Search results for: zinc based metal matrix composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31159

Search results for: zinc based metal matrix composites

29539 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 82
29538 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 194
29537 Fast Detection of Local Fiber Shifts by X-Ray Scattering

Authors: Peter Modregger, Özgül Öztürk

Abstract:

Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.

Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination

Procedia PDF Downloads 47
29536 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method

Authors: Temesgen Geremew

Abstract:

ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.

Keywords: SERS, sensor, Hg2+, water detection, polythiophene

Procedia PDF Downloads 44
29535 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing

Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay

Abstract:

Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.

Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer

Procedia PDF Downloads 118
29534 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials

Authors: Cheng Shen, LaiHong Shen

Abstract:

Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Ammonia synthesis by the Haber process is the main method for industrial ammonia synthesis, but the conversion rate of ammonia per pass is only about 12%, while the conversion rate of biomass synthesis ammonia is as high as 56%. Therefore, safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia, and can be desorbed at high temperature to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl₂ were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes respectively to support CuCl₂, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl₂. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.

Keywords: ammonia, adsorption properties, metal chloride, silicon, MWCNTs

Procedia PDF Downloads 93
29533 Counteract Heat Stress on Broiler Chicks by Adding Anti-Heat Stress Vitamins (Vitamin C and E) with Organic Zinc

Authors: Omnia Y. Shawky, Asmaa M. Megahed, Alaa E. ElKomy, A. E. Abd-El-Hamid, Y. A. Attia

Abstract:

This study was carried out to elevate the broilers physiological response against heat stress and reduce this impact by adding vitamin C (VC), vitamin E (VE) alone/or with organic zinc (Zn) to chicks’ rations. A total of 192, 26-day-old Arbor Acers male chicks were randomly divided into equal 8 groups (4 replicates for each). All experimental groups were treated as follow: Group 2 was served as a heat stress control that reared at 37ºC with relative humidity 53 ± 8% for 6 hours/day for three successive days/week and fed the basal diet only. Groups 3-8 were heat stressed in a like manner to group 2 and fed basal diet inclusion 200mg VC (group 3), 200mg VE (group 4), 200mg VC+200mg VE (group 5), 200mg VC+30mg Zn (group 6), 200mg VE+30mg Zn (group 7) and 200mg VC+200mg VE+30mg Zn (group 8) /kg feed, while Group 1 was served as a positive control that reared on a neutral temperature (NT) (approximately 21ºC) and fed the basal diet only. Respiration rate and rectal temperature were boosted of HS chicks (80.8 breath/min and 41.97ºC) compared to NT group (60.12 breath/min and 40.9ºC), while, adding VC alone and with VE or Zn resulted in decrease these measurements. Heat stress had a significantly negative effect on chicks body weight gain, feed consumption and feed conversion ratio compared to the NT group, this harmful effect could be overcome by adding VC and VE individually or with Zn. Chicks exposed to heat stress showed slightly increase hemoglobin concentration compared to NT group, while, adding VC, VE individually or with Zn alleviated this effect. Plasma glucose concentration was significantly increased in HS group than the NT group, but adding VC, VE individually or with Zn resulted in a reduction plasma glucose level, which it was still higher than the NT group. Heat stress caused an increase in plasma total lipids and cholesterol concentration compared to the NT group and inclusion VC or VE alone or with Zn was not able to reduce this effect. The increased liver enzymes activities (AST and ALT) that observed in HS group compared to NT group were removed by adding VC and VE individually or with Zn. As well, exposure of broiler chicks to heat stress resulted in a slightly decrease in plasma total antioxidant capacity level (TAC) superoxide dismutase and catalase enzymes activities, while inclusion VC and VE individually or with Zn in chicks rations caused an increased in these measurements. Broiler chicks that exposed to HS revealed a significant increase in heat shock protein (Hsp 70) compared to the NT group, while, adding VC or VE individually or with Zn resulted in a significant decrease in Hsp70 than the HS group and VE alone or with VC had the greatest effect. In conclusion, it could be overcome the harmful and the negative effect of heat stress on broiler chicks’ productive performance and physiological status by inclusion VC (200mg) or VE (200mg) individual or in a combination with organic zinc (30 mg) in chicks’ rations.

