Search results for: artificial artery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2414

Search results for: artificial artery

764 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: brain-machine interface, decision-making, mobile robot, neural network

Procedia PDF Downloads 297
763 Sense Environmental Hormones in Elementary School Teachers and Their in Service Learning Motivation

Authors: Fu-Chi Chuang, Yu-Liang, Chang, Wen-Der Wang

Abstract:

Our environment has been contaminated by many artificial chemicals, such as plastics, pesticides. Many of them have hormone-like activity and are classified as 'environmental hormone (also named endocrine disruptors)'. These chemicals interfere with or mimic hormones have adverse effects that persist into adulthood. Environmental education is an important way to teach students to become engaged in real-world issues that transcend classroom walls. Elementary education is the first stage to perform environmental education and it is an important component to help students develop adequate environmental knowledge, attitudes, and behavior. However, elementary teachers' knowledge plays a critical role in this mission. Therefore, we use a questionnaire to survey the knowledge of environmental hormone of elementary school teachers and their learning motivation of the environmental hormone-regarding knowledge. We collected 218 questionnaires from Taiwanese elementary teachers and the results indicate around 73% of elementary teachers do not have enough knowledge about environmental hormones. Our results also reveal the in-service elementary teachers’ learning motivation of environmental hormones knowledge is positively enhanced once they realized their insufficient cognitive ability of environmental hormones. We believe our study will provide the powerful reference for Ministry of Education to set up the policy of environmental education to enrich all citizens sufficient knowledge of the effects of the environmental hormone on organisms, and further to enhance our correct environmental behaviors.

Keywords: elementary teacher, environmental hormones, learning motivation, questionnaire

Procedia PDF Downloads 313
762 Determination of Inflow Performance Relationship for Naturally Fractured Reservoirs: Numerical Simulation Study

Authors: Melissa Ramirez, Mohammad Awal

Abstract:

The Inflow Performance Relationship (IPR) of a well is a relation between the oil production rate and flowing bottom-hole pressure. This relationship is an important tool for petroleum engineers to understand and predict the well performance. In the petroleum industry, IPR correlations are used to design and evaluate well completion, optimizing well production, and designing artificial lift. The most commonly used IPR correlations models are Vogel and Wiggins, these models are applicable to homogeneous and isotropic reservoir data. In this work, a new IPR model is developed to determine inflow performance relationship of oil wells in a naturally fracture reservoir. A 3D black-oil reservoir simulator is used to develop the oil mobility function for the studied reservoir. Based on simulation runs, four flow rates are run to record the oil saturation and calculate the relative permeability for a naturally fractured reservoir. The new method uses the result of a well test analysis along with permeability and pressure-volume-temperature data in the fluid flow equations to obtain the oil mobility function. Comparisons between the new method and two popular correlations for non-fractured reservoirs indicate the necessity for developing and using an IPR correlation specifically developed for a fractured reservoir.

Keywords: inflow performance relationship, mobility function, naturally fractured reservoir, well test analysis

Procedia PDF Downloads 281
761 The Impact of Artificial Intelligence on Textiles Technology

Authors: Ramy Kamel Fekrey Gadelrab

Abstract:

Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.

Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design

Procedia PDF Downloads 48
760 Ionic Polymer Actuators with Fast Response and High Power Density Based on Sulfonated Phthalocyanine/Sulfonated Polysulfone Composite Membrane

Authors: Taehoon Kwon, Hyeongrae Cho, Dirk Henkensmeier, Youngjong Kang, Chong Min Koo

Abstract:

Ionic polymer actuators have been of interest in the bio-inspired artificial muscle devices. However, the relatively slow response and low power density were the obstacles for practical applications. In this study, ionic polymer actuators are fabricated with ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA). CuPCSA is an organic filler with very high ion exchange capacity (IEC, 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane. SPAES/CuPCSA actuators show larger ionic conductivity, mechanical properties, bending deformation, exceptional faster response to electrical stimuli, and larger mechanical power density (3028 W m–3) than Nafion actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next generation transducers with high power density, which are currently developed biomimetic devices such as endoscopic surgery.

