Search results for: classroom simulations
1499 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results
Procedia PDF Downloads 5091498 Robust Attitude Control for Agile Satellites with Vibration Compensation
Authors: Jair Servín-Aguilar, Yu Tang
Abstract:
We address the problem of robust attitude tracking for agile satellites under unknown bounded torque disturbances using a double-gimbal variable-speed control-moment gyro (DGVSCMG) driven by a cluster of three permanent magnet synchronous motors (PMSMs). Uniform practical asymptotic stability is achieved at the torque control level first. The desired speed of gimbals and the acceleration of the spin wheel to produce the required torque are then calculated by a velocity-based steering law and tracked at the PMSM speed-control level by designing a speed-tracking controller with compensation for the vibration caused by eccentricity and imbalance due to mechanical imperfection in the DGVSCMG. Uniform practical asymptotic stability of the overall system is ensured by loan relying on the analysis of the resulting cascaded system. Numerical simulations are included to show the performance improvement of the proposed controller.Keywords: agile satellites, vibration compensation, internal model, stability
Procedia PDF Downloads 1141497 The Flipped Education Case Study on Teacher Professional Learning Community in Technology and Media Implementation
Authors: Juei-Hsin Wang, Yen-Ting Chen
Abstract:
The paper examines teacher professional learning community theory and implementation by using technology and media tools in Taiwan. After literature review, the researcher concluded in five elements of teacher professional learning community theory. They are ‘sharing the vision and value', ‘collaborative cooperation’, ‘ to support the situation', ‘to share practice' and 'Pay Attention to Student Learning Effectiveness' five levels by using technology and media in flipped education. Teacher professional learning community is one kind of models for teacher professional development in flipped education. Due to Taiwan education culture, there is no summative evaluation for teachers. So, there are multiple kinds of ways and education practice in teacher professional learning community nowadays. This study used literature review and quality analysis to analyze the connection theory and practice and discussed the official and non‐official strategies on teacher professional learning community by using technology and media in flipped education. The tablet is used as a camera tool for classroom students to solve problems. The students can instantly see and enable other students to watch the whole class discussion by operating the tablet. This would allow teachers and students to focus on discussing the connotation of subjects, especially bottom‐up and non‐official cases from teachers become an important influence in Taiwan.Keywords: professional learning community, collaborative cooperation, flipped education, technology application, media application
Procedia PDF Downloads 1471496 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials
Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina
Abstract:
The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials
Procedia PDF Downloads 3151495 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem
Authors: Yu T. Tsai, Jin H. Huang
Abstract:
In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties
Procedia PDF Downloads 3881494 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology
Authors: Abhimanyu Kumar, Chirag Gupta
Abstract:
This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI
Procedia PDF Downloads 1311493 Competition as an Appropriate Instructional Practice in the Physical Education Environment: Reflective Experiences
Authors: David Barney, Francis Pleban, Muna Muday
Abstract:
The purpose of this study was to explore gender differences of former physical education students related to reflective experiences of competition in physical education learning environment. In the school environment, students are positioned in competitive situations, including in the physical education context. Therefore it is important to prepare future physical educators to address the role of competition in physical education. Participants for this study were 304 college-aged students and young adults (M = 1.53, SD = .500), from a private university and local community located in the western United States. When comparing gender, significant differences (p < .05) were reported for four (questions 5, 7, 12, and 14) of the nine scaling questions. Follow-up quantitative findings reported that males (41%) more than females (27%) witnessed fights in physical education environment during competitive games. Qualitative findings reported fighting were along the lines of verbal confrontation. Female participants tended to experience being excluded from games, when compared to male participants. Both male and female participants (total population; 95%, males; 98%; and females 92%) were in favor of including competition in physical education for students. Findings suggest that physical education teachers and physical education teacher education programs have a responsibility to develop gender neutral learning experiences that help students better appreciate the role competition plays, both in and out of the physical education classroom.Keywords: competition, physical education, physical education teacher education, gender
