Search results for: model building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19897

Search results for: model building

3397 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design

Authors: S. J. M. Mohd Saleh, S. Guo

Abstract:

Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.

Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design

Procedia PDF Downloads 232
3396 Studies on Performance of an Airfoil and Its Simulation

Authors: Rajendra Roul

Abstract:

The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.

Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer

Procedia PDF Downloads 414
3395 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 428
3394 The Role of the University of Zululand in Documenting and Disseminating Indigenous Knowledge, in KwaZulu-Natal, South Africa

Authors: Smiso Buthelezi, Petros Dlamini, Dennis Ocholla

Abstract:

The study assesses the University of Zululand's practices for documenting, sharing, and accessing indigenous knowledge. Two research objectives guided it: to determine how indigenous knowledge (IK) is developed at the University of Zululand and how indigenous knowledge (IK) is documented at the University of Zululand. The study adopted both interpretive and positivist research paradigms. Ultimately, qualitative and quantitative research methods were used. The qualitative research approach collected data from academic and non-academic staff members. Interviews were conducted with 18 academic staff members and 5 with support staff members. The quantitative research approach was used to collect data from indigenous knowledge (IK) theses and dissertations from the University of Zululand Institutional Repository between 2009-2019. The study results revealed that many departments across the University of Zululand were involved in creating indigenous knowledge (IK)-related content. The department of African Languages was noted to be more involved in creating IK-related content. Moreover, the documentation of the content related to indigenous knowledge (IK) at the University of Zululand is done frequently but is not readily known. It was found that the creation and documentation of indigenous knowledge by different departments faced several challenges. The common challenges are a lack of interest among indigenous knowledge (IK) owners in sharing their knowledge, the local language as a barrier, and a shortage of proper tools for recording and capturing indigenous knowledge (IK). One of the study recommendations is the need for an indigenous knowledge systems (IKS) policy to be in place at the University of Zululand.

Keywords: knowledge creation, SECI model, information and communication technology., indigenous knowledge

Procedia PDF Downloads 112
3393 Controlling Cocoa Pod Borer, Conopomorpha cramerella (Snell.) and Cost Analysis Production at Cacao Plantation

Authors: Alam Anshary, Flora Pasaru, Shahabuddin

Abstract:

The Cocoa Pod Borer (CPB), Conopomorpha cramerella (Snell.) is present on most of the larger cocoa producing islands in Indonesia. Various control measures CPB has been carried out by the farmers, but the results have not been effective. This study aims to determine the effect of application of Beauveria bassiana treatments and pruning technique to the control of CPB in the cocoa plantation people. Research using completely randomized design with 4 treatments and 3 replications, treatment consists of B.bassiana, Pruning, B. bassiana+pruning (Bb + Pr), as well as the control. The results showed that the percentage of PBK attack on cocoa pods in treatment (Bb + Pr) 3.50% the lowest compared to other treatments. CPB attack percentage in treatment B.bassiana 6.15%; pruning 8.75%, and 15.20% control. Results of the analysis of production estimates, the known treatments (Bb + Pr) have the highest production (1.95 tonnes / ha). The model results estimated production is Y= 0,20999 + 0,53968X1 + 0,34298X2+ 0,31410X3 + 0,35629X4 + 0,08345X5 + 0,29732X6. Farm production costs consist of fixed costs and variable costs, fixed costs are costs incurred by the farmer that the size does not affect the results, such as taxes and depreciation of production equipment. Variable costs are costs incurred by farmers who used up in one year cocoa farming activities. The cost of production in farming cocoa without integrated techniques control of CPB is Rp. 9.205.550 million/ha, while the cost of production with integrated techniques control is Rp. 6.666.050 million/ha.

Keywords: cacao, cocoa pod borer, pruning, Beauveria bassiana, production costs

Procedia PDF Downloads 285
3392 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking

Authors: Jonas Colin

Abstract:

Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.

Keywords: chatbot, GPT 3.5, metacognition, symbiose

Procedia PDF Downloads 70
3391 Development of Mucoadhesive Multiparticulate System for Nasal Drug Delivery

Authors: K. S. Hemant Yadav, H. G. Shivakumar

Abstract:

The present study investigation was to prepare and evaluate the mucoadhesive multi-particulate system for nasal drug delivery of anti-histaminic drug. Ebastine was chosen as the model drug. Drug loaded nanoparticles of Ebastine were prepared by ionic gelation method using chitosan as polymer using the drug-polymer weight ratios 1:1, 1:2, 1:3. Sodium tripolyphosphate (STPP) was used as the cross-linking agent in the range of 0.5 and 0.7% w/v. FTIR and DSC studies indicated that no chemical interaction occurred between the drug and polymers. Particle size ranged from 169 to 500 nm. The drug loading and entrapment efficiency was found to increase with increase in chitosan concentration and decreased with increase in poloxamer 407 concentration. The results of in vitro mucoadhesion carried out showed that all the prepared formulation had good mucoadhesive property and mucoadhesion increases with increase in the concentration of chitosan. The in vitro release pattern of all the formulations was observed to be in a biphasic manner characterized by slight burst effect followed by a slow release. By the end of 8 hrs, formulation F6 showed a release of only 86.9% which explains its sustained behaviour. The ex-vivo permeation of the pure drug ebastine was rapid than the optimized formulation(F6) indicating the capability of the chitosan polymer to control drug permeation rate through the sheep nasal mucosa. The results indicated that the mucoadhesive nanoparticulate system can be used for the nasal delivery of antihistaminic drugs in an effective manner.

Keywords: nasal, nanoparticles, ebastine, anti-histaminic drug, mucoadhesive multi-particulate system

Procedia PDF Downloads 419
3390 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31

Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi

Abstract:

As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.

Keywords: magnesium, plasticity, superplastic forming, finite element analysis

Procedia PDF Downloads 155
3389 Robotic Logging Technology: The Future of Oil Well Logging

Authors: Nitin Lahkar, Rishiraj Goswami

Abstract:

“Oil Well Logging” or the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole is an important practice in the Oil and Gas industry. Although a lot of research has been undertaken in this field, some basic limitations still exist. One of the main arenas or venues where plethora of problems arises is in logistically challenged areas. Accessibility and availability of efficient manpower, resources and technology is very time consuming, restricted and often costly in these areas. So, in this regard, the main challenge is to decrease the Non Productive Time (NPT) involved in the conventional logging process. The thought for the solution to this problem has given rise to a revolutionary concept called the “Robotic Logging Technology”. Robotic logging technology promises the advent of successful logging in all kinds of wells and trajectories. It consists of a wireless logging tool controlled from the surface. This eliminates the need for the logging truck to be summoned which in turn saves precious rig time. The robotic logging tool here, is designed such that it can move inside the well by different proposed mechanisms and models listed in the full paper as TYPE A, TYPE B and TYPE C. These types are classified on the basis of their operational technology, movement and conditions/wells in which the tool is to be used. Thus, depending on subsurface conditions, energy sources available and convenience the TYPE of Robotic model will be selected. Advantages over Conventional Logging Techniques: Reduction in Non-Productive time, lesser energy requirements, very fast action as compared to all other forms of logging, can perform well in all kinds of well trajectories (vertical/horizontal/inclined).

Keywords: robotic logging technology, innovation, geology, geophysics

Procedia PDF Downloads 306
3388 Children Beliefs about Illness, Treatments and Vaccines after the Experience of Covid 19 Pandemic

Authors: Margarida Maria Cabugueira Csutódio dos Santos, Joana Filipa Pintéus Pereira

Abstract:

The way children understand the concept of health and illness influences their reaction in contexts where these concepts are present (e.g.,illness; vaccination). The recognition of the importance of children's beliefs/representations about health and disease has led to the development of models that seek to explain the development process of these concepts. In the construction of their representations, children are influenced not only by their cognitive competence but also by their life experiences. In the last 3 years, children have experienced a pandemic health crisis that has exposed them to anomalous and stressful situations. Objective: the aim of this study was (1) to identify children’s representations about disease (including symptoms, causes, control/treatment) and prevention (including health procedures and vaccines) and (2) whether COVID19 is mentioned and influences their representations. Methodology: a qualitative study in which 67 children with 7 to 10 years old (mean 8,8) participated. A semi-structured interview was used following the Bibace and Walsh model, focusing on the representation of the disease and its prevention. Results show a marked influence of the lived experience with regard to causes of the disease, disease control and treatment, and adherence to vaccination. Age-dependent differences were found with older children being able to talk about illness and contamination process and younger displaying more basic, concrete and rigid representations. Conclusions: The results of this study bring clues to the adequacy of communication with the child in the context of health and illness and discriminately in a future health pandemic crisis.

