Search results for: robust diagnosis
1814 Some Changes in Biochemical Parameters of Body and Hepato-Biliary System under the Influence of Hydrazine Derivatives
Authors: G. Y. Saspugayeva, R. R. Beysenova, M. R. Khanturin, E. T. Abseitov, K. B. Massenov
Abstract:
This research is devoted to the problems of rocket fuel and impact of its derivatives on environment and living things. Hydrazine derivatives are used in different spheres, in aero-space activity, medical practice, laboratory-diagnosis practice and etc. For Kazakhstan, which has the cosmodrome "Baikonur", the problem of environmental pollution by rocket fuel and its components is important issue. An unsymmetrical dimethylhydrazine is mostly used as rocket fuel for launch vehicles which has high toxicity to humans and animals referred to the World Health Organization. The question about influence of hydrazine derivatives on human organism and ways of detoxication is very actual and requires special approaches in solving these problems. In connection with this situation, we set the goal: study the negative influence of hydrazine derivatives-hydrazine sulphur, nitrosodimethylamine (NDMA), phenylhydrazine, isonicotinic acid hydrazide (IAH) on some biochemical parameters of blood, hepatobiliary system and correction of functional damages of organism with “Salsocollin” drugs.Keywords: isonicotinic acid hydrazide (IAH), N-nitrosodimethylamine (NDMA), AlAT-alanine aminotransferase, AsAT-aspartate aminotransaminase
Procedia PDF Downloads 3551813 Cardiokey: A Binary and Multi-Class Machine Learning Approach to Identify Individuals Using Electrocardiographic Signals on Wearable Devices
Authors: S. Chami, J. Chauvin, T. Demarest, Stan Ng, M. Straus, W. Jahner
Abstract:
Biometrics tools such as fingerprint and iris are widely used in industry to protect critical assets. However, their vulnerability and lack of robustness raise several worries about the protection of highly critical assets. Biometrics based on Electrocardiographic (ECG) signals is a robust identification tool. However, most of the state-of-the-art techniques have worked on clinical signals, which are of high quality and less noisy, extracted from wearable devices like a smartwatch. In this paper, we are presenting a complete machine learning pipeline that identifies people using ECG extracted from an off-person device. An off-person device is a wearable device that is not used in a medical context such as a smartwatch. In addition, one of the main challenges of ECG biometrics is the variability of the ECG of different persons and different situations. To solve this issue, we proposed two different approaches: per person classifier, and one-for-all classifier. The first approach suggests making binary classifier to distinguish one person from others. The second approach suggests a multi-classifier that distinguishes the selected set of individuals from non-selected individuals (others). The preliminary results, the binary classifier obtained a performance 90% in terms of accuracy within a balanced data. The second approach has reported a log loss of 0.05 as a multi-class score.Keywords: biometrics, electrocardiographic, machine learning, signals processing
Procedia PDF Downloads 1421812 Clinical and Molecular Characterization of Mycoplasmosis in Sheep in Egypt
Authors: Walid Mousa, Mohamed Nayel, Ahmed Zaghawa, Akram Salama, Ahmed El-Sify, Hesham Rashad, Dina El-Shafey
Abstract:
Mycoplasmosis in small ruminants constitutes a serious contagious problem in smallholders causing severe economic losses worldwide. This study was conducted to determine the clinical, Minimum Inhibitory Concentration (MIC) and molecular characterization of Mycoplasma species associated in sheep breeding herds in Menoufiya governorate, Egypt. Out of the examination of 400 sheep, 104 (26%) showed respiratory manifestations, nasal discharges, cough and conjunctivitis with systemic body reaction. Meanwhile, out of these examined sheep, only 56 (14%) were positive for mycoplasma isolation onto PPLO(Pleuropneumonia-like organisms) specific medium. The MIC for evaluating the efficacy of sensitivity of Mycoplasma isolates against different antibiotics groups revealed that both the Linospectin and Tylosin with 2ug, 0.25ug/ml concentration were the most effective antibiotics for Mycoplasma isolates. The application of PCR was the rapid, specific and sensitive molecular approach for detection of M. ovipneumoniae, and M. arginine at 390 and 326 bp, respectively, in all tested isolates. In conclusion, the diagnosis of Mycoplsamosis in sheep is important to achieve effective control measures and minimizing the disease dissemination among sheep herds.Keywords: MIC, mycoplasmosis, PCR, sheep