Keywords: actuation performance, composite membranes, ionic polymer actuators, organic filler

Procedia PDF Downloads 278
759 Development of Fuzzy Logic Control Ontology for E-Learning

Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof

Abstract:

Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.

Keywords: engineering knowledge, fuzzy logic control ontology, ontology development, table of content

Procedia PDF Downloads 299
758 Risk Mitigation of Data Causality Analysis Requirements AI Act

Authors: Raphaël Weuts, Mykyta Petik, Anton Vedder

Abstract:

Artificial Intelligence has the potential to create and already creates enormous value in healthcare. Prescriptive systems might be able to make the use of healthcare capacity more efficient. Such systems might entail interpretations that exclude the effect of confounders that brings risks with it. Those risks might be mitigated by regulation that prevents systems entailing such risks to come to market. One modality of regulation is that of legislation, and the European AI Act is an example of such a regulatory instrument that might mitigate these risks. To assess the risk mitigation potential of the AI Act for those risks, this research focusses on a case study of a hypothetical application of medical device software that entails the aforementioned risks. The AI Act refers to the harmonised norms for already existing legislation, here being the European medical device regulation. The issue at hand is a causal link between a confounder and the value the algorithm optimises for by proxy. The research identifies where the AI Act already looks at confounders (i.a. feedback loops in systems that continue to learn after being placed on the market). The research identifies where the current proposal by parliament leaves legal uncertainty on the necessity to check for confounders that do not influence the input of the system, when the system does not continue to learn after being placed on the market. The authors propose an amendment to article 15 of the AI Act that would require high-risk systems to be developed in such a way as to mitigate risks from those aforementioned confounders.

Keywords: AI Act, healthcare, confounders, risks

Procedia PDF Downloads 259
757 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
756 IoT and Advanced Analytics Integration in Biogas Modelling

Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma

Abstract:

The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.

Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization

Procedia PDF Downloads 20
755 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 17
754 The Impact of Artificial Intelligence on Spare Parts Technology

Authors: Amir Andria Gad Shehata

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 63
753 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 134
752 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology

Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah

Abstract:

The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.

Keywords: information, technology, virtual reality, education

Procedia PDF Downloads 290
751 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 228
750 Clinical Cases of Rare Types of 'Maturity Onset Diabetes of the Young' Diabetes

Authors: Alla Ovsyannikova, Oksana Rymar, Elena Shakhtshneider, Mikhail Voevoda

Abstract:

In Siberia endocrinologists increasingly noted young patients with the course of diabetes mellitus differing from 1 and 2 types. Therefore we did a molecular genetic study for this group of patients to verify the monogenic forms of diabetes mellitus in them and researched the characteristics of this pathology. When confirming the monogenic form of diabetes, we performed a correction therapy for many patients (transfer from insulin to tablets), prevented specific complications, examined relatives and diagnosed their diabetes at the preclinical stage, revealed phenotypic characteristics of the pathology which led to the high significance of this work. Materials and Methods: We observed 5 patients (4 families). We diagnosed MODY (Maturity Onset Diabetes of the Young) during the molecular genetic testing (direct automatic sequencing). All patients had a full clinical examination, blood samples for biochemical research, determination of C-peptide and TSH, antibodies to b-cells, microalbuminuria, abdominal ultrasound, heart and thyroid ultrasound, examination of ophthalmologist. Results: We diagnosed 3 rare types of MODY: two women had MODY8, one man – MODY6 and man and his mother - MODY12. Patients with types 8 and 12 had clinical features. Age of onset hyperglycemia ranged from 26 to 34 years. In a patient with MODY6 fasting hyperglycemia was detected during a routine examination. Clinical symptoms, complications were not diagnosed. The patient observes a diet. In the first patient MODY8 was detected during first pregnancy, she had itchy skin and mostly postprandial hyperglycemia. Upon examination we determined glycated hemoglobin 7.5%, retinopathy, non-proliferative stage, peripheral neuropathy. She uses a basic bolus insulin therapy. The second patient with MODY8 also had clinical manifestations of hyperglycemia (pruritus, thirst), postprandial hyperglycemia and diabetic nephropathy, a stage of microalbuminuria. The patient was diagnosed autoimmune thyroiditis. She used inhibitors of DPP-4. The patient with MODY12 had an aggressive course. In the detection of hyperglycemia he had complaints of visual impairment, intense headaches, leg cramps. The patient had a history of childhood convulsive seizures of non-epileptic genesis, without organic pathology, which themselves were stopped at the age of 12 years. When we diagnosed diabetes a patient was 28 years, he had hypertriglyceridemia, atherosclerotic plaque in the carotid artery, proliferative retinopathy (lacerocoagulation). Diabetes and early myocardial infarction were observed in three cases in family. We prescribe therapy with sulfonylureas and SGLT-2 inhibitors with a positive effect. At the patient's mother diabetes began at a later age (30 years) and a less aggressive course was observed. She also has hypertriglyceridemia and uses oral hypoglycemic drugs. Conclusions: 1) When young patients with hyperglycemia have extrapancreatic pathologies and diabetic complications with a short duration of diabetes we can assume they have one of type of MODY diabetes. 2) In patients with monogenic forms of diabetes mellitus, the clinical manifestations of hyperglycemia in each succeeding generation are revealed at an earlier age. Research had increased our knowledge of the monogenic forms of diabetes. The reported study was supported by RSCF, research project No. 14-15-00496-P.

Keywords: diabetes mellitus, MODY diabetes, monogenic forms, young patients

Procedia PDF Downloads 244
749 Design, Optimize the Damping System for Optical Scanning Equipment

Authors: Duy Nhat Tran, Van Tien Pham, Quang Trung Trinh, Tien Hai Tran, Van Cong Bui

Abstract:

In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation.

Keywords: optical device, collision safety, collision absorption, precise mechanics

Procedia PDF Downloads 63
748 Investigation of Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection: The Modified Voltammetry Technique

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behaviour of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP, which was only applied on two of the three coupons at the protection potential -0.8 V vs Cu/CuSO₄ for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP, while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from the ohmic drop. Voltammetry was finally performed on the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduced the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect from the decreased potential and an induced effect associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy

Procedia PDF Downloads 62
747 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar

Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola

Abstract:

This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.

Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index

Procedia PDF Downloads 154
746 The Orthodontic Management of Multiple Tooth Agenesis with Macroglossia in Adult Patient: Case Report

Authors: Yanuarti Retnaningrum, Cendrawasih A. Farmasyanti, Kuswahyuning

Abstract:

Orthodontists find challenges in treating patients who have cases of macroglossia and multiple tooth agenesis because difficulties in determining the causes, formulating a diagnosis and the potential for relapse after treatment. Definition of macroglossia is a tongue enlargement due to muscle hypertrophy, tumor or an endocrine disturbance. Macroglossia may cause many problems such as anterior proclination of upper and lower incisors, development of general diastema and anterior and/ or posterior open bite. Treatment for such patients with multiple tooth agenesis and macroglossia can be complex and must consider orthodontic and/or surgical interventions. This article discusses an orthodontic non surgical approach to a patient with a general diastema in both maxilla and mandible associated with multiple tooth agenesis and macroglossia. Fixed orthodontic therapy with straightwire appliance was used for space closure in anterior region of maxilla and mandible, also to create a space suitable for future prosthetic restoration. After 12 months treatment, stable and functional occlusal relationships was achieved, although still have edentulous area in both maxilla and mandible. At the end of the orthodontic treatment was obtained with correct overbite and overjet values. After removal of the brackets, a maxillary and mandibular removable retainer combine with artificial tooth were placed for retention.

