Search results for: whale optimization algorithm
4467 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 4524466 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification
Procedia PDF Downloads 2774465 Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach
Authors: Djamel Remache, Serge Dos Santos, Michael Cliez, Michel Gratton, Patrick Chabrand, Jean-Marie Rossi, Jean-Louis Milan
Abstract:
Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results.Keywords: mechanical skin tissue behavior, uniaxial tensile test, finite element analysis, inverse optimization approach
Procedia PDF Downloads 4084464 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: routing protocol, optimization, clustering, WSN
Procedia PDF Downloads 4694463 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems
Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana
Abstract:
Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP
Procedia PDF Downloads 2004462 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 1664461 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning
Procedia PDF Downloads 1164460 The Challenges of Intercultural Transfer: The Italian Reception of Aotearoa/New Zealand Films
Authors: Martina Depentor
Abstract:
While the cinematic medium contributes to bringing images of a culture to foreign audiences, Audiovisual Translation contributes to deciphering those cultural representations to those same audiences. Through Audiovisual Translation, in fact, elements permeate the reception system and contribute to forging a cultural image of the original/source system in the target/reception system. By analyzing a number of Italian critical reviews, blogs and forum posts, this paper examines the impact and reception in Italy of five of the most successful and influential New Zealand films of the last two decades - An Angel at my Table (1990), The Piano (1993), Heavenly Creatures (1994), Once Were Warriors (1994), Whale Rider (2002) - with the aim of exploring how the adaptation of New Zealand films might condition the representation of New Zealand in the Italian imaginary. The analysis seeks to identify whether a certain degree of cultural loss results from the 'translation' of these films. The films selected share common ground in that they all reveal cultural, social and historical characteristics of New Zealand, from aspects that are unique to this country and that on the surface may render it difficult to penetrate (unfamiliar landscapes, aspects of indigenous culture) to more universal themes (intimate family stories, dysfunctional relationship). They contributed to situating New Zealand on an international stage and to bringing images of the country to many audiences, the Italian one included, with little previous cultural knowledge of the social and political history of New Zealand. Differences in film types pose clearly different levels of interpretative challenges to non-New Zealander audiences, and examples from the films will show how these challenges are or are not overcome if the adaptations display misinterpretations or rendition gaps, and how the process of intercultural transfer further 'domesticates' or 'exoticises' the source culture.Keywords: audiovisual translation, cultural representation, intercultural transfer, New Zealand Films
Procedia PDF Downloads 3014459 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 924458 On the System of Split Equilibrium and Fixed Point Problems in Real Hilbert Spaces
Authors: Francis O. Nwawuru, Jeremiah N. Ezeora
Abstract:
In this paper, a new algorithm for solving the system of split equilibrium and fixed point problems in real Hilbert spaces is considered. The equilibrium bifunction involves a nite family of pseudo-monotone mappings, which is an improvement over monotone operators. More so, it turns out that the solution of the finite family of nonexpansive mappings. The regularized parameters do not depend on Lipschitz constants. Also, the computations of the stepsize, which plays a crucial role in the convergence analysis of the proposed method, do require prior knowledge of the norm of the involved bounded linear map. Furthermore, to speed up the rate of convergence, an inertial term technique is introduced in the proposed method. Under standard assumptions on the operators and the control sequences, using a modified Halpern iteration method, we establish strong convergence, a desired result in applications. Finally, the proposed scheme is applied to solve some optimization problems. The result obtained improves numerous results announced earlier in this direction.Keywords: equilibrium, Hilbert spaces, fixed point, nonexpansive mapping, extragradient method, regularized equilibrium
Procedia PDF Downloads 484457 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology
Authors: Fatima Bellali, Mariem Kharroubi
Abstract:
Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization
Procedia PDF Downloads 1604456 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System
Authors: S. Gherbi, F. Bouchareb
Abstract:
This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor
Procedia PDF Downloads 4334455 FEM for Stress Reduction by Optimal Auxiliary Holes in a Uniaxially Loaded Plate
Authors: Basavaraj R. Endigeri, Shriharsh Desphande
Abstract:
