Search results for: object modeling and control
13659 Proposing an Improved Managerial-Based Business Process Framework
Authors: Alireza Nikravanshallmani, Jamshid Dehmeshki, Mojtaba Ahmadi
Abstract:
Modeling of business processes, based on BPMN (Business Process Modeling Notation), helps analysts and managers to understand business processes, and, identify their shortages. These models provide a context to make rational decision of organizing business processes activities in an understandable manner. The purpose of this paper is to provide a framework for better understanding of business processes and their problems by reducing the cognitive load of displayed information for their audience at different managerial levels while keeping the essential information which are needed by them. For this reason, we integrate business process diagrams across the different managerial levels to develop a framework to improve the performance of business process management (BPM) projects. The proposed framework is entitled ‘Business process improvement framework based on managerial levels (BPIML)’. This framework, determine a certain type of business process diagrams (BPD) based on BPMN with respect to the objectives and tasks of the various managerial levels of organizations and their roles in BPM projects. This framework will make us able to provide the necessary support for making decisions about business processes. The framework is evaluated with a case study in a real business process improvement project, to demonstrate its superiority over the conventional method. A questionnaire consisted of 10 questions using Likert scale was designed and given to the participants (managers of Bank Refah Kargaran three managerial levels). By examining the results of the questionnaire, it can be said that the proposed framework provide support for correct and timely decisions by increasing the clarity and transparency of the business processes which led to success in BPM projects.Keywords: business process management (BPM), business process modeling, business process reengineering (BPR), business process optimizing, BPMN
Procedia PDF Downloads 45613658 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria
Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu
Abstract:
The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic
Procedia PDF Downloads 45113657 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing
Procedia PDF Downloads 17913656 Effect of Operative Stabilization on Rib Fracture Healing in Porcine Experimental Model: A Pilot Study
Authors: Maria Stepankova, Lucie Vistejnova, Pavel Klein, Tereza Blassova, Marketa Slajerova, Radek Sedlacek, Martin Bartos, Jaroslav Chlupac
Abstract:
Background: Clinical outcome benefits of the segment rib fracture surgical therapy are well known and follow from better stabilization of the chest wall. Despite this, some authors still incline to conservative therapy and point out to possible rib fracture healing failure in connection with the bone vascular supply disturbance caused by metal plate implantation. This suggestion met neither experimental nor clinical verification and remains the object of discussion. In our pilot study we investigated the titanium plate fixation effect on the rib fracture healing in porcine model and its histological, biomechanical and radiological aspects. Materials and Method: Two porcine models (experimental group) underwent the operative chest wall stabilization with a titanium plate implantation after osteotomy. Two other porcine models (control group) were treated conservatively after osteotomy. Three weeks after surgery, all animals were sacrificed, treated ribs were explanted and the histological analysis, µCT imaging and biomechanical testing of the calluses tissue were performed. Results: In µCT imaging, experimental group showed a higher cortical bone volume compared to the control group. Histological analysis using the non-decalcified bone tissue blocks demonstrated more maturated callus with higher newly-formed osseous tissue ratio in experimental group in comparison to controls. In contrast, no significant differences in bone blood vessels supply in both groups were observed. This finding suggests that the bone blood supply in experimental group was not impaired. Biomechanical analysis using 3-point bending test demonstrated significantly higher bending stiffness and the maximum force in experimental group. Conclusion: Based on our observation, it could be concluded, that the titanium plate fixation of the rib fractures leads to faster bone callus maturation whereas does not cause the vascular supply impairment after 3 weeks and thus has a beneficial effect on the rib fracture healing.Keywords: bone vascular supply, chest wall stabilization, fracture healing, histological analysis, titanium plate implantation
Procedia PDF Downloads 14313655 Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment
Authors: Ibrahim M. Mehedi, Uzair Ansari, Ubaid M. Al-Saggaf, Abdulrahman H. Bajodah
Abstract:
This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances.Keywords: generalized dynamic inversion, lyapunov stability, rotary inverted pendulum system, sliding mode control