Keywords: childen, health beliefs, pediatrics, covid19, vaccines

Procedia PDF Downloads 90
3387 Tenants Use Less Input on Rented Plots: Evidence from Northern Ethiopia

Authors: Desta Brhanu Gebrehiwot

Abstract:

The study aims to investigate the impact of land tenure arrangements on fertilizer use per hectare in Northern Ethiopia. Household and Plot level data are used for analysis. Land tenure contracts such as sharecropping and fixed rent arrangements have endogeneity. Different unobservable characteristics may affect renting-out decisions. Thus, the appropriate method of analysis was the instrumental variable estimation technic. Therefore, the family of instrumental variable estimation methods two-stage least-squares regression (2SLS, the generalized method of moments (GMM), Limited information maximum likelihood (LIML), and instrumental variable Tobit (IV-Tobit) was used. Besides, a method to handle a binary endogenous variable is applied, which uses a two-step estimation. In the first step probit model includes instruments, and in the second step, maximum likelihood estimation (MLE) (“etregress” command in Stata 14) was used. There was lower fertilizer use per hectare on sharecropped and fixed rented plots relative to owner-operated. The result supports the Marshallian inefficiency principle in sharecropping. The difference in fertilizer use per hectare could be explained by a lack of incentivized detailed contract forms, such as giving more proportion of the output to the tenant under sharecropping contracts, which motivates to use of more fertilizer in rented plots to maximize the production because most sharecropping arrangements share output equally between tenants and landlords.

Keywords: tenure-contracts, endogeneity, plot-level data, Ethiopia, fertilizer

Procedia PDF Downloads 86
3386 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains

Authors: Alina P. Colling, Robert G. Hekkenberg

Abstract:

Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.

Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning

Procedia PDF Downloads 223
3385 Consumers’ Preferences and Willingness to Pay for Tomato Attributes: Evidence from Pakistan

Authors: Jahangir Khan, Syed Attaullah Shah, Aditya R. Khanal

Abstract:

Vegetables are the most important component of a healthy diet; among them, tomatoes are the most purchased and consumed vegetable. Fresh and processed tomatoes are widely consumed in Pakistan and are regarded as premium products. Consumers have unique preferences regarding food choices when buying products in the market. This research paper investigates how consumers assess tomatoes and their willingness to pay for various tomato attributes while making food choices. Information on consumers’ behavior regarding food choices was collected from 1200 respondents through face-to-face interviews using a choice experiment design and an econometric evaluation of the random utility model. The data was gathered from three diverse climatic zones: Northern, Central, and Southern. The study examined consumers' WTP for tomato attributes such as production method, packaging, and variety type. The empirical results confirmed that respondents preferred organic tomatoes and were willing to pay a 65% price premium compared to the conventional method. Additionally, consumers were also willing to pay a 56% price premium for hybrid variety compared to local variety. Results of the research indicated that consumers were willing to pay a premium of 23% for labeled packaging. The findings of this research study provide useful information to stakeholders in the tomato supply chain to better align their products with consumers' preferences, ultimately enhancing market growth and consumers’ satisfaction.

Keywords: choice experiment, consumers’ behavior, tomato attributes, willingness to pay

Procedia PDF Downloads 13
3384 Analyzing Information Management in Science and Technology Institute Libraries in India

Authors: P. M. Naushad Ali

Abstract:

India’s strength in basic research is recognized internationally. Science and Technology research in India has been performed by six distinct bodies or organizations such as Cooperative Research Associations, Autonomous Research Council, Institute under Ministries, Industrial R&D Establishment, Universities, Private Institutions. All most all these institutions are having a well-established library/information center to cater the information needs of their users like scientists and technologists. Information Management (IM) comprises disciplines concerned with the study and the effective and efficient management of information and resources, products and services as well as the understanding of the involved technologies and the people engaged in this activity. It is also observed that the libraries and information centers in India are also using modern technologies for the management of various activities and services to serve their users in a better way. Science and Technology libraries in the country are usually better equipped because the investment in Science and Technology in the country are much larger than those in other fields. Thus, most of the Science and Technology libraries are equipped with modern IT-based tools for handling and management of library services. In spite of these facts Science and Technology libraries are having all the characteristics of a model organization where computer application is found most successful, however, the adoption of this IT based management tool is not uniform in these libraries. The present study will help to know about the level use of IT-based management tools for the information management of Science and Technology libraries in India. The questionnaire, interview, observation and document review techniques have been used in data collection. Finally, the author discusses findings of the study and put forward some suggestions to improve the quality of Science and Technology institute library services in India.

Keywords: information management, science and technology libraries, India, IT-based tools

Procedia PDF Downloads 393
3383 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19

Authors: Lan Cheng, Harry Qin, Yang Wang

Abstract:

Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.

Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis

Procedia PDF Downloads 114
3382 A Multigranular Linguistic ARAS Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain contexts where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ARAS-ELH). Within the ARAS-ELH approach, the DM can diagnose the results (the ranking of the alternatives) in a decomposed style, i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e the collective final results of all experts able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ARAS-ELH technique makes it easier for decision-makers to understand the results. Finally, An MCGDM case study is given to illustrate the proposed approach.