Keywords: heat stress, broiler, vitamin C, vitamin E, organic zinc

Procedia PDF Downloads 190
29532 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 311
29531 Thermomechanical Behaviour of Various Pressurized Installations Subjected to Thermal Load Due to the Combustion of Metal Particles

Authors: Khaled Ayfi, Morgan Dal, Frederic Coste, Nicolas Gallienne, Martina Ridlova, Philippe Lorong

Abstract:

In the gas industry, contamination of equipment by metal particles is one of the feared phenomena. Indeed, particles inside equipment can be driven by the gas flow and accumulate in places where the velocity is low. As they constitute a potential ignition hazard, particular attention is paid to the presence of particles in the oxygen industry. Indeed, the heat release from ignited particles may damage the equipment and even result in a loss of integrity. The objective of this work is to support the development of new design criteria. Studying the thermomechanical behavior of this equipment, thanks to numerical simulations, allows us to test the influence of various operating parameters (oxygen pressure, wall thickness, initial operating temperature, nature of the metal, etc.). Therefore, in this study, we propose a numerical model that describes the thermomechanical behavior of various pressurized installations heated locally by the combustion of small particles. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements obtained by a new device developed in this work.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behaviour

Procedia PDF Downloads 140
29530 Gold–M Heterobimetallic Complexes: Synthesis and Initial Reactivity Studies

Authors: Caroline Alice Rouget-Virbel, F. Dean Toste

Abstract:

Heterobimetallic systems have been precedented in a wide array of bioinorganic and heterogeneous catalytic settings, in which cooperative bond-breaking and bond-forming events mediated by neighboring metal sites have been proposed but are challenging to study and characterize. Heterodinuclear transition-metal catalysis has recently emerged as a promising strategy to tackle challenging chemical transformations, including C−C and C−X couplings as well as small molecule activation. It has been shown that these reactions can traverse nontraditional mechanisms, reactivities, and selectivities when homo- and heterobimetallic systems are employed. Moreover, stoichiometric studies of transmetallation from gold complexes have demonstrated that R transfer from PPh3–Au(I)R to Cp- and Cp*-ligated group 8/9 complexes is a viable elementary step. With these considerations in mind, we hypothesized that heterobimetallic Au–M complexes could serve as a viable and tunable catalyst platform to explore mechanisms and reactivity. In this work, heterobimetallic complexes containing Au(I) centers tethered to Ir(III) and Rh(III) piano stool moieties were synthesized and characterized. Preliminary application of these complexes to a catalytic allylic arylation reaction demonstrates bimetallic cooperativity relative to their monomeric metal components.

Keywords: heterobimetallic, catalysis, gold, rhodium

Procedia PDF Downloads 169
29529 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application

Authors: Syali Pradhan, Neetu Jha

Abstract:

The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.

Keywords: marigold, flower waste, energy storage, cathode, supercapacitor

Procedia PDF Downloads 58
29528 Enhancing Transfer Path Analysis with In-Situ Component Transfer Path Analysis for Interface Forces Identification

Authors: Raef Cherif, Houssine Bakkali, Wafaa El Khatiri, Yacine Yaddaden

Abstract:

The analysis of how vibrations are transmitted between components is required in many engineering applications. Transfer path analysis (TPA) has been a valuable engineering tool for solving Noise, Vibration, and Harshness (NVH problems using sub-structuring applications. The most challenging part of a TPA analysis is estimating the equivalent forces at the contact points between the active and the passive side. Component TPA in situ Method calculates these forces by inverting the frequency response functions (FRFs) measured at the passive subsystem, relating the motion at indicator points to forces at the interface. However, matrix inversion could pose problems due to the ill-conditioning of the matrices leading to inaccurate results. This paper establishes a TPA model for an academic system consisting of two plates linked by four springs. A numerical study has been performed to improve the interface forces identification. Several parameters are studied and discussed, such as the singular value rejection and the number and position of indicator points chosen and used in the inversion matrix.