Procedia PDF Downloads 2281811 Maturity Model for Agro-Industrial Logistics
Authors: Erika Tatiana Ruiz, Wilson Adarme Jaimes
Abstract:
This abstract presents the methodology for improving the logistics processes of agricultural production units belonging to the coffee, cocoa, and fruit sectors, starting from the fundamental concepts and detailing each of the phases to carry out the diagnosis, which will be the basis for the formulation of its action plan and implementation of the maturity model. As a result of this work, the maturity model is formulated to improve logistics processes. This model seeks to: generate a progressive model that is useful for all productive units belonging to these sectors at the national level, regardless of their initial conditions, focus on the improvement of logistics processes as a strategy that contributes to improving the competitiveness of the agricultural sector in Colombia and spread the implementation of good logistics practices in postharvest in all departments of the country through autonomous tools. This model has been built through a series of steps that allow the evaluation and improvement of the logistics dimensions or indicators. The potential improvements for each dimension provide the foundation on which to advance to the next level. Within the maturity model, a methodology is indicated for the design and execution of strategies to improve its logistics processes, taking into account the current state of each production unit.Keywords: agroindustrial, characterization, logistics, maturity model, processes
Procedia PDF Downloads 1371810 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence
Authors: Srinivas Vangari
Abstract:
With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand
Procedia PDF Downloads 221809 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3161808 Strategic Management Model for High Performance Sports Centers
Authors: Jose Ramon Sanabria Navarro, Yahilina Silveira Perez, Valentin Molina Moreno, Digna Dionisia Perez Bravo
Abstract:
The general objective of this research is to conceive a model of strategic direction for Latin American high-performance sports centers for the improvement of their results. The sample is 62 managers, 187 trainers, 2930 athletes and 62 expert researchers from centers in Cuba, Venezuela, Ecuador, Colombia and Argentina, for 3241. The measurement instrument includes 12 key variables in the process of management strategies which are consolidated with the factorial analysis and the ANOVA of a factor through the SPSS 24.0. The reliability of the scale obtained an alpha higher than 0.7 in each sample. In this sense, a model is obtained that taxes the deficiencies detected in the diagnosis, based on the needs of the members of these organizations, considering criteria and theories of the strategic direction in the improvement of the organizational results. The validation of the model for high performance sports centers of the countries analyzed aims to develop joint strategies to generate synergies in their operational mode, which leads to enhance the sports organization.Keywords: sports organization, information management, decision making, control
Procedia PDF Downloads 1311807 Study of Launch Recovery Control Dynamics of Retro Propulsive Reusable Rockets
Authors: Pratyush Agnihotri
Abstract:
The space missions are very costly because the transportation to the space is highly expensive and therefore there is the need to achieve complete re-usability in our launch vehicles to make the missions highly economic by cost cutting of the material recovered. Launcher reusability is the most efficient approach to decreasing admittance to space access economy, however stays an incredible specialized hurdle for the aerospace industry. Major concern of the difficulties lies in guidance and control procedure and calculations, specifically for those of the controlled landing stage, which should empower an exact landing with low fuel edges. Although cutting edge ways for navigation and control are present viz hybrid