Keywords: additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts

Procedia PDF Downloads 206
3381 Closed-Loop Supply Chain: A Study of Bullwhip Effect Using Simulation

Authors: Siddhartha Paul, Debabrata Das

Abstract:

Closed-loop supply chain (CLSC) management focuses on integrating forward and reverse flow of material as well as information to maximize value creation over the entire life-cycle of a product. Bullwhip effect in supply chain management refers to the phenomenon where a small variation in customers’ demand results in larger variation of orders at the upstream levels of supply chain. Since the quality and quantity of products returned to the collection centers (as a part of reverse logistics process) are uncertain, bullwhip effect is inevitable in CLSC. Therefore, in the present study, first, through an extensive literature survey, we identify all the important factors related to forward as well as reverse supply chain which causes bullwhip effect in CLSC. Second, we develop a system dynamics model to study the interrelationship among the factors and their effect on the performance of overall CLSC. Finally, the results of the simulation study suggest that demand forecasting, lead times, information sharing, inventory and work in progress adjustment rate, supply shortages, batch ordering, price variations, erratic human behavior, parameter correcting, delivery time delays, return rate of used products, manufacturing and remanufacturing capacity constraints are the important factors which have a significant influence on system’s performance, specifically on bullwhip effect in a CLSC.

Keywords: bullwhip effect, closed-loop supply chain, system dynamics, variance ratio

Procedia PDF Downloads 163
3380 Measuring Banking Systemic Risk Conditional Value-At-Risk and Conditional Coherent Expected Shortfall in Taiwan Using Vector Quantile GARCH Model

Authors: Ender Su, Kai Wen Wong, I-Ling Ju, Ya-Ling Wang

Abstract:

In this study, the systemic risk change of Taiwan’s banking sector is analyzed during the financial crisis. The risk expose of each financial institutions to the whole Taiwan banking systemic risk or vice versa under financial distress are measured by conditional Value-at-Risk (CoVaR) and conditional coherent expected shortfall (CoES). The CoVaR and CoES are estimated by using vector quantile autoregression (MVMQ-CaViaR) with the daily stock returns of each banks included domestic and foreign banks in Taiwan. The daily in-sample data covered the period from 05/20/2002 to 07/31/2007 and the out-of-sample period until 12/31/2013 spanning the 2008 U.S. subprime crisis, 2010 Greek debt crisis, and post risk duration. All banks in Taiwan are categorised into several groups according to their size of market capital, leverage and domestic/foreign to find out what the extent of changes of the systemic risk as the risk changes between the individuals in the bank groups and vice versa. The final results can provide a guidance to financial supervisory commission of Taiwan to gauge the downside risk in the system of financial institutions and determine the minimum capital requirement hold by financial institutions due to the sensibility changes in CoVaR and CoES of each banks.

Keywords: bank financial distress, vector quantile autoregression, CoVaR, CoES

Procedia PDF Downloads 386
3379 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 79
3378 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 543
3377 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 94
3376 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: bipartite graph, one-mode projection, clustering, web proxy detection

Procedia PDF Downloads 245
3375 The Factors for Developing Trainers in Auto Parts Manufacturing Factories at Amata Nakon Industrial Estate in Cholburi Province

Authors: Weerakarj Dokchan

Abstract:

The purposes of this research are to find out the factors for developing trainers in the auto part manufacturing factories (AMF) in Amata Nakon Industrial Estate Cholburi. Population in this study included 148 operators to complete the questionnaires and 10 trainers to provide the information on the interview. The research statistics consisted of percentage, mean, standard deviation and step-wise multiple linear regression analysis.The analysis of the training model revealed that: The research result showed that the development factors of trainers in AMF consisted of 3 main factors and 8 sub-factors: 1) knowledge competency consisting of 4 sub-factors; arrangement of critical thinking, organizational loyalty, working experience of the trainers, analysis of behavior, and work and organization loyalty which could predict the success of the trainers at 55.60%. 2) Skill competency consisted of 4 sub-factors, arrangement of critical thinking, organizational loyalty and analysis of behavior and work and the development of emotional quotient. These 4 sub-factors could predict the success of the trainers in skill aspect 55.90%. 3) The attitude competency consisted of 4 sub-factors, arrangement of critical thinking, intention of trainee computer competency and teaching psychology. In conclusion, these 4 sub-factors could predict the success of the trainers in attitude aspect 58.50%.