Keywords: transfer path analysis, matrix inverse method, indicator points, SVD decomposition

Procedia PDF Downloads 67
29527 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering

Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola

Abstract:

Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.

Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials

Procedia PDF Downloads 45
29526 Synthesis of Pd Nanoparticles Confined in Graphene Oxide Framework as Nano Catalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction

Authors: Thuy Phuong Nhat Tran, Ashutosh Thakur, Toshiaki Taniike

Abstract:

Recently, covalently linked graphene oxide frameworks (GOFs) have attracted considerable attention in gas absorbance and water purification as well-defined microporous materials. In spite of their potential advantages such as a controllable pore dimension, adjustable hydrophobicity, and structural stability, these materials have been scarcely employed in heterogeneous catalysis. Here we demonstrate a novel and facile method to synthesize Pd nanoparticles (NPs) confined in a GOF (Pd@GOF). The GOF with uniform interlayer space was obtained by the intercalation of diboronic acid between graphene oxide layers. It was found that Pd NPs were generated inside the graphitic gallery spaces of the GOF, and thus, formed Pd NPs were well-dispersed with a narrow particle size distribution. The synthesized Pd@GOF emerged as an efficient nanocatalyst based on its superior performance (product yield and recyclability) toward Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents, which has been hardly observed for previously reported graphene-based Pd nanocatalysts. Furthermore, the rational comparison of the catalytic performance between two kinds of Pd@GOF (Pd NPs encapsulated in a diboronic ester-intercalated GOF and in a monoboronic ester-intercalated GOF) firmly confirmed the essential role of a rigid framework design in the stabilization of Pd NPs. Based on these results, the covalently assembled GOF was proposed as a promising scaffold for hosting noble metal NPs to construct desired metal@GOF nanocatalysts with improved activity and durability.

Keywords: graphene oxide framework, palladium nanocatalyst, pore confinement, Suzuki-Miyaura cross-coupling reaction

Procedia PDF Downloads 127
29525 MIL-88b(Fe)-MOF Grafted Carbon Dot Nanocomposites as Effective Photocatalysts for Fenton-Like Photodegradation of Amphotericin B and Naproxen Under Visible Light Irradiation

Authors: Payam Hayati, Fateme Firoozbakht, Gholamhassan Azimi, Shahram Tangestaninejad

Abstract:

The synthesis of a photocatalytic adsorbent involved the integration of carbon dots (CD) into a metal-organic framework (MOF) of MIL-88B(Fe) using the solvothermal technique. Characterization of the resulting CD@MIL-88B(Fe) was conducted using various analytical methods, including X-ray-based microscopic and spectroscopic techniques, electrochemical impedance spectroscopy, UV–Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The adsorbent demonstrated significant photocatalytic activity, achieving up to 92% and 90% removal of amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, with an RSD value of around 5%. The study explored the factors influencing the degradation of pharmaceuticals and determined the optimal conditions for the process, including pH values of 3 and 4 for AmB and Nap, a photocatalyst concentration of 0.2 g L-1, and an H2O2 concentration ranging from 40 to 50 mM. Reactive oxidative species such as ⋅OH and ⋅O2 were identified through the examination of different scavengers. Additionally, the adsorption isotherm and kinetic studies revealed that the synthesized photocatalyst functions as an effective adsorbent, with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap, while also serving as a photocatalytic agent for removal purposes.

Keywords: fenton-like degradation, metal-organic frameworks, heterogenous photocatalysts, naproxen

Procedia PDF Downloads 58
29524 Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem

Authors: Muhammad Xaaceph Khan, Abida Butt, Farah Kausar

Abstract:

Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd.