Procedia PDF Downloads 17413654 Enhancing Problem Communication and Management Using Civil Information Modeling for Infrastructure Projects
Authors: Yu-Cheng Lin, Yu-Chih Su
Abstract:
Generally, there are many numerous existing problems during the construction phase special in civil engineering. The problems communication and management (PCM) of civil engineering are important and necessary to enhance the performance of construction management. The civil information modelling (CIM) approach is used to retain information with digital format and assist easy updating and transferring of information in the 3D environment for all related civil and infrastructure projects. When the application of CIM technology is adopted in infrastructure projects, all the related project participants can discuss problems and obtain feedback and responds among project participants integrated with the assistance of CIM models 3D illustration. Usually, electronic mail (e-mail) is one of the most popular communication tools among all related participants for rapid transit system (MRT), also known as a subway or metro, construction project in Taiwan. Furthermore, all interfaces should be traced and managed effectively during the process. However, there are many problems with the use of e-mail for communication of all interfaces. To solve the above problems, this study proposes a CIM-based Problem Communication and Management (CPCM) system to improve performance of problem communication and management. The CPCM system is applied to a case study of an MRT project in Taiwan to identify its CPCM effectiveness. Case study results show that the proposed CPCM system and Markup-enabled CIM Viewer are effective CIM-based communication tools in CIM-supported PCM work of civil engineering. Finally, this study identifies conclusion, suggestion, benefits, and limitations for further applications.Keywords: building information modeling, civil information modeling, infrastructure, general contractor
Procedia PDF Downloads 15513653 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay
Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza
Abstract:
The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.
Procedia PDF Downloads 51013652 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 20113651 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism
Authors: Bin Bian, Liang Wang
Abstract:
A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking
Procedia PDF Downloads 10913650 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models
Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park
Abstract:
Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.Keywords: display-control layout design, interactive layout design system, mental model, train drivers
Procedia PDF Downloads 31413649 Design of a Photovoltaic Power Generation System Based on Artificial Intelligence and Internet of Things
Authors: Wei Hu, Wenguang Chen, Chong Dong
Abstract:
In order to improve the efficiency and safety of photovoltaic power generation devices, this photovoltaic power generation system combines Artificial Intelligence (AI) and the Internet of Things (IoT) to control the chasing photovoltaic power generation device to track the sun to improve power generation efficiency and then convert energy management. The system uses artificial intelligence as the control terminal, the power generation device executive end uses the Linux system, and Exynos4412 is the CPU. The power generating device collects the sun image information through Sony CCD. After several power generating devices feedback the data to the CPU for processing, several CPUs send the data to the artificial intelligence control terminal through the Internet. The control terminal integrates the executive terminal information, time information, and environmental information to decide whether to generate electricity normally and then whether to convert the converted electrical energy into the grid or store it in the battery pack. When the power generation environment is abnormal, the control terminal authorizes the protection strategy, the power generation device executive terminal stops power generation and enters a self-protection posture, and at the same time, the control terminal synchronizes the data with the cloud. At the same time, the system is more intelligent, more adaptive, and longer life.Keywords: photo-voltaic power generation, the pursuit of light, artificial intelligence, internet of things, photovoltaic array, power management
Procedia PDF Downloads 12813648 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment
Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal
Abstract:
This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability
Procedia PDF Downloads 33313647 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects
Authors: Muhammad Khairi bin Sulaiman
Abstract:
The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning
Procedia PDF Downloads 8713646 Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain
Authors: Radwa Elshorbagy, Alaa Elden Balbaa, Khaled Ayad, Waleed Reda
Abstract:
Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare between and within group differences, in group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to rely more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.Keywords: hip strategy, ankle strategy, postural control, dynamic balance