Procedia PDF Downloads 4971492 Computational Fluid Dynamics and Experimental Evaluation of Two Batch Type Electrocoagulation Stirred Tank Reactors Used in the Removal of Cr (VI) from Waste Water
Authors: Phanindra Prasad Thummala, Umran Tezcan Un
Abstract:
In this study, hydrodynamics analysis of two batch type electrocoagulation stirred tank reactors, used for the electrocoagulation treatment of Cr(VI) wastewater, was carried using computational fluid dynamics (CFD). The aim of the study was to evaluate the impact of mixing characteristics on overall performance of electrocoagulation reactor. The CFD simulations were performed using ANSYS FLUENT 14.4 software. The mixing performance of each reactor was evaluated by numerically modelling tracer dispersion in each reactor configuration. The uniformity in tracer dispersion was assumed when 90% of the ratio of the maximum to minimum concentration of the tracer was realized. In parallel, experimental evaluation of both the electrocoagulation reactors for removal of Cr(VI) from wastewater was also carried out. The results of CFD and experimental analysis clearly show that the reactor which can give higher uniformity in lesser time, will perform better as an electrocoagulation reactor for removal of Cr(VI) from wastewater.Keywords: CFD, stirred tank reactors, electrocoagulation, Cr(VI) wastewater
Procedia PDF Downloads 4621491 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements
Authors: Zhidong Zhang, Amanda Resendez
Abstract:
This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis
Procedia PDF Downloads 1311490 Study of the Relationship between the Roughness Configuration of Channel Bottom and the Creation of Vortices at the Rough Area: Numerical Modelling
Authors: Youb Said, Fourar Ali
Abstract:
To describe the influence of bottom roughness on the free surface flows by numerical modeling, a two-dimensional model was developed. The equations of continuity and momentum (Naviers Stokes equations) are solved by the finite volume method. We considered a turbulent flow in an open channel with a bottom roughness. For our simulations, the K-ε model was used. After setting the initial and boundary conditions and solve the equations set, we were able to achieve the following results: vortex forming in the hollow causing substantial energy dissipation in the obstacle areas that form the bottom roughness. The comparison of our results with experimental ones shows a good agreement in terms of the results in the rough area. However, in other areas, differences were more or less important. These differences are in areas far from the bottom, especially the free surface area just after the bottom. These disagreements are probably due to experimental constants used by the k-ε model.Keywords: modeling, free surface flow, turbulence, bottom roughness, finite volume, K-ε model, energy dissipation
Procedia PDF Downloads 3821489 Neutronic Calculations for Central Test Loop in Heavy Water Research Reactor
Authors: Hadi Shamoradifar, Behzad Teimuri, Parviz Parvaresh, Saeed Mohammadi
Abstract:
One of the experimental facilities of the heavy water research reactor is the central test loop (C.T.L). It is located along the central axial line of the vessel, and therefore will highly affect the neutronic parameters of the reactor, so from the neutronics point of view, C.T.L is the most important facility. It is mainly designed for fuel testing, thought other applications such as radioisotope production and neutron activation, can be imagine for it. All of the simulations were performed by MCNPX2.6. As a first step towards C.T.L analysis, the effect of D2O-filled, H2O-filled, and He-filled C.T.L on the effective multiplication factor (Keff.), have been evaluated. According to results, H2O-filled C.T.L has a higher thermal neutron, while He-filled C.T.L includes more resonance neutrons. In the next step thermal and total axial neutron fluxes, were calculated and used as the comparison parameters. The core without C.T.L (C.T.L replaced by heavy water) is selected as the reference case, and the effect of all other cases is calculated according to that.Keywords: heavy water reactor, neutronic calculations, central test loop, neutron activation
Procedia PDF Downloads 3631488 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications
Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan
Abstract:
High performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from electromagnetic (EM) simulations is often times cumbersome leading to large storage requirement. This paper proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. This paper solves this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.Keywords: RADAR, RCS, high performance computing, point scatterer model
Procedia PDF Downloads 1911487 Heat Transfer Augmentation in a Channel with Delta Winglet Type Vortex Generators at Different Blade Angles
Authors: Nirmal Kant Singh, Anshuman Pratap Singh
Abstract:
In this study the augmentation of heat transfer in a channel with delta winglet type vortex generators is evaluated. Three-dimensional numerical simulations are performed in a rectangular channel with longitudinal triangular vortex generators (LVGs). The span wise averaged Nusselt number and mean temperature are compared with and without vortex generators in the channel. The effect of variation of blade angle (15°, 30°, 45°, and 60°) is studied at a Reynolds number of 10000. The numerical results indicate that the application of LVGs effectively enhances heat transfer in the channel. The Nusselt number and mean outlet temperature were found to be greater using LVGs than in the channel without LVGs. It is observed that heat transfer increases with increase in blade angle at the same Reynolds number.Keywords: heat transfer, rectangular channel, longitudinal vortex generators, effect of blade angle