Keywords: the development factors, trainers development, trainer competencies, auto part manufacturing factory (AMF), AmataNakon Industrial Estate Cholburi

Procedia PDF Downloads 304
3374 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 229
3373 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 20
3372 New-Born Children and Marriage Stability: An Evaluation of Divorce Risk Based on 2010-2018 China Family Panel Studies Data

Authors: Yuchao Yao

Abstract:

As two of the main characteristics of Chinese demographic trends, increasing divorce rates and decreasing fertility rates both shaped the population structure in the recent decade. Figuring out to what extent can be having a child make a difference in the divorce rate of a couple will not only draw a picture of Chinese families but also bring about a new perspective to evaluate the Chinese child-breeding policies. Based on China Family Panel Studies (CFPS) Data 2010-2018, this paper provides a systematic evaluation of how children influence a couple’s marital stability through a series of empirical models. Using survival analysis and propensity score matching (PSM) model, this paper finds that the number and age of children that a couple has mattered in consolidating marital relationship, and these effects vary little over time; during the last decade, newly having children can in fact decrease the possibility of divorce for Chinese couples; the such decreasing effect is largely due to the birth of a second child. As this is an inclusive attempt to study and compare not only the effects but also the causality of children on divorce risk in the last decade, the results of this research will do a good summary of the status quo of divorce in China. Furthermore, this paper provides implications for further reforming the current marriage and child-breeding policies.

Keywords: divorce risk, fertility, China, survival analysis, propensity score matching

Procedia PDF Downloads 73
3371 Effects of Swimming Exercise Training on Persistent Pain in Rats after Thoracotomy

Authors: Shao-Cyuan Yewang, Yu-Wen Chen

Abstract:

Background: Exercise training is well known to alleviate chronic pain syndromes improve of chronic pain. This study investigated the effect of swimming exercise training on thoracotomy and rib retraction-induced allodynia. Methods: Male Sprague Dawley rats that received animal model of persistent postthoracotomy pain. All rats were divided into three groups: sham operations group (Sham), thoracotomy and rib retraction group (TRR), and TRR with swimming exercise training for 90min/day, 7 days a week for 4 weeks (TRR-SEW). The sham group did not receive retraction of the ribs. Thus, they received a pleural incision. The levels of mechanical and cold allodynia were measured by von Frey and acetone test. Results: In von Frey test, the level of mechanical allodynia in the TRR group was significantly higher than the sham group. The level of mechanical allodynia in the TRR-SEW group was significantly lower than the TRR group. In acetone test, the level of cold allodynia in the TRR group was significantly higher than the sham group. The level of cold allodynia in the TRR-SEW group was significantly lower than the TRR group. Conclusions: These results suggest that swimming exercise training decreases persistent postthoracotomy pain caused by TRR surgery. It may provide one of the new therapeutic effects of swimming exercise training could alleviate persistent postthoracotomy pain.

Keywords: chronic pain, thoracotomy pain, swimming, von Frey test, acetone test

Procedia PDF Downloads 218
3370 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics

Authors: C. S. Saini

Abstract:

The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.

Keywords: black gram, corn flour, extrusion, physical characteristics

Procedia PDF Downloads 479
3369 Mobile Schooling for the Most Vulnerable Children on the Street: An Innovation

Authors: Md. Shakhawat Ullah Chowdhury

Abstract:

Mobile school is an innovative methodology in non-formal education to increase access to education for children during conflict through theatre for education for appropriate basic education to children during conflict. The continuous exposure to harsh environments and the nature of the lifestyles of children in conflict make them vulnerable. However, the mobile school initiative takes into consideration the mobile lifestyle of children in conflict. Schools are provided considering the pocket area of the street children with portable chalkboards, tin of books and materials as communities move. Teaching is multi-grade to ensure all children in the community benefit. The established mobile schools, while focused on basic literacy and numeracy skills according to traditions of the communities. The school teachers are selected by the community and trained by a theatre activist. These teachers continue to live and move with the community and provide continuous education for children in conflict. The model proposed a holistic team work to deliver education focused services to the street children’s pocket area where the team is mobile. The team consists of three members –an educator (theatre worker), a psychological counsellor and paramedics. The mobile team is responsible to educate street children and also play dramas which specially produce on the basis of national curriculum and awareness issues for street children. Children enjoy play and learn about life skills and basic literacy and numeracy skills which may be a pillar of humanitarian aid during conflict.

Keywords: vulnerable, children in conflict, mobile schooling, child-friendly

Procedia PDF Downloads 433
3368 Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark

Authors: B. Cheknane, F. Zermane

Abstract:

The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model.

Keywords: maritime pine bark (MP), pinyon pine bark (PP), Aleppo pine (AP) bark, adsorption, dyes

Procedia PDF Downloads 319