Procedia PDF Downloads 34313645 Estimating Housing Prices Using Automatic Linear Modeling in the Metropolis of Mashhad, Iran
Authors: Mohammad Rahim Rahnama
Abstract:
Market-transaction price for housing is the main criteria for determining municipality taxes and is determined and announced on an annual basis. Of course, there is a discrepancy between the actual value of transactions in the Bureau of Finance (P for short) or municipality (P´ for short) and the real price on the market (P˝). The present research aims to determine the real price of housing in the metropolis of Mashhad and to pinpoint the price gap with those of the aforementioned apparatuses and identify the factors affecting it. In order to reach this practical objective, Automatic Linear Modeling, which calls for an explanatory research, was utilized. The population of the research consisted of all the residential units in Mashhad, from which 317 residential units were randomly selected. Through cluster sampling, out of the 170 income blocks defined by the municipality, three blocks form high-income (Kosar), middle-income (Elahieh), and low-income (Seyyedi) strata were surveyed using questionnaires during February and March of 2015 and the information regarding the price and specifications of residential units were gathered. In order to estimate the effect of various factors on the price, the relationship between independent variables (8 variables) and the dependent variable of the housing price was calculated using Automatic Linear Modeling in SPSS. The results revealed that the average for housing price index is 788$ per square meter, compared to the Bureau of Finance’s prices which is 10$ and that of municipality’s which is 378$. Correlation coefficient among dependent and independent variables was calculated to be R²=0.81. Out of the eight initial variables, three were omitted. The most influential factor affecting the housing prices is the quality of Quality of construction (Ordinary, Full, Luxury). The least important factor influencing the housing prices is the variable of number of sides. The price gap between low-income (Seyyedi) and middle-income (Elahieh) districts was not confirmed via One-Way ANOVA but their gap with the high-income district (Kosar) was confirmed. It is suggested that city be divided into two low-income and high-income sections, as opposed three, in terms of housing prices.Keywords: automatic linear modeling, housing prices, Mashhad, Iran
Procedia PDF Downloads 26213644 Simulation of Surface Runoff in Mahabad Dam Basin, Iran
Authors: Leila Khosravi
Abstract:
A major part of the drinking water in North West of Iran is supplied from Mahabad reservoir 80 km northwest of Mahabad. This reservoir collects water from 750 km-catchment which is undergoing accelerated changes due to deforestation and urbanization. The main objective of this study is to develop a catchment modeling platform which translates ongoing land-use changes, soil data, precipitation and evaporation into surface runoff of the river discharging into the reservoir: Soil and Water Assessment Tool, SWAT, model along with hydro -meteorological records of 1997–2011. A variety of statistical indices were used to evaluate the simulation results for both calibration and validation periods; among them, the robust Nash–Sutcliffe coefficients were found to be 0.52 and 0.62 in the calibration and validation periods, respectively. This project has developed a reliable modeling platform with the benchmark land physical conditions of the Mahabad dam basin.Keywords: simulation, surface runoff, Mahabad dam, SWAT model
Procedia PDF Downloads 20813643 Linguistics and Islamic Studies in Historical Perspective: The Case of Interdisciplinary Communication
Authors: Olga Bernikova, Oleg Redkin
Abstract:
Islamic Studies and the Arabic language are indivisible from each other starting from the appearance of Islam and formation of the Classical language. The present paper demonstrates correlation among linguistics and religion in historical perspective with regard to peculiarities of the Arabic language which distinguish it from the other prophetic languages. Islamic Studies and Linguistics are indivisible from each other starting from the invent of Islam and formation of the Classical language. In historical perspective, the Arabic language has been and remains a tool for the expression of Islamic rhetoric being a prophetic language. No other language in the world has preserved its stability for more than 14 centuries. Islam is considered to be one of the most important factors which secure this stability. The analysis and study of the text of Qurʾān are of special importance for those who study Islamic civilization, its role in the destinies of the mankind, its values and virtues. Without understanding of the polyphony of this sacred text, indivisible unity of its form and content it is impossible to understand social developments both in the present and the past. Since the first years of Islam Qurʾān had been in the center of attention of Muslim scholars, and in the center of attention of