Procedia PDF Downloads 6441486 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel
Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler
Abstract:
Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process
Procedia PDF Downloads 1351485 The Effect of Pre-Cracks on Structural Strength of the Nextel Fibers: A Multiscale Modeling Approach
Authors: Seyed Mohammad Mahdi Zamani, Kamran Behdinan
Abstract:
In this study, a multiscale framework is performed to model the strength of Nextel fibers in presence of an atomistic scale pre-crack at finite temperatures. The bridging cell method (BCM) is the multiscale technique applied in this study, which decomposes the system into the atomistic, bridging and continuum domains; solves the whole system in a finite element framework; and incorporates temperature dependent calculations. Since Nextel is known to be structurally stable and retain 70% of its initial strength up to 1100°C; simulations are conducted at both of the room temperatures, 25°C, and fire temperatures, 1200°C. Two cases are modeled for a pre-crack present in either phases of alumina or mullite of the Nextel structure. The materials’ response is studied with respect to deformation behavior and ultimate tensile strength. Results show different crack growth trends for the two cases, and as the temperature increases, the crack growth resistance and material’s strength decrease.Keywords: Nextel fibers, multiscale modeling, pre-crack, ultimate tensile strength
Procedia PDF Downloads 4191484 Assessment of ASEI-PDSI Method on Students’ Attitude and Achievement in Junior Secondary Schools Mathematics in FCT-Abuja
Authors: Amenaghawon Clement Osemwinyen
Abstract:
The Activity, Student-centred, Experiment, Improvisation - Plan, Do, See, Improve (ASEI-PDSI) method championed by the Strengthening Mathematics And Science Education (SMASE) - Nigeria Project is an attempt to improve the quality of mathematics, which has consistently declined over the years in both public primary and secondary schools across the country. The study thus assessed the ASEI-PDSI method on students’ attitudes and achievement in junior secondary schools (JSS) mathematics in FCT-Abuja. A survey research design was adopted, and 100 mathematics teachers using a stratified random sampling method were used for the study. The data were collected using structured questionnaires and analyzed using descriptive statistics. The findings showed that the ASEI-PDSI method had significantly improved the attitudes of students toward mathematics. The study also revealed that the ASEI-PDSI method significantly influenced junior secondary school (JSS) students’ mathematics achievement. Amongst the recommendations were that teachers should be encouraged to adopt the ASEI-PDSI method in teaching and learning mathematics in order to create a mathematically stimulating classroom environment which could advertently influence junior secondary school (JSS) students’ attitude and academic performance in mathematics. Also, regular in-service training programs should be organized by stakeholders (government and other interest groups) so as to improve the teaching strategies of teachers, mostly as they affect the ASEI-PDSI method.Keywords: achievement, ASEI-PDSI method, attitude, mathematics, SMASE
Procedia PDF Downloads 1131483 Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator
Authors: Aimad Koulali
Abstract:
Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance.Keywords: finte element method, deformable vortex generator, numerical analysis, fluid structure interaction, ALE formlation, turbulent flow
Procedia PDF Downloads 991482 Computer-Aided Teaching of Transformers for Undergraduates
Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal
Abstract:
In the era of technological advancement, use of computer technology has become inevitable. Hence it has become the need of the hour to integrate software methods in engineering curriculum as a part to boost pedagogy techniques. Simulations software is a great help to graduates of disciplines such as electrical engineering. Since electrical engineering deals with high voltages and heavy instruments, extra care must be taken while operating with them. The viable solution would be to have appropriate control. The appropriate control could be well designed if engineers have knowledge of kind of waveforms associated with the system. Though these waveforms can be plotted manually, but it consumes a lot of time. Hence aid of simulation helps to understand steady state of system and resulting in better performance. In this paper computer, aided teaching of transformer is carried out using MATLAB/Simulink. The test carried out on a transformer includes open circuit test and short circuit respectively. The respective parameters of transformer are then calculated using the values obtained from open circuit and short circuit test respectively using Simulink.Keywords: computer aided teaching, open circuit test, short circuit test, simulink, transformer
Procedia PDF Downloads 3741481 Specialized Instruction: Teaching and Leading Diverse Learners
Authors: Annette G. Walters Ph.D.
