Search results for: wireless sensor networks (WSN)
2710 Advanced Mouse Cursor Control and Speech Recognition Module
Authors: Prasad Kalagura, B. Veeresh kumar
Abstract:
We constructed an interface system that would allow a similarly paralyzed user to interact with a computer with almost full functional capability. A real-time tracking algorithm is implemented based on adaptive skin detection and motion analysis. The clicking of the mouse is activated by the user's eye blinking through a sensor. The keyboard function is implemented by voice recognition kit.Keywords: embedded ARM7 processor, mouse pointer control, voice recognition
Procedia PDF Downloads 5782709 Regeneration Study on the Athens City Center: Transformation of the Historical Triangle to “Low Pollution and Restricted Vehicle Traffic Zone”
Authors: Chondrogianni Dimitra, Yorgos J. Stephanedes
Abstract:
The impact of the economic crisis, coupled with the aging of the city's old core, is reflected in central Athens. Public and private users, residents, employees, visitors desire the quality upgrading of abandoned buildings and public spaces through environmental upgrading and sustainable mobility, and promotion of the international metropolitan character of the city. In the study, a strategy for reshaping the character and function of the historic Athenian triangle is proposed, aiming at its economic, environmental, and social sustainable development through feasible, meaningful, and non-landscaping solutions of low cost and high positive impact. Sustainable mobility is the main principle in re-planning the study area and transforming it into a “Low Pollution and Limited Vehicle Traffic Zone” is the main strategy. Τhe proposed measures include the development of pedestrian mobility networks by expanding the pedestrian roads and limited-traffic routes, of bicycle networks based on the approved Metropolitan Bicycle Route of Athens, of public transportation networks with new lines of electric mini-buses, and of new regulations for vehicle mobility in the historic triangle. In addition, complementary actions are proposed regarding the provision of Wi-Fi on fixed track media, development of applications that facilitate combined travel and provide real-time data, integration of micromobility (roller skates, Segway, Hoverboard), and its enhancement as a flexible means of personal mobility, and development of car-sharing, ride-sharing and dynamic carpooling initiatives.Keywords: regeneration plans, sustainable mobility, environmental upgrading, athens historical triangle
Procedia PDF Downloads 1672708 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 262707 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin
Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi
Abstract:
The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.Keywords: rainfall, neural networks, climatic indices, Mediterranean
Procedia PDF Downloads 3122706 Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios
Authors: Davi Marinho de Araujo Falcão, Ronaldo Moreira Salles, Paulo Henrique Maranhão
Abstract:
Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol.Keywords: DTN, discriminant function, epidemic protocol, security, tactical messages, warship scenario
Procedia PDF Downloads 1912705 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications
Authors: V. V. Reddy, N. V. Sarma
Abstract:
A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x-axis, y-axis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel poly fractal antenna are demonstrated.Keywords: fractal, circular polarization, Minkowski, Koch
Procedia PDF Downloads 3562704 Use of Metamaterials Structures to Reduce the SAR in the Human Head
Authors: Hafawa Messaoudi, Taoufik Aguili
Abstract:
Due to the rapid growth in the use of wireless communication systems, there has been a recent increase in public concern regarding the exposure of humans to Radio Frequency (RF) electromagnetic radiation. This is particularly evident in the case of mobile telephone handsets. Previously, the insertion of a ferrite sheet between the antenna and the human head, the use of conductive materials (such as aluminum), the use of metamaterials (SRR), frequency selective surface (FSS), and electromagnetic band gap (EBG) structures to design high performance devices were proposed as methods of reducing the SAR value. This paper aims to provide an investigation of the effectiveness of various available Specific Absorption Rate (SAR) reduction solutions.Keywords: EBG, HIS, metamaterials, SAR reduction
Procedia PDF Downloads 5262703 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3532702 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening
Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang
Abstract:
In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems
Procedia PDF Downloads 1282701 The Effects of “Never Pressure Injury” on the Incidence of Pressure Injuries in Critically Ill Patients
Authors: Nuchjaree Kidjawan, Orapan Thosingha, Pawinee Vaipatama, Prakrankiat Youngkong, Sirinapha Malangputhong, Kitti Thamrongaphichartkul, Phatcharaporn Phetcharat
Abstract:
NPI uses technology sensorization of things and processed by AI system. The main features are an individual interface pressure sensor system in contact with the mattress and a position management system where the sensor detects the determined pressure with automatic pressure reduction and distribution. The role of NPI is to monitor, identify the risk and manage the interface pressure automatically when the determined pressure is detected. This study aims to evaluate the effects of “Never Pressure Injury (NPI),” an innovative mattress, on the incidence of pressure injuries in critically ill patients. An observational case-control study was employed to compare the incidence of pressure injury between the case and the control group. The control group comprised 80 critically ill patients admitted to a critical care unit of Phyathai3 Hospital, receiving standard care with the use of memory foam according to intensive care unit guidelines. The case group comprised 80 critically ill patients receiving standard care and with the use of the Never Pressure Injury (NPI) innovation mattress. The patients who were over 20 years old and showed scores of less than 18 on the Risk Assessment Pressure Ulcer Scale – ICU and stayed in ICU for more than 24 hours were selected for the study. The patients’ skin was assessed for the occurrence of pressure injury once a day for five consecutive days or until the patients were discharged from ICU. The sample comprised 160 patients with ages ranging from 30-102 (mean = 70.1 years), and the Body Mass Index ranged from 13.69- 49.01 (mean = 24.63). The case and the control group were not different in their sex, age, Body Mass Index, Pressure Ulcer Risk Scores, and length of ICU stay. Twenty-two patients (27.5%) in the control group had pressure injuries, while no pressure injury was found in the case group.Keywords: pressure injury, never pressure injury, innovation mattress, critically ill patients, prevent pressure injury