navigation and robust control. But for powered descent and landing of first stage of launch vehicle the guidance control is need to enable on board optimization. At first the CAD model of the launch vehicle I.e. space x falcon 9 rocket is presented for better understanding of the architecture that needs to be identified for the guidance and control solution for the recovery of the launcher. The focus is on providing the landing phase guidance scheme for recovery and re usability of first stage using retro propulsion. After reviewing various GNC solutions, to achieve accuracy in pre requisite landing online convex and successive optimization are explored as the guidance schemes.Keywords: guidance, navigation, control, retro propulsion, reusable rockets
Procedia PDF Downloads 911806 The Osteocutaneous Distal Tibia Turn-over Fillet Flap: A Novel Spare-parts Orthoplastic Surgery Option for Functional Below-knee Amputation
Authors: Harry Burton, Alexios Dimitrios Iliadis, Neil Jones, Aaron Saini, Nicola Bystrzonowski, Alexandros Vris, Georgios Pafitanis
Abstract:
This article portrays the authors’ experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spares parts” in reconstructive microsurgery. This case describes a successful use of the osteocutaneous distal tibia turn-over fillet flap that allowed ‘lowering the level of the amputation’ from a through knee to the conventional level of a below-knee amputation to preserve the knee joint function. This case demonstrates the value of ‘spare-parts’ surgery principles and how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-over fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint.Keywords: osteocutaneous flap, fillet flap, spare-parts surgery, Below knee amputation
Procedia PDF Downloads 1661805 The Application of Insects in Forensic Investigations
Authors: Shirin Jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani
Abstract:
Forensic entomology is the science of study and analysis of insects evidences to aid in criminal investigation. Being aware of the distribution, biology, ecology and behavior of insects, which are founded at crime scene can provide information about when, where and how the crime has been committed. It has many application in criminal investigations. Its main use is estimation of the minimum time after death in suspicious death. The close association between insects and corpses and the use of insects in criminal investigations is the subject of forensic entomology. Because insects attack to the decomposing corpse and spawning on it from the initial stages. Forensic scientists can estimate the postmortem index by studying the insects population and the developing larval stages.In addition, toxicological and molecular studies of these insects can reveal the cause of death or even the identity of a victim. It also be used to detect drugs and poisons, and determination of incident location. Gathering robust entomological evidences is made possible for experts by recent Techniques. They can provide vital information about death, corpse movement or burial, submersion interval, time of decapitation, identification of specific sites of trauma, post-mortem artefacts on the body, use of drugs, linking a suspect to the scene of a crime, sexual molestations and the identification of suspects.Keywords: Forensic entomology, post mortem interval, insects, larvae
Procedia PDF Downloads 5031804 Social Entrepreneurship and Inclusive Growth
Authors: Sudheer Gupta
Abstract:
Approximately 4 billion citizens of the world live on the equivalent of less than $8 a day. This segment constitutes a $5 trillion global market that remains under-served. Multinational corporations have historically tended to focus their innovation efforts on the upper segments of the economic pyramid. The academic literature has also been dominated by theories and frameworks of innovation that are valid when applied to the developed markets and consumer segments, but fail to adequately account for the challenges and realities of new product and service creation for the poor. Theories of entrepreneurship developed in the context of developed markets similarly ignore the challenges and realities of operating in developing economies that can be characterized by missing institutions, missing markets, information and infrastructural challenges, and resource constraints. Social entrepreneurs working in such contexts develop solutions differently. In this talk, we summarize lessons learnt from a long-term research project that involves data collection from a broad range of social entrepreneurs in developing countries working towards solutions to alleviate poverty, and grounded theory-building efforts. We aim to develop a better understanding of consumers, producers, and other stakeholder involvement, thus laying the foundation to build a robust theory of innovation and entrepreneurship for the poor.Keywords: poverty alleviation, social enterprise, social innovation, development
