authors: Urbánek Jiří J., Krahulec Josef, Urbánek Jiří F., Johanidesová Jitka
Abstract:
These Computational assistance for the research and modelling of critical infrastructure subjects continuity deal with this paper. It enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It serves for crisis situations investigation and modelling within the organizations of critical infrastructure. In the first part of the paper, it will be introduced entities, operators and actors of DYVELOP method. It uses just three operators of Boolean algebra and four types of the entities: the Environments, the Process Systems, the Cases and the Controlling. The Process Systems (PrS) have five “brothers”: Management PrS, Transformation PrS, Logistic PrS, Event PrS and Operation PrS. The Cases have three “sisters”: Process Cell Case, Use Case and Activity Case. They all need for the controlling of their functions special Ctrl actors, except ENV – it can do without Ctrl. Model´s maps are named the Blazons and they are able mathematically - graphically express the relationships among entities, actors and processes. In the second part of this paper, the rich blazons of DYVELOP method will be used for the discovering and modelling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission. The crisis management of energetic crisis infrastructure organization is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process bring for crisis management fruitfulness and it is a good indicator and controlling actor of organizational continuity and its sustainable development advanced possibilities. The research reliable rules are derived for the safety and reliable continuity of energetic critical infrastructure organization in the crisis situation.Keywords: blazons, computational assistance, DYVELOP method, critical infrastructure
Procedia PDF Downloads 3842870 An Approach to Wind Turbine Modeling for Increasing Its Efficiency
Authors: Rishikesh Dingari, Sai Kiran Dornala
Abstract:
In this paper, a simple method of achieving maximum power by mechanical energy transmission device (METD) with integration to induction generator is proposed. METD functioning is explained and dynamic response of system to step input is plotted. Induction generator is being operated at self-excited mode with excitation capacitor at stator. Voltage and current are observed when linked to METD.Keywords: mechanical energy transmitting device(METD), self-excited induction generator, wind turbine, hydraulic actuators
Procedia PDF Downloads 344