Procedia PDF Downloads 1252700 Deep Reinforcement Learning and Generative Adversarial Networks Approach to Thwart Intrusions and Adversarial Attacks
Authors: Fabrice Setephin Atedjio, Jean-Pierre Lienou, Frederica F. Nelson, Sachin S. Shetty, Charles A. Kamhoua
Abstract:
Malicious users exploit vulnerabilities in computer systems, significantly disrupting their performance and revealing the inadequacies of existing protective solutions. Even machine learning-based approaches, designed to ensure reliability, can be compromised by adversarial attacks that undermine their robustness. This paper addresses two critical aspects of enhancing model reliability. First, we focus on improving model performance and robustness against adversarial threats. To achieve this, we propose a strategy by harnessing deep reinforcement learning. Second, we introduce an approach leveraging generative adversarial networks to counter adversarial attacks effectively. Our results demonstrate substantial improvements over previous works in the literature, with classifiers exhibiting enhanced accuracy in classification tasks, even in the presence of adversarial perturbations. These findings underscore the efficacy of the proposed model in mitigating intrusions and adversarial attacks within the machine-learning landscape.Keywords: machine learning, reliability, adversarial attacks, deep-reinforcement learning, robustness
Procedia PDF Downloads 102699 Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback
Authors: Kevin V. Bui, Richard A. Claytor, Elizabeth M. Priolo, Weihui Li
Abstract:
Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement.Keywords: oxygen deprivation mask, lung function, spirometer, Bluetooth
Procedia PDF Downloads 2182698 Belonging in South Africa: Networks among African Immigrants and South African Natives
Authors: Efe Mary Isike
Abstract:
The variety of relationships between migrants and host communities is an enduring theme of migration studies. On one extreme, there are numerous examples of hostility towards ‘strangers’ who are either ejected from society or denied access to jobs, housing, education, healthcare and other aspects of normal life. More moderate treatments of those identified as different include expectations of assimilation in which host communities expect socially marginalized groups to conform to norms that they define. Both exclusion and assimilation attempt to manage the problem of difference by removing it. South Africa experienced great influx of African immigrants who worked in mines and farms under harsh and exploitative conditions before and after the institutionalization of apartheid. Although these labour migrants contributed a great deal to the economic development of South Africa, they were not given citizenship status. The formal democratization in 1994 came with dreams and expectations of a more inclusive South Africa, where black South Africans hoped to maximize their potential in a more free, fair and equal society. In the same vein, it also opened spaces for an influx of especially African immigrants into the country which set the stage for a new form of contest for belonging between South African citizens and African migrant settlers. One major manifestation of this contest was the violent xenophobic attacks against African immigrants which predate that of May 2008 and has continued with lower intensity across the country since then. While it is doubtless possible to find abundant evidence of antagonism in the relations between South Africans and African immigrants, the purpose of this study is to investigate the everyday realities of migrants in ordinary places who interact with a variety of people through their livelihood activities, marriages and social relationships, moving around towns and cities, in their residential areas, in faith-based organizations and other elements of everyday life. Rather than assuming all relations are hostile, this study intends to look at the breadth of everyday relationships within a specific context. Based on the foregoing, the main task of this study is to holistically examine and explain the nature of interactions between African migrants and South African citizens by analysing the social network ties that connect them in the specific case of Umhlathuze municipality. It will also investigate the variety of networks that exists between African migrants and South Africans and examine the nature of the linkages in the various networks identified between these two groups in Umhlathuze Municipality. Apart from a review of relevant literature, policies and other official documents, this paper will employ a purposive sample survey and in-depth interview of African immigrants and South Africans within their networks in selected suburbs in KwaZulu-Natal.Keywords: migration, networks, development, host communities
Procedia PDF Downloads 2752697 Improved Performance Using Adaptive Pre-Coding in the Cellular Network
Authors: Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