Procedia PDF Downloads 3991803 Analysis of Potential Associations of Single Nucleotide Polymorphisms in Patients with Schizophrenia Spectrum Disorders
Authors: Tatiana Butkova, Nikolai Kibrik, Kristina Malsagova, Alexander Izotov, Alexander Stepanov, Anna Kaysheva
Abstract:
Relevance. The genetic risk of developing schizophrenia is determined by two factors: single nucleotide polymorphisms and gene copy number variations. The search for serological markers for early diagnosis of schizophrenia is driven by the fact that the first five years of the disease are accompanied by significant biological, psychological, and social changes. It is during this period that pathological processes are most amenable to correction. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) that are hypothesized to potentially influence the onset and development of the endogenous process. Materials and Methods It was analyzed 73 single nucleotide polymorphism variants. The study included 48 patients undergoing inpatient treatment at "Psychiatric Clinical Hospital No. 1" in Moscow, comprising 23 females and 25 males. Inclusion criteria: - Patients aged 18 and above. - Diagnosis according to ICD-10: F20.0, F20.2, F20.8, F21.8, F25.1, F25.2. - Voluntary informed consent from patients. Exclusion criteria included: - The presence of concurrent somatic or neurological pathology, neuroinfections, epilepsy, organic central nervous system damage of any etiology, and regular use of medication. - Substance abuse and alcohol dependence. - Women who were pregnant or breastfeeding. Clinical and psychopathological assessment was complemented by psychometric evaluation using the PANSS scale at the beginning and end of treatment. The duration of observation during therapy was 4-6 weeks. Total DNA extraction was performed using QIAamp DNA. Blood samples were processed on Illumina HiScan and genotyped for 652,297 markers on the Infinium Global Chips Screening Array-24v2.0 using the IMPUTE2 program with parameters Ne=20,000 and k=90. Additional filtration was performed based on INFO>0.5 and genotype probability>0.5. Quality control of the obtained DNA was conducted using agarose gel electrophoresis, with each tested sample having a volume of 100 µL. Results. It was observed that several SNPs exhibited gender dependence. We identified groups of single nucleotide polymorphisms with a membership of 80% or more in either the female or male gender. These SNPs included rs2661319, rs2842030, rs4606, rs11868035, rs518147, rs5993883, and rs6269.Another noteworthy finding was the limited combination of SNPs sufficient to manifest clinical symptoms leading to hospitalization. Among all 48 patients, each of whom was analyzed for deviations in 73 SNPs, it was discovered that the combination of involved SNPs in the manifestation of pronounced clinical symptoms of schizophrenia was 19±3 out of 73 possible. In study, the frequency of occurrence of single nucleotide polymorphisms also varied. The most frequently observed SNPs were rs4849127 (in 90% of cases), rs1150226 (86%), rs1414334 (75%), rs10170310 (73%), rs2857657, and rs4436578 (71%). Conclusion. Thus, the results of this study provide additional evidence that these genes may be associated with the development of schizophrenia spectrum disorders. However, it's impossible cannot rule out the hypothesis that these polymorphisms may be in linkage disequilibrium with other functionally significant polymorphisms that may actually be involved in schizophrenia spectrum disorders. It has been shown that missense SNPs by themselves are likely not causative of the disease but are in strong linkage disequilibrium with non-functional SNPs that may indeed contribute to disease predisposition.Keywords: gene polymorphisms, genotyping, single nucleotide polymorphisms, schizophrenia.