Keywords: aphid, beetle, bioaccumulation, cadmium, wheat, zinc

Procedia PDF Downloads 143
29523 Building a Parametric Link between Mapping and Planning: A Sunlight-Adaptive Urban Green System Plan Formation Process

Authors: Chenhao Zhu

Abstract:

Quantitative mapping is playing a growing role in guiding urban planning, such as using a heat map created by CFX, CFD2000, or Envi-met, to adjust the master plan. However, there is no effective quantitative link between the mappings and planning formation. So, in many cases, the decision-making is still based on the planner's subjective interpretation and understanding of these mappings, which limits the improvement of scientific and accuracy brought by the quantitative mapping. Therefore, in this paper, an effort has been made to give a methodology of building a parametric link between the mapping and planning formation. A parametric planning process based on radiant mapping has been proposed for creating an urban green system. In the first step, a script is written in Grasshopper to build a road network and form the block, while the Ladybug Plug-in is used to conduct a radiant analysis in the form of mapping. Then, the research creatively transforms the radiant mapping from a polygon into a data point matrix, because polygon is hard to engage in the design formation. Next, another script is created to select the main green spaces from the road network based on the criteria of radiant intensity and connect the green spaces' central points to generate a green corridor. After that, a control parameter is introduced to adjust the corridor's form based on the radiant intensity. Finally, a green system containing greenspace and green corridor is generated under the quantitative control of the data matrix. The designer only needs to modify the control parameter according to the relevant research results and actual conditions to realize the optimization of the green system. This method can also be applied to much other mapping-based analysis, such as wind environment analysis, thermal environment analysis, and even environmental sensitivity analysis. The parameterized link between the mapping and planning will bring about a more accurate, objective, and scientific planning.

Keywords: parametric link, mapping, urban green system, radiant intensity, planning strategy, grasshopper

Procedia PDF Downloads 126
29522 Study on Multi-Point Stretch Forming Process for Double Curved Surface

Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang

Abstract:

Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.

Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing

Procedia PDF Downloads 467
29521 Optimal Control of DC Motor Using Linear Quadratic Regulator

Authors: Meetty Tomy, Arxhana G Thosar

Abstract:

This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor.

Keywords: optimal control, DC motor, performance index, MATLAB

Procedia PDF Downloads 393
29520 Effect of Al2O3 Nanoparticles on Corrosion Behavior of Aluminum Alloy Fabricated by Powder Metallurgy

Authors: Muna Khethier Abbass, Bassma Finner Sultan

Abstract:

In this research the effect of Al2O3 nanoparticles on corrosion behavior of aluminum base alloy(Al-4.5wt%Cu-1.5wt%Mg) has been investigated. Nanocomopsites reinforced with variable contents of 1,3 & 5wt% of Al2O3 nanoparticles were fabricated using powder metallurgy. All samples were prepared from the base alloy powders under the best powder metallurgy processing conditions of 6 hr of mixing time , 450 MPa of compaction pressure and 560°C of sintering temperature. Density and micro hardness measurements, and electrochemical corrosion tests are performed for all prepared samples in 3.5wt%NaCl solution at room temperature using potentiostate instrument. It has been found that density and micro hardness of the nanocomposite increase with increasing of wt% Al2O3 nanoparticles to Al matrix. It was found from Tafel extrapolation method that corrosion rates of the nanocomposites reinforced with alumina nanoparticles were lower than that of base alloy. From results of corrosion test by potentiodynamic cyclic polarization method, it was found the pitting corrosion resistance improves with adding of Al2O3 nanoparticles . It was noticed that the pits disappear and the hysteresis loop disappears also from anodic polarization curve.