theologians, historians, philologists, jurists, mathematicians. Only quite recently it has become an object of analysis of the specialists of computer technologies. In Arabic and Islamic studies mediaeval texts i.e. textual documents are considered the main source of information. Hence the analysis of the multiplicity of various texts and finding of interconnections between them help to set scattered fragments of the riddle into a common and eloquent picture of the past, which reflects the state of the society on certain stages of its development. The text of the Qurʾān like any other phenomenon is a multifaceted object that should be studied from different points of view. As a result, this complex study will allow obtaining a three-dimensional image rather than a flat picture alone.Keywords: Arabic, Islamic studies, linguistics, religion
Procedia PDF Downloads 22713642 The American Theater: Latinos Performing as American Citizens by Supporting Trump's Ideals
Authors: Mariana Anaya Villafana
Abstract:
The sudden change of a significant percentage of the Latino community in the United States elections towards a Republican political orientation was reflected during the 2016 presidential election. This moment represented a radical change that is happening inside the Latino community in the United States, the support they have given to Trump's campaign only demonstrates their support for new anti-immigration regulations and conservative values, which are causing a division of ideologies inside the Latino community. One of the main goals of the following research is to understand the whole phenomenon 'Why would people join their own oppressor?' Align themselves with the politics that prevent many of their relatives to come to the United States and made the assimilation process difficult for their parents. It is important to prove that a change in the identity has happened, through the use of power relations and the attachment to the desired object. A group of Hispanics/Latinos have decided to vote for Trump in order to belong to a society that hasn’t been able to fully include them within it, an action that can result on the non-intentional harm of the values and aims of the rest of the Latino/Hispanic community. In order to understand their new political beliefs, it is necessary to use the method of discourse analysis to comprehend those comments and interviews that are published on web sites such as: 'Latinos for Trump' and 'GOP Hispanic Division'. Among the results that the research has shown, the notion of the 'American Dream' can be considered as a determinant object for the construction of a new identity that is rooted in hard work and legality. One that is proud of the Latino heritage but still wants to maintain the boundaries between legality and illegality in relation to the immigrants. This discourse results on a contradiction to most of the cases because they mention that their families came to the U.S. as immigrants; the only difference is that they work hard to obtain legal citizenship.Keywords: populism, identity, Latino Community, migration
Procedia PDF Downloads 13313641 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation
Authors: Ketan Naik, P. H. Bhathawala
Abstract:
The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.Keywords: cardiovascular system, lumped parameter method, mathematical modeling, simulation
Procedia PDF Downloads 33913640 Low Intake of Aspartame Induced Weight Gain and Damage of Brain and Liver Cells in Weanling Syrian Hamsters
Authors: Magda I. Hassan
Abstract:
This paper aims to investigate the health effects of aspartame on weanling male hamsters. 20 Golden Syrian hamsters drank only water (control) or water with 6, 11, and 18 mg aspartame/kg of body weight per day for 42 days. Food intake, weight gain, glucose blood level, and lipid profile were determined at the end of the experiment. The animals were sacrificed and histopathological examination of organs (liver, brain and heart) was done. Results revealed that animals in Asp.groups consumed significantly larger amount of food than the control (13.4±5.9, 8.6±2.5 and 8.8±3.0 vs 4.2±2.5 g/day, in succession). Hamsters in the control group showed higher total cholesterol and HDL levels than hamsters in aspartame 6, 11, 18 groups (160±19 vs 101±13, 130±22, 141±15 mg/dl & 144±9 vs 120±12, 118±13, 99±17 respectively (P<0•05)). The control group showed a glucose concentration below those of aspartame groups, indicating no effect of aspartame on glucose blood level. While, there were no significant differences in the triglycerides and LDL levels between control group and Asp.groups. Histopathological changes were observed, especially in brain and liver cells. Aspartame increases appetite and weight gain of young hamsters. Therefore, FDA should reconsider the acceptable daily intake (ADI) of aspartame for children.Keywords: aspartame, brain, food intake, hamsters
Procedia PDF Downloads 28613639 Conserving History: Evaluating and Selecting Effective Restoration Methods for a Fragment Mural Painting from Amarna
Authors: Kholod Khairy Salama, Shabban Hassan Thabet
Abstract:
In the present study, a comprehensive investigation has been undertaken into an Egyptian mural painting with feet wear slippers approach to choose the most successful restoration methods. The mural painting under examination dates back to the Amarna period; it was detached from a wall of an unknown tomb in Egypt, and currently, it is initially displayed in a showcase at the Egyptian Museum – Tahrir Square – Cairo, Egypt. The main objectives of this research were to (a) reveal the pigment used in the mural painting, (b) reveal the medium used with colours, (c) determine the technique of manufacturing, (e) determine the ground support, and (f) reveal the main deterioration aspects. The analytical techniques used for investigation were Optical Microscopy, Raman, X-ray Florescence, X-ray diffraction, and Fourier transform infrared coupled with attenuated total reflectance “FTIR-ATR”. The investigation revealed that the vital deterioration factors affecting the object. This research aims to examine and analyze the mural painting to choose the suitable method for the restoration process (a) define the colours through comparative analysis to choose the suitable material for cleaning, (b) define the natural structure of the ground support layer, which appeared as mud layer (c) determine the medium used with colours (d) diagnosis the presence of the white wash layer, and (e) choose the suitable restoration methods according to the results. Conclusion: This study focused mainly on the physical and chemical properties of the mural painting compound and the main changes that happened to the mural painting material, which caused deterioration and fall down of the painting parts, so we can find the best and optimum restoration ways for this object.Keywords: mural paintings, Tal Al-Amarna, digital microscope, Raman, XRF, XRD, FTIR
Procedia PDF Downloads 8013638 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems
Authors: Nyeng P. Gyang
Abstract:
Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.Keywords: cloud computing systems, multicore systems, parallel Delaunay triangulation, parallel surface modeling and generation
Procedia PDF Downloads 20913637 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking
Authors: Shiuh-Jer Huang, Yu-Sheng Hsu
Abstract:
On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller
Procedia PDF Downloads 24613636 Instant Data-Driven Robotics Fabrication of Light-Transmitting Ceramics: A Responsive Computational Modeling Workflow
Authors: Shunyi Yang, Jingjing Yan, Siyu Dong, Xiangguo Cui
Abstract:
Current architectural façade design practices incorporate various daylighting and solar radiation analysis methods. These emphasize the impact of geometry on façade design. There is scope to extend this knowledge into methods that address material translucency, porosity, and form. Such approaches can also achieve these conditions through adaptive robotic manufacturing approaches that exploit material dynamics within the design, and alleviate fabrication waste from molds, ultimately accelerating the autonomous manufacturing system. Besides analyzing the environmental solar radiant in building facade design, there is also a vacancy research area of how lighting effects can be precisely controlled by engaging the instant real-time data-driven robot control and manipulating the material properties. Ceramics carries a wide range of transmittance and deformation potentials for robotics control with the research of its material property. This paper presents one semi-autonomous system that engages with real-time data-driven robotics control, hardware kit design, environmental building studies, human interaction, and exploratory research and experiments. Our objectives are to investigate the relationship between different clay bodies or ceramics’ physio-material properties and their transmittance; to explore the feedback system of instant lighting data in robotic fabrication to achieve precise lighting effect; to design the sufficient end effector and robot behaviors for different stages of deformation. We experiment with architectural clay, as the material of the façade that is potentially translucent at a certain stage can respond to light. Studying the relationship between form, material properties, and porosity can help create different interior and exterior light effects and provide façade solutions for specific architectural functions. The key idea is to maximize the utilization of in-progress robotics fabrication and ceramics materiality to create a highly integrated autonomous system for lighting facade design and manufacture.Keywords: light transmittance, data-driven fabrication, computational design, computer vision, gamification for manufacturing
Procedia PDF Downloads 12713635 Active Learning Role on Strategic I-Map Thinking in Developing Reasoning Thinking and the Intrinsic-Motivation Orientation
Authors: Khaled Alotaibi
Abstract:
This paper deals with developing reasoning thinking and the intrinsic-extrinsic motivation for learning, and enhancing the academic achievement of a sample of students at Teachers' College in King Saud University. The study sample included 58 students who were divided randomly into two groups; one was an experimental group with 20 students and the other was a control group with 22 students. The following tools were used: e-courses by using I-map, Reasoning Thinking Tes, questionnaire to measure the intrinsic-extrinsic motivation for learning and an academic achievement test. Experimental group was taught using e-courses by using I-map, while the control group was taught by using traditional education. The results showed that: - There were no statistically significant differences between the experimental group and the control group in Reasoning thinking skills. - There were statistically significant differences between the experimental group and the control group in the intrinsic-extrinsic motivation for learning in favor of the experimental group. - There were statistically significant differences between the experimental group and the control group in academic achievement in favor of the experimental group.Keywords: reasoning, thinking, intrinsic motivation, active learning
Procedia PDF Downloads 42113634 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes
Authors: Ivanka Valova
Abstract:
This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation
Procedia PDF Downloads 9313633 Using Groundwater Modeling System to Create a 3-D Groundwater Flow and Solute Transport Model for a Semiarid Region: A Case Study of the Nadhour Saouaf Sisseb El Alem Aquifer, Central Tunisia
Authors: Emna Bahri Hammami, Zammouri Mounira, Tarhouni Jamila
Abstract:
The Nadhour Saouaf Sisseb El Alem (NSSA) system comprises some of the most intensively exploited aquifers in central Tunisia. Since the 1970s, the growth in economic productivity linked to intensive agriculture in this semiarid region has been sustained by increasing pumping rates of the system’s groundwater. Exploitation of these aquifers has increased rapidly, ultimately causing their depletion. With the aim to better understand the behavior of the aquifer system and to predict its evolution, the paper presents a finite difference model of the groundwater flow and solute transport. The model is based on the Groundwater Modeling System (GMS) and was calibrated using data from 1970 to 2010. Groundwater levels observed in 1970 were used for the steady-state calibration. Groundwater levels observed from 1971 to 2010 served to calibrate the transient state. The impact of pumping discharge on the evolution of groundwater levels was studied through three hypothetical pumping scenarios. The first two scenarios replicated the approximate drawdown in the aquifer heads (about 17 m in scenario 1 and 23 m in scenario 2 in the center of NSSA) following an increase in pumping rates by 30% and 50% from their current values, respectively. In addition, pumping was stopped in the third scenario, which could increase groundwater reserves by about 7 Mm3/year. NSSA groundwater reserves could be improved considerably if the pumping rules were taken seriously.Keywords: pumping, depletion, groundwater modeling system GMS, Nadhour Saouaf
Procedia PDF Downloads 22413632 Investigating Kinetics and Mathematical Modeling of Batch Clarification Process for Non-Centrifugal Sugar Production
Authors: Divya Vats, Sanjay Mahajani
Abstract:
The clarification of sugarcane juice plays a pivotal role in the production of non-centrifugal sugar (NCS), profoundly influencing the quality of the final NCS product. In this study, we have investigated the kinetics and mathematical modeling of the batch clarification process. The turbidity of the clarified cane juice (NTU) emerges as the determinant of the end product’s color. Moreover, this parameter underscores the significance of considering other variables as performance indicators for accessing the efficacy of the clarification process. Temperature-controlled experiments were meticulously conducted in a laboratory-scale batch mode. The primary objective was to discern the essential and optimized parameters crucial for augmenting the clarity of cane juice. Additionally, we explored the impact of pH and flocculant loading on the kinetics. Particle Image Velocimetry (PIV) is employed to comprehend the particle-particle and fluid-particle interaction. This technique facilitated a comprehensive understanding, paving the way for the subsequent multiphase computational fluid dynamics (CFD) simulations using the Eulerian-Lagrangian approach in the Ansys fluent. Impressively, these simulations accurately replicated comparable velocity profiles. The final mechanism of this study helps to make a mathematical model and presents a valuable framework for transitioning from the traditional batch process to a continuous process. The ultimate aim is to attain heightened productivity and unwavering consistency in product quality.Keywords: non-centrifugal sugar, particle image velocimetry, computational fluid dynamics, mathematical modeling, turbidity
Procedia PDF Downloads 7513631 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on
Authors: Mahesh Kumar Jat, Manisha Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: remote sensing, GIS, object based, classification
Procedia PDF Downloads 13713630 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot
Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier
Abstract:
The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.Keywords: control, identification, robot, co-manipulation, sensor-less
Procedia PDF Downloads 164