Keywords: general diastema, macroglossia, space closure, tooth agenesis

Procedia PDF Downloads 177
745 Mailchimp AI Application For Marketing Employees

Authors: Alia El Akhrass, Raheed Al Jifri, Sara Babalghoum, Jana Bushnag

Abstract:

This project delves into exploring the functionalities of Mailchimp, an artificial intelligence application. The objective is to comprehend its operations through the AI tools it offers. To achieve this, a survey was conducted among peers, seeking insights into Mailchimp's functionality, accessibility, efficiency, and overall benefits. The survey aimed to gather valuable feedback for analysis. Subsequently, a thorough analysis of the collected data was performed to identify trends, patterns, and areas of improvement. Visual representations were then crafted to effectively summarize the findings, aiding in conveying the research outcomes clearly. Founded in 2001, Mailchimp initially provided email marketing services but has since expanded into a comprehensive marketing platform. Its focus on simplicity and accessibility has contributed to its success among businesses of all sizes. Alternative platforms such as Constant Contact, AWeber, and GetResponse offer similar services with their own unique strengths. Mailchimp's journey exemplifies the importance of vision and adaptability in the ever-evolving digital marketing landscape. By prioritizing innovation, user-centricity, and customer service, Mailchimp has established itself as a trusted partner in the field of digital marketing, enabling businesses to effectively connect with their customers and achieve their marketing goals.

Keywords: email marketing, ai tool, connect, communicate, generate

Procedia PDF Downloads 40
744 AI as a Tool Hindering Digital Education

Authors: Justyna Żywiołek, Marek Matulewski

Abstract:

The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.

Keywords: AI, digital education, education tools, motivation and engagement

Procedia PDF Downloads 28
743 Bhumastra “Unmanned Ground Vehicle”

Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J

Abstract:

Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.

Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI

Procedia PDF Downloads 123
742 Reproductive Health of Women After Taking Chemotherapy for Gestational Trophoblastic Disease

Authors: Ezeh Chukwunonso Peter Excel, Akruti Vg

Abstract:

Aim/Background: To show that even after undergoing 1-5 courses of chemotherapy for Gestational Trophoblastic Disease (GTD) reproductive health of women is intact and they conceive successfully after it. Method: Retrospective cohort analysis using data from the Lugansk regional maternity hospital database of years 1993-2013, which shows n=18 females had GTD and underwent 1-5 courses of chemotherapy. Results and Discussion: Frequency of GTD was rare. All 18 patients (pts) belong to age group of 17-39 years, covering wide range of reproductive age. Out of 18 pts, 15 had hydatidiform mole (HM) while other 3 had choriocarcinoma (CC). In anamnesis, among CC pts, 1 had early pre-eclampsia at 24 weeks and 1 had 4th week of late postpartum (PP) bleeding, while all HM pts had genital inflammatory diseases, 1 pt of HM during follow-up had High hCG and 3 times curettage in 5 months. 18 women became pregnant for 25 times after chemotherapy. Chemotherapy was given under indication of either high level of HCG, luteal cyst >6cm or path-morphological results of curettage. CC 3 pts had (2 spontaneous abortions (SA), 2 term cesarean section (CS), 1 preterm CS). HM 15 pts had (3 artificial abortion, 2 SA, 7CS (5 term and 2 preterm), 8 vaginal deliveries (7 term and 1 preterm)). Conclusion: During our research we got 22.2% preterm deliveries and 55.6% CS which is higher than the normal cases, but still all the 18 women were able to have kids successfully after chemotherapy. So we can conclude that chemotherapy for GTD was successful in keeping the reproductive health of women intact.