Keywords: powder metallurgy, nano composites, Al-Cu-Mg alloy, electrochemical corrosion

Procedia PDF Downloads 450
29519 Electroforming of 3D Digital Light Processing Printed Sculptures Used as a Low Cost Option for Microcasting

Authors: Cecile Meier, Drago Diaz Aleman, Itahisa Perez Conesa, Jose Luis Saorin Perez, Jorge De La Torre Cantero

Abstract:

In this work, two ways of creating small-sized metal sculptures are proposed: the first by means of microcasting and the second by electroforming from models printed in 3D using an FDM (Fused Deposition Modeling‎) printer or using a DLP (Digital Light Processing) printer. It is viable to replace the wax in the processes of the artistic foundry with 3D printed objects. In this technique, the digital models are manufactured with resin using a low-cost 3D FDM printer in polylactic acid (PLA). This material is used, because its properties make it a viable substitute to wax, within the processes of artistic casting with the technique of lost wax through Ceramic Shell casting. This technique consists of covering a sculpture of wax or in this case PLA with several layers of thermoresistant material. This material is heated to melt the PLA, obtaining an empty mold that is later filled with the molten metal. It is verified that the PLA models reduce the cost and time compared with the hand modeling of the wax. In addition, one can manufacture parts with 3D printing that are not possible to create with manual techniques. However, the sculptures created with this technique have a size limit. The problem is that when printed pieces with PLA are very small, they lose detail, and the laminar texture hides the shape of the piece. DLP type printer allows obtaining more detailed and smaller pieces than the FDM. Such small models are quite difficult and complex to melt using the lost wax technique of Ceramic Shell casting. But, as an alternative, there are microcasting and electroforming, which are specialized in creating small metal pieces such as jewelry ones. The microcasting is a variant of the lost wax that consists of introducing the model in a cylinder in which the refractory material is also poured. The molds are heated in an oven to melt the model and cook them. Finally, the metal is poured into the still hot cylinders that rotate in a machine at high speed to properly distribute all the metal. Because microcasting requires expensive material and machinery to melt a piece of metal, electroforming is an alternative for this process. The electroforming uses models in different materials; for this study, micro-sculptures printed in 3D are used. These are subjected to an electroforming bath that covers the pieces with a very thin layer of metal. This work will investigate the recommended size to use 3D printers, both with PLA and resin and first tests are being done to validate use the electroforming process of microsculptures, which are printed in resin using a DLP printer.

Keywords: sculptures, DLP 3D printer, microcasting, electroforming, fused deposition modeling

Procedia PDF Downloads 119
29518 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 190
29517 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery

Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang

Abstract:

As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.

Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping

Procedia PDF Downloads 78
29516 Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy

Authors: Siddhant Srivastav, Soumyaranjan Mishra, Sumanta Kumar Meher

Abstract:

Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors.

Keywords: anion exchange, asymmetric supercapacitor, supercapacitive charge-discharge, voltage drop

Procedia PDF Downloads 84
29515 Ab-initio Calculations on the Mechanism of Action of Platinum and Ruthenium Complexes in Phototherapy

Authors: Eslam Dabbish, Fortuna Ponte, Stefano Scoditti, Emilia Sicilia, Gloria Mazzone

Abstract:

The medical techniques based on the use of light for activating the drug are occupying a prominent place in the cancer treatment due to their selectivity that contributes to reduce undesirable side effects of conventional chemotherapy. Among these therapeutic treatments, photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are emerging as complementary approaches for selective destruction of neoplastic tissue through direct cellular damage. Both techniques rely on the employment of a molecule, photosensitizer (PS), able to absorb within the so-called therapeutic window. Thus, the exposure to light of otherwise inert molecules promotes the population of excited states of the drug, that in PDT are able to produce the cytotoxic species, such as 1O2 and other ROS, in PACT can be responsible of the active species release or formation. Following the success of cisplatin in conventional treatments, many other transition metal complexes were explored as anticancer agents for applications in different medical approaches, including PDT and PACT, in order to improve their chemical, biological and photophysical properties. In this field, several crucial characteristics of candidate PSs can be accurately predicted from first principle calculations, especially in the framework of density functional theory and its time-dependent formulation, contributing to the understanding of the entire photochemical pathways involved which can ultimately help in improving the efficiency of a drug. A brief overview of the outcomes on some platinum and ruthenium-based PSs proposed for the application in the two phototherapies will be provided.