Procedia PDF Downloads 801802 Business Incubation of SMEs in India : A Case Study
Authors: Dinesh Khanduja, Sahib Sartaj Singh
Abstract:
In India, among the start ups, many new ventures fail and for the few that survive and grow, there are always numerous problems. In order to make these surviving units productive and cost effective-in today’s competitive environment, the traditional ways of supporting small enterprises and the related programs of governmental assistance need to be significantly transformed. In this context, ‘Business Incubation’ is emerging as one of the most innovative instruments to support small enterprise creation and development all over the world. Incubators, by providing on the-spot diagnosis and treatment of business problems, dramatically lower the early stage failure rate. In Europe, US and countries like China, Singapore, Thailand etc., the exceptionally fast growth of business incubators has baffled even the researchers. In this direction in India, following on the world pattern, several initiatives have been taken over the last decade to encourage the concept of business incubation. Besides profiling the existing ‘Business Incubators’ in India, the paper dwells upon a case study of SMEs in state of Punjab for exploring the relevance of business incubation for enhancing their productive capacity.Keywords: business incubation, Technology Business Incubator (TBI), Rural Business Hub (RBH), entrepreneurship, Business Development Services (BDS), technology management
Procedia PDF Downloads 5051801 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 741800 Wearable Interface for Telepresence in Robotics
Authors: Uriel Martinez-Hernandez, Luke W. Boorman, Hamideh Kerdegari, Tony J. Prescott
Abstract:
In this paper, we present architecture for the study of telepresence, immersion and human-robot interaction. The architecture is built around a wearable interface, developed here, that provides the human with visual, audio and tactile feedback from a remote location. We have chosen to interface the system with the iCub humanoid robot, as it mimics many human sensory modalities, such as vision, with gaze control and tactile feedback. This allows for a straightforward integration of multiple sensory modalities, but also offers a more complete immersion experience for the human. These systems are integrated, controlled and synchronised by an architecture developed for telepresence and human-robot interaction. Our wearable interface allows human participants to observe and explore a remote location, while also being able to communicate verbally with humans located in the remote environment. Our approach has been tested from local, domestic and business venues, using wired, wireless and Internet based connections. This has involved the implementation of data compression to maintain data quality to improve the immersion experience. Initial testing has shown the wearable interface to be robust. The system will endow humans with the ability to explore and interact with other humans at remote locations using multiple sensing modalities.Keywords: telepresence, telerobotics, human-robot interaction, virtual reality
Procedia PDF Downloads 2901799 Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel
Authors: Seonggil Kim, Jeonghun Nam, Chae Seung Lim
Abstract:
Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells.Keywords: candida cells, concentration, separation, viscoelastic fluid
Procedia PDF Downloads 1981798 Robust Quantum Image Encryption Algorithm Leveraging 3D-BNM Chaotic Maps and Controlled Qubit-Level Operations
Authors: Vivek Verma, Sanjeev Kumar
Abstract:
This study presents a novel quantum image encryption algorithm, using a 3D chaotic map and controlled qubit-level scrambling operations. The newly proposed 3D-BNM chaotic map effectively reduces the degradation of chaotic dynamics resulting from the finite word length effect. It facilitates the generation of highly unpredictable random sequences and enhances chaotic performance. The system’s efficacy is additionally enhanced by the inclusion of a SHA-256 hash function. Initially, classical plain images are converted into their quantum equivalents using the Novel Enhanced Quantum Representation (NEQR) model. The Generalized Quantum Arnold Transformation (GQAT) is then applied to disrupt the coordinate information of the quantum image. Subsequently, to diffuse the pixel values of the scrambled image, XOR operations are performed using pseudorandom sequences generated by the 3D-BNM chaotic map. Furthermore, to enhance the randomness and reduce the correlation among the pixels in the resulting cipher image, a controlled qubit-level scrambling operation is employed. The encryption process utilizes fundamental quantum gates such as C-NOT and CCNOT. Both theoretical and numerical simulations validate the effectiveness of the proposed algorithm against various statistical and differential attacks. Moreover, the proposed encryption algorithm operates with low computational complexity.Keywords: 3D Chaotic map, SHA-256, quantum image encryption, Qubit level scrambling, NEQR