Keywords: reproductive health, chemotherapy, gestational trophoblastic disease, women

Procedia PDF Downloads 393
741 The Effect of Mist Cooling on Sexual Behavior and Semen Quality of Sahiwal Bulls

Authors: Khalid Ahmed Elrabie Abdelrasoul

Abstract:

The present study was carried out on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to assess the effect of cooling using mist cooling and fanning on Sahiwal bulls in the dry hot summer season. Fourteen Sahiwal bulls were divided into two groups of seven each. Sexual behavior and semen quality traits considered were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-1 was the control, whereas group-2 (treatment group) bulls were exposed to mist cooling and fanning (thrice a day 15 min each) in the dry hot summer season. Group-2 showed significantly (p < 0.01) higher value in DMT (sec), ES, PS, ITS, LS, semen volume (ml), semen color density, mass activity, initial motility, progressive motility and live sperm.

Keywords: mist cooling, Sahiwal bulls, semen quality, sexual behavior

Procedia PDF Downloads 320
740 Perceptions of College Students on Whether an Intelligent Tutoring System Is a Tutor

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate the benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. Developments improving the ease of ITS creation have recently increased their proliferation, leading many K-12 schools and institutions of higher education in the United States to regularly use ITS within classrooms. We investigated how students perceive their experience using an ITS. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course and were subsequently asked for feedback on their experience. Results show that their perceptions were generally favorable of the ITS, and most would seek to use an ITS both for STEM and non-STEM courses in the future. Along with detailed transaction-level data, this feedback also provides insights on the design of user-friendly interfaces, guidance on accessibility for students with impairments, the sequencing of exercises, students’ expectation of achievement, and comparisons to other tutoring experiences. We discuss how these findings are important for the creation, implementation, and evaluation of ITS as a mode and method of teaching and learning.

Keywords: college statistics course, intelligent tutoring systems, in vivo study, student perceptions of tutoring

Procedia PDF Downloads 101
739 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 150
738 The Trajectory of the Ball in Football Game

Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar

Abstract:

Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.

Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter

Procedia PDF Downloads 459
737 Genetic Structure of Four Bovine Populations in the Philippines Using Microsatellites

Authors: Peter James C. Icalia, Agapita J. Salces, Loida Valenzuela, Kangseok Seo, Geronima Ludan

Abstract:

This study evaluated polymorphism of 11 microsatellite markers in four local genetic groups of cattle. Batanes cattle which has never been studied using microsatellites is evaluated for its genetic distance from the Ilocos cattle while Brahman and Holstein-Sahiwal are also included as there were insemination programs by the government using these two breeds. PCR products that were genotyped for each marker were analyzed using POPGENEv32. Results showed that 55% (Fst=0.5501) of the genetic variation is due to the differences between populations while the remaining 45% is due to individual variation. The Fst value also indicates that there were very great differences from population to population using the range proposed by Sewall and Wright. The constructed phylogenetic tree based on Nei’s genetic distance using the modified neighboor joining procedure of PHYLIPv3.5 showed the admixture of Brahman and Holstein-Sahiwal having them grouped in the same clade. Batanes and Ilocos cattle were grouped in a different cluster showing that they have descended from a single parental population. This would presumably address the claim that Batanes and Ilocos cattle are genetically distant from other groups and still exist despite the artificial insemination program of the government using Brahman and other imported breeds. The knowledge about the genetic structure of this population supports the development of conservation programs for the smallholder farmers.

Keywords: microsatellites, cattle, Philippines, populations, genetic structure

Procedia PDF Downloads 515
736 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure

Authors: Andrew R. Winters, Gregor J. Gassner

Abstract:

A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.

Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity

Procedia PDF Downloads 343
735 The Impact of Artificial Intelligence on Rural Life

Authors: Triza Edwar Fawzi Deif

Abstract:

In the process of urbanization in China, new rural construction is on the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residences, Badie village, in Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.

Keywords: steel slag, co-product, primary coating, steel aggregate capital, rural areas, rural planning, rural governance village, design strategy, new rural dwellings, regional context, regional expression

Procedia PDF Downloads 52