This paper proposes the cooperative transmission scheme with pre-coding because the cellular communication requires high reliability. The cooperative transmission scheme uses pre-coding method with limited feedback information among small cells. Particularly, the proposed scheme has adaptive mode according to the position of mobile station. Thus, demand of recent wireless communication is resolved by this scheme. From the simulation results, the proposed scheme has better performance compared to the conventional scheme in the cellular network.Keywords: CDD, cellular network, pre-coding, SPC
Procedia PDF Downloads 5692696 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.Keywords: maximum power point tracking, neural networks, photovoltaic, P&O
Procedia PDF Downloads 3392695 Soil Salinity Mapping using Electromagnetic Induction Measurements
Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri
Abstract:
Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinizationKeywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable
Procedia PDF Downloads 1872694 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples
Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari
Abstract:
Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer
Procedia PDF Downloads 3172693 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement
Authors: Shibo Wei, Ting Jiang
Abstract:
Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR
Procedia PDF Downloads 2012692 An Analysis of the Dominance of Migrants in the South African Spaza and Retail market: A Relationship-Based Network Perspective
Authors: Meron Okbandrias
Abstract:
The South African formal economy is rule-based economy, unlike most African and Asian markets. It has a highly developed financial market. In such a market, foreign migrants have dominated the small or spaza shops that service the poor. They are highly competitive and capture significant market share in South Africa. This paper analyses the factors that assisted the foreign migrants in having a competitive age. It does that by interviewing Somali, Bangladesh, and Ethiopian shop owners in Cape Town analysing the data through a narrative analysis. The paper also analyses the 2019 South African consumer report. The three migrant nationalities mentioned above dominate the spaza shop business and have significant distribution networks. The findings of the paper indicate that family, ethnic, and nationality based network, in that order of importance, form bases for a relationship-based business network that has trust as its mainstay. Therefore, this network ensures the pooling of resources and abiding by certain principles outside the South African rule-based system. The research identified practises like bulk buying within a community of traders, sharing information, buying from a within community distribution business, community based transportation system and providing seed capital for people from the community to start a business is all based on that relationship-based system. The consequences of not abiding by the rules of these networks are social and economic exclusion. In addition, these networks have their own commercial and social conflict resolution mechanisms aside from the South African justice system. Network theory and relationship based systems theory form the theoretical foundations of this paper.Keywords: migrant, spaza shops, relationship-based system, South Africa
Procedia PDF Downloads 1272691 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 1282690 Integrating High-Performance Transport Modes into Transport Networks: A Multidimensional Impact Analysis
Authors: Sarah Pfoser, Lisa-Maria Putz, Thomas Berger
Abstract:
In the EU, the transport sector accounts for roughly one fourth of the total greenhouse gas emissions. In fact, the transport sector is one of the main contributors of greenhouse gas emissions. Climate protection targets aim to reduce the negative effects of greenhouse gas emissions (e.g. climate change, global warming) worldwide. Achieving a modal shift to foster environmentally friendly modes of transport such as rail and inland waterways is an important strategy to fulfill the climate protection targets. The present paper goes beyond these conventional transport modes and reflects upon currently emerging high-performance transport modes that yield the potential of complementing future transport systems in an efficient way. It will be defined which properties describe high-performance transport modes, which types of technology are included and what is their potential to contribute to a sustainable future transport network. The first step of this paper is to compile state-of-the-art information about high-performance transport modes to find out which technologies are currently emerging. A multidimensional impact analysis will be conducted afterwards to evaluate which of the technologies is most promising. This analysis will be performed from a spatial, social, economic and environmental perspective. Frequently used instruments such as cost-benefit analysis and SWOT analysis will be applied for the multidimensional assessment. The estimations for the analysis will be derived based on desktop research and discussions in an interdisciplinary team of researchers. For the purpose of this work, high-performance transport modes are characterized as transport modes with very fast and very high throughput connections that could act as efficient extension to the existing transport network. The recently proposed hyperloop system represents a potential high-performance transport mode which might be an innovative supplement for the current transport networks. The idea of hyperloops is that persons and freight are shipped in a tube at more than airline speed. Another innovative technology consists in drones for freight transport. Amazon already tests drones for their parcel shipments, they aim for delivery times of 30 minutes. Drones can, therefore, be considered as high-performance transport modes as well. The Trans-European Transport Networks program (TEN-T) addresses the expansion of transport grids in Europe and also includes high speed rail connections to better connect important European cities. These services should increase competitiveness of rail and are intended to replace aviation, which is known to be a polluting transport mode. In this sense, the integration of high-performance transport modes as described above facilitates the objectives of the TEN-T program. The results of the multidimensional impact analysis will reveal potential future effects of the integration of high-performance modes into transport networks. Building on that, a recommendation on the following (research) steps can be given which are necessary to ensure the most efficient implementation and integration processes.Keywords: drones, future transport networks, high performance transport modes, hyperloops, impact analysis