Procedia PDF Downloads 101797 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 111796 Medical Experience: Usability Testing of Displaying Computed Tomography Scans and Magnetic Resonance Imaging in Virtual and Augmented Reality for Accurate Diagnosis
Authors: Alyona Gencheva
Abstract:
The most common way to study diagnostic results is using specialized programs at a stationary workplace. Magnetic Resonance Imaging is presented in a two-dimensional (2D) format, and Computed Tomography sometimes looks like a three-dimensional (3D) model that can be interacted with. The main idea of the research is to compare ways of displaying diagnostic results in virtual reality that can help a surgeon during or before an operation in augmented reality. During the experiment, the medical staff examined liver vessels in the abdominal area and heart boundaries. The search time and detection accuracy were measured on black-and-white and coloured scans. Usability testing in virtual reality shows convenient ways of interaction like hand input, voice activation, displaying risk to the patient, and the required number of scans. The results of the experiment will be used in the new C# program based on Magic Leap technology.Keywords: augmented reality, computed tomography, magic leap, magnetic resonance imaging, usability testing, VTE risk
Procedia PDF Downloads 1121795 Microarrays: Wide Clinical Utilities and Advances in Healthcare
Authors: Salma M. Wakil
Abstract:
Advances in the field of genetics overwhelmed detecting large number of inherited disorders at the molecular level and directed to the development of innovative technologies. These innovations have led to gene sequencing, prenatal mutation detection, pre-implantation genetic diagnosis; population based carrier screening and genome wide analyses using microarrays. Microarrays are widely used in establishing clinical and diagnostic setup for genetic anomalies at a massive level, with the advent of cytoscan molecular karyotyping as a clinical utility card for detecting chromosomal aberrations with high coverage across the entire human genome. Unlike a regular karyotype that relies on the microscopic inspection of chromosomes, molecular karyotyping with cytoscan constructs virtual chromosomes based on the copy number analysis of DNA which improves its resolution by 100-fold. We have been investigating a large number of patients with Developmental Delay and Intellectual disability with this platform for establishing micro syndrome deletions and have detected number of novel CNV’s in the Arabian population with the clinical relevance.Keywords: microarrays, molecular karyotyping, developmental delay, genetics
Procedia PDF Downloads 4581794 Surgical Collaboration in Managing Spinal Cord Compression Due to a Pre-Vertebral Chordoma: A Case Report
Authors: Rose Virginy S. Bautista, Ida Marie Tabangay-Lim, Helen Bongalon-Amo, Jose Modesto B. Abellera
Abstract:
Chordomas, particularly those of the spine and the head and neck region, represent a rare and locally aggressive group of malignancies. The complexity of these tumors -given the rarity, location, and involvement of neurovascular structures- imposes a challenge in the diagnosis and management. We herein report a case of spinal cord compression due to a prevertebral cervical chordoma. The patient presented with a gradually enlarging lateral neck mass, with progressive bilateral extremity weakness and urinary incontinence; preoperative biopsy showed chordoma. A multidisciplinary approach for the management of this case was made, involving neurosurgery, head and neck surgery, and radiation oncology services. Surgical collaboration between the two cutting services was done to have a radical excision of the tumor and spinal cord decompression. The patient was then referred for adjuvant radiation therapy. With this collaborative treatment strategy, more comprehensive and quality care could be provided to our patients.Keywords: chordoma, surgical collaboration, spinal cord compression, neurosurgery, head and neck surgery
Procedia PDF Downloads 691793 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics
Procedia PDF Downloads 4181792 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles
Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi
Abstract:
Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization
Procedia PDF Downloads 3951791 Autoimmune Diseases Associated to Autoimmune Hepatitis: A Retrospective Study of 24 Tunisian Patients
Authors: Soumaya Mrabet, Imen Akkari, Amira Atig, Elhem Ben Jazia
Abstract:
Introduction: Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease of unknown cause. Concomitant autoimmune disorders have been described in 30–50% of patients with AIH. The aim of our study is to determine the prevalence and the type of autoimmune disorders associated with AIH. Material and Methods: It is a retrospective study over a period of 16 years (2000-2015) including all patients followed for AIH. The diagnosis of AHI was based on the criteria of the revised International AIH group scoring system (IAIHG). Results: Twenty-for patients (21 women and 3 men) followed for AIH were collected. The mean age was 39 years (17-65 years). Among these patients, 11 patients(45.8%) had at least one autoimmune disease associated to AIH. These diseases were Hashimoto's thyroiditis (n = 5), Gougerot Sjogren syndrome (n=5), Primary biliary cirrhosis (n=2), Primitive sclerosant Cholangitis (n=1), Addison disease (n = 1) and systemic sclerosis (n=1). Patients were treated with corticosteroids alone or with azathioprine associated to the specific treatment of associated diseases with complete remission of AIH in 90% of cases and clinical improvement of other diseases. Conclusion: In our study, the prevalence of autoimmune diseases in AIH patients was 45.8%. These diseases were dominated by autoimmune thyroiditis and Gougerot Sjogren syndrome. The investigation of autoimmune diseases in autoimmune hepatitis must be systematic because of their frequency and the importance of adequate management.Keywords: autoimmune diseases, autoimmune hepatitis, autoimmune thyroiditis, gougerot sjogren syndrome
Procedia PDF Downloads 2631790 Simultaneous Quantification of Glycols in New and Recycled Anti-Freeze Liquids by GC-MS
Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu
Abstract:
Glycol-based anti-freeze liquids, commonly composed of ethylene glycol or propylene glycol, have important uses in automotive cooling, but they should be handled with care due to their toxicity; ethylene glycol is highly toxic to humans and animals. A fast, accurate, precise, and robust method was developed for the simultaneous quantification of 7 most important glycols and their isomers. Glycols were analyzed from diluted sample solution of coolants using gas-chromatography coupled with mass spectrometry in single ion monitoring mode. Results: The method was developed and validated for 7 individual glycols (ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol). Limits of detection (1-2 μg/mL) and limit of quantification (10 μg/mL) obtained were appropriate. The present method was applied for the determination of glycols in 10 different anti-freeze liquids commercially available on the Romanian market, proving to be reliable. A method that requires only a two-step dilution of anti-freeze samples combined with direct liquid injection GC-MS was validated for the simultaneous quantification of 7 glycols (and their isomers) in 10 different types of anti-freeze liquids. The results obtained in the validation procedure proved that the GC-MS method is sensitive and precise for the quantification of glycols.Keywords: glycols, anti-freeze, gas-chromatography, mass spectrometry, validation, recycle
Procedia PDF Downloads 661789 Flexible Ureterorenoscopy as a New Possibility of Treating Nephrolithiasis in Children – Preliminary Reports
Authors: Adam Haliński, Andrzej Haliński
Abstract:
Introduction: Flexible ureterorenoscopy is a surgery technique used for the treatment of the upper urinary tract. It is very often used in adult patients; however, due to the advancing miniaturization of the equipment as well as its precision, this technique has also become possible in the treatment process in children. Material and method: We would like to present 26 cases of flexible ureterorenoscopy carried out in children with nephrolithiasis of the upper urinary tract aged 6 to 17 years. The average age was 9.5 years and the children were treated in our department from June 2013 to January 2015. The first surgery in Poland took place in our Department on 06.06.2013. Because of nephrolithiasis all the children had been subjected earlier to ESWL treatment, which was unsuccessful. Results: 14 children had deposits in the lower calyx, 9 children had deposits in the middle and lower calyx and in 3 children a stone was located in the initial ureter. An efficiency of 88 % was achieved. Conclusions: Flexible ureterorenoscopy is effective and minimally invasive tool both for the diagnosis and treatment of upper urinary tract. We believe that the advancing miniaturization of the equipment and gaining experience will enable carrying out of this procedure in smaller children with high efficiency.Keywords: flexible ureterorenoscopy, urolithisis, endourology, nephrolithiasis
Procedia PDF Downloads 3831788 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)
Procedia PDF Downloads 4411787 Photobleaching Kinetics and Epithelial Distribution of Hexylaminoleuilinate Induced PpIX in Rat Bladder Cancer
Authors: Sami El Khatib, Agnès Leroux, Jean-Louis Merlin, François Guillemin, Marie-Ange D’Hallewin
Abstract:
Photodynamic therapy (PDT) is a treatment modality based on the cytotoxic effect occurring on the target tissues by interaction of a photosensitizer with light in the presence of oxygen. One of the major advances in PDT can be attributed to the use of topical aminolevulinic (ALA) to induce Protoporphyrin IX (PpIX) for the treatment of early stage cancers as well as diagnosis. ALA is a precursor of the heme synthesis pathway. Locally delivered to the target tissue ALA overcomes the negative feedback exerted by heme and promotes the transient formation of PpIX in situ to reach critical effective levels in cells and tissue. Whereas early steps of the heme pathway occur in the cytosol, PpIX synthesis is shown to be held in the mitochondrial membranes and PpIX fluorescence is expected to accumulate in close vicinity of the initial building site and to progressively diffuse to the neighboring cytoplasmic compartment or other lipophylic organelles. PpIX is known to be highly reactive and will be degraded when irradiated with light. PpIX photobleaching is believed to be governed by a singlet oxygen mediated mechanism in the presence of oxidized amino acids and proteins. PpIX photobleaching and subsequent spectral phototransformation were described widely in tumor cells incubated in vitro with ALA solution, or ex vivo in human and porcine mucosa superfused with hexylaminolevulinate (hALA). PpIX photobleaching was also studied in vivo, using animal models such as normal or tumor mice skin and orthotopic rat bladder model. Hexyl aminolevulinate a more potent lipophilic derivative of ALA was proposed as an adjunct to standard cystoscopy in the fluorescence diagnosis of bladder cancer and other malignancies. We have previously reported the effectiveness of hALA mediated PDT of rat bladder cancer. Although normal and tumor bladder epithelium exhibit similar fluorescence intensities after intravesical instillation of two hALA concentrations (8 and 16 mM), the therapeutic response at 8mM and 20J/cm2 was completely different from the one observed at 16mM irradiated with the same light dose. Where the tumor is destroyed, leaving the underlying submucosa and muscle intact after an 8 mM instillation, 16mM sensitization and subsequent illumination results in the complete destruction of the underlying bladder wall but leaves the tumor undamaged. The object of the current study is to try to unravel the underlying mechanism for this apparent contradiction. PpIX extraction showed identical amounts of photosensitizer in tumor bearing bladders at both concentrations. Photobleaching experiments revealed mono-exponential decay curves in both situations but with a two times faster decay constant in case of 16mM bladders. Fluorescence microscopy shows an identical fluorescence pattern for normal bladders at both concentrations and tumor bladders at 8mM with bright spots. Tumor bladders at 16 mM exhibit a more diffuse cytoplasmic fluorescence distribution. The different response to PDT with regard to the initial pro-drug concentration can thus be attributed to the different cellular localization.Keywords: bladder cancer, hexyl-aminolevulinate, photobleaching, confocal fluorescence microscopy
Procedia PDF Downloads 4071786 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 1531785 Adalimumab Therapy for Inflammatory Discitis Associated with Spondyloarthropathy
Authors: Liu Yuhong, Hussen Mansai, Mei Chunli
Abstract:
Inflammatory discitis is a sterile inflammatary disease that typically presents with abnormalities in two adjacent vertebral bodies and the intervening disk. Diagnosis this disorder is usually difficult and ideal management remains controversial. In this report,we examine a case of inflammatory discitis in a 56 year old female in which treatment with adalimumab ameliorated symptoms. The 56-year-old female patient developed repeatedly inflammatory discitis in the past three years, presenting with severe back pain, an elevated C-reactive protein and erythrocyte sedimentation rate, radiological erosive changes in vertebral and intervertebral disk of the spine. Surgical treatment, antibiotics and non steroidal anti-inflammatory drugs(NSAIDs) were used, but the patient still suffered from recurrent onset of unbearable backache. Three years later from the patient’s first admission,adalimumab was prescribed due to the third occurrence of Anderson lesions, which she had been suffering from for years. Soon after the same day of adalimumab therapy, her symptoms had a dramatic improvement. On the following day she could stand and walk slowly, her CRP and ESR were decreased to nearly normal levels in 4 weeks. Human leukocyte antigen (HLA)-typing analysis revealed a positive result for HLA-B27, the patient’s inflammatory discitis was considered to be associated with spondyloarthropathy.Keywords: adalimumab, inflammatory discitis, spondyloarthropathy, patient
Procedia PDF Downloads 255