Keywords: TDDFT, metal complexes, PACT, PDT

Procedia PDF Downloads 84
29514 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior

Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh

Abstract:

Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.

Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density

Procedia PDF Downloads 293
29513 Enhancing Anode Performance in Li-S Batteries via Coating with Waste Battery-Derived Materials

Authors: Mohsen Hajian Foroushani, Samane Maroufi, Rasoul Khayyam Nekouei, Veena Sahajwalla

Abstract:

Lithium (Li) metal possesses outstanding characteristics, with the highest specific capacity (3860 mAh g-1) and the lowest electrochemical potential (-3.04 V vs. SHE) among available metal anodes. The collaborative impact of Li and sulfur, featuring a specific capacity of 1670 mAh g-1, positions Li–S batteries (LSBs) as highly promising contenders for the next generation of high-energy-density batteries. However, the comprehensive commercialization of LSBs relies on addressing various challenges inherent to these batteries. One of the most formidable hurdles is the widespread issue of Li dendrite nucleation and growth on the anode surface, stemming from the inherent instability of the solid electrolyte interphase (SEI) layer. In this study, we employed a Zn-based coating derived from waste materials, significantly enhancing the performance of the symmetrical cell across various current densities. The applied coating not only improved the cyclability of the cell by more than fourfold but also reduced the charge transfer resistance from over 300 to less than 10 before cycling. Examination through SEM micrographs of both samples revealed the successful suppression of Li dendrites by the applied coating.

Keywords: Li-S batteries, Li dendrite, sustainability, Li anode

Procedia PDF Downloads 57
29512 Heavy Metals in the Water of Lakes in the 'Bory Tucholskie' National Park of Biosphere Reserve

Authors: Krzysztof Gwozdzinski, Janusz Mazur

Abstract:

Bory Tucholskie (Tucholskie Forest) is one of the largest pine forest complexes in Poland. It occupies approx. 3,000 square kilometers of Sandr in the Brda and Wda basin and the Tuchola Plain and the Charzykowskie Plain. Since 2010 it has transformed into The Bory Tucholskie Biosphere Reserve, according to the UNESCO decision. The area of the Bory Tucholskie National Park (BTNP), the park area, has been designated in 1996. There is little data on the presence of heavy metals in the Park's lakes. Concentration of heavy metals in the water of 19 lakes in the BTNP was examined. The lakes were divided into two groups: subglacial channel lakes of Struga Siedmiu Jezior (the Seven Lakes Stream) and other lakes. Heavy metals (transition metals) belong to d-block of elements. The part of these metals plays an important role in the function of living organisms as metalloproteins (enzymes, hemoproteins, vitamins, etc.). However, heavy metals are also typical; heavy metals are typical anthropogenic pollutants. Water samples were collected at the deepest points of lakes during spring and during summer stagnation. The analysis of metals was performed in an atomic absorption spectrophotometer Varian Spectra A300/400 in electric atomizer (GTA 96) in graphite cuvette. In the waters of the Seven Lakes Stream (Ostrowite, Zielone, Jelen, Belczak, Glowka, Plesno, Skrzynka, Mielnica) the increase in the concentration of the manganese and iron from outflow to inflow of Charzykowskie lake was found, while the concentration of copper (approx. 4 μg dm⁻³) and cadmium ( < 0.5 μg dm⁻³) was similar in all lakes. The concentration of the lead also varied within 2.1-3.6 μg dm⁻³. The concentration of nickel was approx. 3-fold higher in Ostrowite lake than other lakes of Struga. In turn the waters of the lakes Ostrowite, Jelen and Belczak were rich in zinc. The lowest level of heavy metals was observed in Zielone lake. In the second group of lakes, i.e., Krzywce Wielkie and Krzywce Male the heavy metal concentrations were lower than in the waters of Struga but higher than in oligotrophic lakes, i.e., Nierybno, Gluche, Kociol, Gacno Wielkie, Gacno Mae, Dlugie, Zabionek, and Sosnowek. The concentration of cadmium was below 0.5 μg dm⁻³ in all the studied lakes from this group. In the group of oligotrophic lakes the highest concentrations of metals such as manganese, iron, zinc and nickel in Gacno Male and Gacno Wielkie were observed. The high level of manganese in Sosnowek and Gacno Wielkie lakes was found. The lead level was also high in Nierybno lake and nickel in Gacno Wielkie lake. The lower level of heavy metals was in oligotrophic lakes such as Kociol, Dlugie, Zabionek and α-mesotrophic lake, Krzywce Wielkie. Generally, the level of heavy metals in studied lakes situated in Bory Tucholskie National Park was lower than in other lakes of Bory Tucholskie Biosphere Reserve.