Abstract:
With a global shortage of qualified educational professionals, school systems continue to struggle with adequate staffing. How might learning communities meet the needs of all students, in particular those with specialized needs. While the task may seem foreboding and certain factors may seem divergent, all are connected in the education of students. Special education has a significant impact on the teaching and learning experience of all students in an educational community. Even when there are concerted efforts at embracing learners with diverse aptitude and abilities, there are often many important local factors that are misaligned, overlooked, or misunderstood. Working with learners with diverse abilities, often requires intentional services and supports for students to achieve success. Developing and implementing specialized instruction requires a multifaceted approach to supports the entire learning community, which includes educational providers, learners, and families, all while being mindful of fiscal and natural resources. This research explores the implications and complexities of special education instruction and specializing instruction, as well as leading and teaching diverse learners. This work is separated into three sections: the state of special education, teaching and leading diverse learners, and developing educational competencies through collaborative engagement. This structured analysis extrapolates historical and current research on special education practices and the role of educators in ensuring diverse students meet success.Keywords: - diverse learners, - special education, - modification and supports, - curriculum and instruction, - classroom management, - formal and informal assessments
Procedia PDF Downloads 551480 Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain
Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai
Abstract:
The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.Keywords: nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation
Procedia PDF Downloads 2691479 Low Trigger Voltage Silicon Controlled Rectifier Stacking Structure with High Holding Voltage for High Voltage Applications
Authors: Kyoung-Il Do, Jun-Geol Park, Hee-Guk Chae, Jeong-Yun Seo, Yong-Seo Koo
Abstract:
A SCR stacking structure is proposed to have improved Latch-up immunity. In comparison with conventional SCR (Silicon Controlled Rectifier), the proposed Electrostatic Discharge (ESD) protection circuit has a lower trigger characteristic by using the LVTSCR (Low Voltage Trigger) structure. Also the proposed ESD protection circuit has improved Holding Voltage Characteristic by using N-stack technique. These characteristics enable to have latch-up immunity in operating conditions. The simulations are accomplished by using the Synopsys TCAD. It has a trigger voltage of 8.9V and a holding voltage of 1.8V in a single structure. And when applying the stack technique, 2-stack has the holding voltage of 3.8V and 3-stack has the holding voltage of 5.1 V.Keywords: electrostatic discharge (ESD), low voltage trigger silicon controlled rectifier (LVTSCR), MVTSCR, power clamp, silicon controlled rectifier (SCR), latch-up
Procedia PDF Downloads 4591478 Natural Ventilation around and through Building: A Numerical Study
Authors: A. Kaddour, S. M. A. Bekkouche
Abstract:
Limiting heat losses during ventilation of indoor building spaces has become a basic aim for architects. Much experience has been gained in terms of ventilation of indoor spaces. Nevertheless, due to the complex applications, attempts to create a theoretical base for solving the problems related to the issue are limited, especially determining the minimum ventilation period required within a designated space. In this paper we have approached this matter, both theoretically and computationally. The conclusion we reached was that controlled ventilation of spaces through vent holes that successively open and close at regular time intervals can limit the excessive circulation of air masses, which in turn limits heat losses. Air change rates through open and tilted windows in rooms of residential buildings driven by atmospheric motions are investigated to evaluate natural ventilation concepts. Model of thermal building simulations is used. A separated sample storey and a sample single room in larger scales were used to measure air transport through window openings under the influence of the external pressure distribution.Keywords: natural ventilation, temperature factor, air change rates, air circulation
Procedia PDF Downloads 4421477 Abandoning 'One-Time' Optional Information Literacy Workshops for Year 1 Medical Students and Gearing towards an 'Embedded Librarianship' Approach
Authors: R. L. David, E. C. P. Tan, M. A. Ferenczi
Abstract:
This study aimed to investigate the effect of a 'one-time' optional Information Literacy (IL) workshop to enhance Year 1 medical students' literature search, writing, and citation management skills as directed by a customized five-year IL framework developed for LKC Medicine students. At the end of the IL workshop, the overall rated 'somewhat difficult' when finding, citing, and using information from sources. The study method is experimental using a standardized IL test to study the cohort effect of a 'one-time' optional IL workshop on Year 1 students; experimental group in comparison to Year 2 students; control group. Test scores from both groups were compared and analyzed using mean scores and one-way analysis of variance (ANOVA). Unexpectedly, there were no statistically significant differences between group means as determined by One-Way ANOVA (F₁,₁₉₃ = 3.37, p = 0.068, ηp² = 0.017). Challenges and shortfalls posed by 'one-time' interventions raised a rich discussion to adopt an 'embedded librarianship' approach, which shifts the medial librarians' role into the curriculum and uses Team Based Learning to teach IL skills to medical students. The customized five-year IL framework developed for LKC Medicine students becomes a useful librarian-faculty model for embedding and bringing IL into the classroom.Keywords: information literacy, 'one-time' interventions, medical students, standardized tests, embedded librarianship, curriculum, medical librarians