Optimization and reduction of stress concentration around holes in a uniaxially loaded plate is one of the important design criteria in many of the engineering applications. These stress risers will lead to failure of the component at the region of high stress concentration which has to be avoided by means of providing auxiliary holes on either side of the parent hole. By literature survey it is known that till date, there is no analytical solution documented to reduce the stress concentration by providing auxiliary holes expect for fever geometries. In the present work, plate with a hole subjected to uniaxial load is analyzed with the numerical method to determine the optimum sizes and locations for the auxillary holes for different center hole diameter to plate width ratios. The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 8.0 is used to carry out analysis and optimization is performed to determine the location and radii for optimum values of auxiliary holes to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. It is found from the work that introduction of auxiliary holes on either side of central circular hole will reduce stress concentration factor by a factor of 19 to 21 percentage.Keywords: finite element method, optimization, stress concentration factor, auxiliary holes
Procedia PDF Downloads 4394454 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems
Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi
Abstract:
The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.Keywords: mobile databases, synchronization, cache, response time
Procedia PDF Downloads 4054453 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform
Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu
Abstract:
Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS
Procedia PDF Downloads 5474452 Metaheuristic to Align Multiple Sequences
Authors: Lamiche Chaabane
Abstract:
In this study, a new method for solving sequence alignment problem is proposed, which is named ITS (Improved Tabu Search). This algorithm is based on the classical Tabu Search (TS). ITS is implemented in order to obtain results of multiple sequence alignment. Several ideas concerning neighbourhood generation, move selection mechanisms and intensification/diversification strategies for our proposed ITS is investigated. ITS have generated high-quality results in terms of measure of scores in comparison with the classical TS and simple iterative search algorithm.Keywords: multiple sequence alignment, tabu search, improved tabu search, neighbourhood generation, selection mechanisms
Procedia PDF Downloads 3054451 Optimization of Fenton Process for the Treatment of Young Municipal Leachate
Authors: Bouchra Wassate, Younes Karhat, Khadija El Falaki
Abstract:
Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate.Keywords: COD removal, color removal, Fenton process, oxidation process, leachate
Procedia PDF Downloads 2864450 Hybrid Approach for the Min-Interference Frequency Assignment
Authors: F. Debbat, F. T. Bendimerad
Abstract:
The efficient frequency assignment for radio communications becomes more and more crucial when developing new information technologies and their applications. It is consists in defining an assignment of frequencies to radio links, to be established between base stations and mobile transmitters. Separation of the frequencies assigned is necessary to avoid interference. However, unnecessary separation causes an excess requirement for spectrum, the cost of which may be very high. This problem is NP-hard problem which cannot be solved by conventional optimization algorithms. It is therefore necessary to use metaheuristic methods to solve it. This paper proposes Hybrid approach based on simulated annealing (SA) and Tabu Search (TS) methods to solve this problem. Computational results, obtained on a number of standard problem instances, testify the effectiveness of the proposed approach.Keywords: cellular mobile communication, frequency assignment problem, optimization, tabu search, simulated annealing
Procedia PDF Downloads 3854449 Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater
Authors: Emmanuel C. Ngerem
Abstract:
The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production.Keywords: wastewater cultivation, mixture design, lipid, biomass, nutrient removal, microwave, Chlorococcum, raceway pond, fermentable sugar, modelling, optimization
Procedia PDF Downloads 414448 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method
Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy
Abstract:
With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.Keywords: heat transfer, pde, taguchi optimization, SI/Ge
Procedia PDF Downloads 3394447 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 654446 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata
Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen
Abstract:
This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.Keywords: composite, blending, optimization, lamination parameters
Procedia PDF Downloads 2284445 Numerical Investigation of a Supersonic Ejector for Refrigeration System
Authors: Karima Megdouli, Bourhan Taschtouch
Abstract:
Supersonic ejectors have many applications in refrigeration systems. And improving ejector performance is the key to improve the efficiency of these systems. One of the main advantages of the ejector is its geometric simplicity and the absence of moving parts. This paper presents a theoretical model for evaluating the performance of a new supersonic ejector configuration for refrigeration system applications. The relationship between the flow field and the key parameters of the new configuration has been illustrated by analyzing the Mach number and flow velocity contours. The method of characteristics (MOC) is used to design the supersonic nozzle of the ejector. The results obtained are compared with those obtained by CFD. The ejector is optimized by minimizing exergy destruction due to irreversibility and shock waves. The optimization converges to an efficient optimum solution, ensuring improved and stable performance over the whole considered range of uncertain operating conditions.Keywords: supersonic ejector, theoretical model, CFD, optimization, performance
Procedia PDF Downloads 764444 An Approach to Maximize the Influence Spread in the Social Networks
Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel
Abstract:
In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network
Procedia PDF Downloads 2484443 Task Scheduling and Resource Allocation in Cloud-based on AHP Method
Authors: Zahra Ahmadi, Fazlollah Adibnia
Abstract:
Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow
Procedia PDF Downloads 1454442 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 2624441 Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization
Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia
Abstract:
Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm.Keywords: low-cost adsorbents, fig leaves, full factorial design, phenol, biosorption
Procedia PDF Downloads 974440 Control of Oil Content of Fried Zucchini Slices by Partial Predrying and Process Optimization
Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner
Abstract:
Main concern about deep-fat-fried food materials is their high final oil contents absorbed during frying process and/or after cooling period, since diet including high content of oil is accepted unhealthy by consumers. Different methods have been evaluated to decrease oil content of fried food stuffs. One promising method is partially drying of food material before frying. In the present study it was aimed to control and decrease the final oil content of zucchini slices by means of partial drying and to optimize process conditions. Conventional oven drying was used to decrease moisture content of zucchini slices at a certain extent. Process performance in terms of oil uptake was evaluated by comparing oil content of predried and then fried zucchini slices with those determined for directly fried ones. For predrying and frying processes, oven temperature and weight loss and frying oil temperature and time pairs were controlled variables, respectively. Zucchini slices were also directly fried for sensory evaluations revealing preferred properties of final product in terms of surface color, moisture content, texture and taste. These properties of directly fried zucchini slices taking the highest score at the end of sensory evaluation were determined and used as targets in optimization procedure. Response surface methodology was used for process optimization. The properties, determined after sensory evaluation, were selected as targets; meanwhile oil content was aimed to be minimized. Results indicated that final oil content of zucchini slices could be reduced from 58% to 46% by controlling conditions of predrying and frying processes. As a result, it was suggested that predrying could be one choose to reduce oil content of fried zucchini slices for health diet. This project (113R015) has been supported by TUBITAK.Keywords: health process, optimization, response surface methodology, oil uptake, conventional oven
Procedia PDF Downloads 3664439 First Investigation on CZTS Electron affinity and Thickness Optimization using SILVACO-Atlas 2D Simulation
Authors: Zeineb Seboui, Samar Dabbabi
Abstract:
In this paper, we study the performance of Cu₂ZnSnS₄ (CZTS) based solar cell. In our knowledge, it is for the first time that the FTO/ZnO:Co/CZTS structure is simulated using the SILVACO-Atlas 2D simulation. Cu₂ZnSnS₄ (CZTS), ZnO:Co and FTO (SnO₂:F) layers have been deposited on glass substrates by the spray pyrolysis technique. The extracted physical properties, such as thickness and optical parameters of CZTS layer, are considered to create a new input data of CZTS based solar cell. The optimization of CZTS electron affinity and thickness is performed to have the best FTO/ZnO: Co/CZTS efficiency. The use of CZTS absorber layer with 3.99 eV electron affinity and 3.2 µm in thickness leads to the higher efficiency of 16.86 %, which is very important in the development of new technologies and new solar cell devices.Keywords: CZTS solar cell, characterization, electron affinity, thickness, SILVACO-atlas 2D simulation
Procedia PDF Downloads 784438 The Design Optimization for Sound Absorption Material of Multi-Layer Structure
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.Keywords: sound absorption material, sound impedance tube, sound absorption coefficient, optimization design
Procedia PDF Downloads 289