Keywords: Bory Tucholskie Biosphere Reserve, Bory Tucholskie National Park, heavy metals, lakes

Procedia PDF Downloads 107
29511 Zinc Oxide Nanorods Decorated Nanofibers Based Flexible Electrodes for Capacitive Energy Storage Applications

Authors: Syed Kamran Sami, Saqib Siddiqui

Abstract:

In recent times, flexible supercapacitors retaining high electrochemical performance and steadiness along with mechanical endurance has developed as a spring of attraction due to the exponential progress and innovations in energy storage devices. To meet the rampant increasing demand of energy storage device with the small form factor, a unique, low cost and high-performance supercapacitor with considerably higher capacitance and mechanical robustness is required to recognize their real-life applications. Here in this report, synthesis route of electrode materials with low rigidity and high charge storage performance is reported using 1D-1D hybrid structure of zinc oxide (ZnO) nanorods, and conductive polymer smeared polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) electrospun nanofibers. The ZnO nanorods were uniformly grown on poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) coated P(VDF-TrFE) nanofibers using hydrothermal growth to manufacture light weight, permeable electrodes for supercapacitor. The PEDOT: PSS coated P(VDF-TrFE) porous web of nanofibers act as framework with high surface area. The incorporation of ZnO nanorods further boost the specific capacitance by 59%. The symmetric device using the fabricated 1D-1D hybrid electrodes reveals fairly high areal capacitance of 1.22mF/cm² at a current density of 0.1 mA/cm² with a power density of more than 1600 W/Kg. Moreover, the fabricated electrodes show exceptional flexibility and high endurance with 90% and 76% specific capacitance retention after 1000 and 5000 cycles respectively signifying the astonishing mechanical durability and long-term stability. All the properties exhibited by the fabricated electrode make it convenient for making flexible energy storage devices with the low form factor.

Keywords: ZnO nanorods, electrospinning, mechanical endurance, flexible supercapacitor

Procedia PDF Downloads 269
29510 The Effect of Different Surface Cleaning Methods on Porosity Formation and Mechanical Property of AA6xxx Aluminum Gas Metal Arc Welds

Authors: Fatemeh Mirakhorli

Abstract:

Porosity is the main issue during welding of aluminum alloys, and surface cleaning has a critical influence to reduce the porosity level by removing the oxidized surface layer before fusion welding. Developing an optimum and economical surface cleaning method has an enormous benefit for aluminum welding industries to reduce costs related to repairing and repeating welds as well as increasing the mechanical properties of the joints. In this study, several mechanical and chemical surface cleaning methods were examined for butt joint welding of 2 mm thick AA6xxx alloys using ER5556 filler metal. The effects of each method on porosity formation and tensile properties are evaluated. It has been found that, compared to the conventional mechanical cleaning method, the use of chemical cleaning leads to an important reduction in porosity level even after a significant delay between cleaning and welding. The effect of the higher porosity level in the fusion zone to reduce the tensile strength of the welds is shown.

Keywords: gas metal arc welding (GMAW), aluminum alloy, surface cleaning, porosity formation, mechanical property

Procedia PDF Downloads 120