Procedia PDF Downloads 1131476 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets
Authors: Yosra Mefteh Rekik
Abstract:
A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance
Procedia PDF Downloads 4381475 Effect of Scalping on the Mechanical Behavior of Coarse Soils
Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane
Abstract:
This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.Keywords: coarse soils, mechanical behavior, scalping, replacement, triaxial devices
Procedia PDF Downloads 2071474 Numerical Simulation of Structured Roughness Effect on Fluid Flow Characteristics and Heat Transfer in Minichannels
Authors: R. Chouatah, E. G. Filali, B. Zouzou
Abstract:
It has been well established that there are no differences between microscale and macroscale flows of incompressible liquids. However, surface roughness has been known to impact the transport phenomena. The effect of structured roughness on the dynamics and heat transfer of water flowing through minichannel was numerically investigated in this study. Our study consists in characterizing the dynamic field and heat transfer aspect of a flow in circular minichannel equipped with structured roughness using CFD software, CFX. The study is performed to understand the effect of various roughness elements (rectangular, triangular), roughness height and roughness pitch on the friction factor and heat transfer coefficient. Our work focuses on a water flow inside a circular mini-channel of 1 mm in diameter and 10 cm in length. The speed entry into the mini-channel varies from 0.1 m/s to 25 m/s. The wall of the mini-channel is submitted to a constant heat flux; q=100,000 W/m². The simulations results are compared to those obtained with smooth minichannel and the existing experimental and numerical results in the literature.Keywords: heat transfer, laminar and turbulent flow, minichannel, structured roughness
Procedia PDF Downloads 3421473 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.Keywords: nanomaterials, SiO₂, carbon black, mechanical properties
Procedia PDF Downloads 1401472 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking
Authors: Haowei Chen, Kaiqi Xiong
Abstract:
This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis
Procedia PDF Downloads 981471 Teachers Handbook: A Key to Imparting Teaching in Multilingual Classrooms at Kalinga Institute of Social Sciences (KISS)
Authors: Sushree Sangita Mohanty
Abstract:
The pedagogic system, which is used to work with indigenous groups, who have equally different socio-economic, socio-cultural & multi-lingual conditions with differing cognitive capabilities, makes the education situation complex. As a result, educating the indigenous people became just the dissemination of facts and information, but advancement in knowledge and possibilities somewhere hides. This gap arises complexities due to the language barrier and the teachers from a conventional background of teaching practices are unable to understand or connect with the students in the schools. This paper presents the research work of the Mother Tongue Based Multilingual Education (MTB-MLE) project that has developed a creative pedagogic endeavor for the students of Kalinga Institute of Social Sciences (KISS) for facilitating Multilingual Education (MLE) teaching. KISS is a home for 25,000 indigenous children. The students enrolled here are from 62 different indigenous communities who speak around 24 different languages with geographical articulation. The book contents include concept, understanding languages, similitudes among languages, the need of mother tongue in teaching and learning, skill development (Listening-Speaking-Reading-Writing), teachers activities for teaching in multilingual schools, the process of teaching, training format of multilingual teaching and procedures for basic data collection regarding multilingual schools and classroom handle.Keywords: indigenous, multi-lingual, pedagogic, teachers, teaching practices
Procedia PDF Downloads 2891470 Challenges and Opportunities of Utilization of Social Media by Business Education Students in Nigeria Universities
Authors: Titus Amodu Umoru
Abstract:
The global economy today is full of sophistication. All over the world, business and marketing practices are undergoing an unprecedented transformation. In realization of this fact, the federal government of Nigeria has put in place a robust transformation agenda in order to put Nigeria in a better position to be a competitive player and in the process transform all sectors of its economy. New technologies, especially the internet, are the driving force behind this transformation. However, technology has inadvertently affected the way businesses are done thus necessitating the acquisition of new skills. In developing countries like Nigeria, citizens are still battling with effective application of those technologies. Obviously, students of business education need to acquire relevant business knowledge to be able to transit into the world of work on graduation from school and compete favourably in the labour market. Therefore, effective utilization of social media by both teachers and students can help extensively in empowering students with the needed skills. Social media which is described as a group of internet-based applications that build on the ideological foundations of Web 2.0, and which allow the creation and exchange of user-generated content, if incorporated into the classroom experience may be the needed answer to unemployment and poverty in Nigeria as beneficiaries can easily connect with existing and potential enterprises and customers, engage with them and reinforce mutual business benefits. Challenges and benefits of social media use in education in Nigeria universities were revealed in this study.Keywords: business education, challenges, opportunities, utilization, social media
Procedia PDF Downloads 416