Procedia PDF Downloads 3322689 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4012688 Perfomance of PAPR Reduction in OFDM System for Wireless Communications
Authors: Alcardo Alex Barakabitze, Saddam Aziz, Muhammad Zubair
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) is a special form of multicarrier transmission that splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. In this paper, we explore the Peak to Average Power Reduction (PAPR) problem in OFDM systems. We provide the performance analysis of CCDF and BER through MATLAB simulations.Keywords: bit error ratio (BER), OFDM, peak to average power reduction (PAPR), sub-carriers
Procedia PDF Downloads 5422687 Multichannel Scheme under Fairness Environment for Cognitive Radio Networks
Authors: Hans Marquez Ramos, Cesar Hernandez, Ingrid Páez
Abstract:
This paper develops a multiple channel assignment model, which allows to take advantage in most efficient way, spectrum opportunities in cognitive radio networks. Developed scheme allows make several available and frequency adjacent channel assignments, which require a bigger wide band, under an equality environment. The hybrid assignment model it is made by to algorithms, one who makes the ranking and select available frequency channels and the other one in charge of establishing an equality criteria, in order to not restrict spectrum opportunities for all other secondary users who wish to make transmissions. Measurements made were done for average bandwidth, average delay, as well fairness computation for several channel assignment. Reached results were evaluated with experimental spectrum occupational data from GSM frequency band captured. Developed model, shows evidence of improvement in spectrum opportunity use and a wider average transmit bandwidth for each secondary user, maintaining equality criteria in channel assignment.Keywords: bandwidth, fairness, multichannel, secondary users
Procedia PDF Downloads 5052686 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition
Authors: Umair Rashid
Abstract:
Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter
Procedia PDF Downloads 1012685 Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound
Authors: H. A. Bentounes, A. Abbad, W. Benstaali
Abstract:
Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infraredKeywords: GaN, optical absorption, semi-metallic, dielectric function
Procedia PDF Downloads 3682684 Simulation of Channel Models for Device-to-Device Application of 5G Urban Microcell Scenario
Authors: H. Zormati, J. Chebil, J. Bel Hadj Tahar
Abstract:
Next generation wireless transmission technology (5G) is expected to support the development of channel models for higher frequency bands, so clarification of high frequency bands is the most important issue in radio propagation research for 5G, multiple urban microcellular measurements have been carried out at 60 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL), the objective is to compare simulation results of some studied channel models with the purpose of testing the performance of each one.Keywords: 5G, channel model, 60GHz channel, millimeter-wave, urban microcell
Procedia PDF Downloads 3192683 Performance Evaluation of GPS/INS Main Integration Approach
Authors: Othman Maklouf, Ahmed Adwaib
Abstract:
This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.Keywords: GPS, INS, Kalman filter, sensor calibration, navigation system
Procedia PDF Downloads 5902682 Enriched Education: The Classroom as a Learning Network through Video Game Narrative Development
Authors: Wayne DeFehr
Abstract:
This study is rooted in a pedagogical approach that emphasizes student engagement as fundamental to meaningful learning in the classroom. This approach creates a paradigmatic shift, from a teaching practice that reinforces the teacher’s central authority to a practice that disperses that authority among the students in the classroom through networks that they themselves develop. The methodology of this study about creating optimal conditions for learning in the classroom includes providing a conceptual framework within which the students work, as well as providing clearly stated expectations for work standards, content quality, group methodology, and learning outcomes. These learning conditions are nurtured in a variety of ways. First, nearly every class includes a lecture from the professor with key concepts that students need in order to complete their work successfully. Secondly, students build on this scholarly material by forming their own networks, where students face each other and engage with each other in order to collaborate their way to solving a particular problem relating to the course content. Thirdly, students are given short, medium, and long-term goals. Short term goals relate to the week’s topic and involve workshopping particular issues relating to that stage of the course. The medium-term goals involve students submitting term assignments that are evaluated according to a well-defined rubric. And finally, long-term goals are achieved by creating a capstone project, which is celebrated and shared with classmates and interested friends on the final day of the course. The essential conclusions of the study are drawn from courses that focus on video game narrative. Enthusiastic student engagement is created not only with the dynamic energy and expertise of the instructor, but also with the inter-dependence of the students on each other to build knowledge, acquire skills, and achieve successful results.Keywords: collaboration, education, learning networks, video games
Procedia PDF Downloads 1162681 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 209