Search results for: data loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27823

Search results for: data loss

26203 The Impact of Biodiversity and Urban Ecosystem Services in Real Estate

Authors: Carmen Cantuarias-Villessuzanne, Jeffrey Blain, Radmila Pineau

Abstract:

Our research project aims at analyzing the sensitiveness of French households to urban biodiversity and urban ecosystem services (UES). Opinion surveys show that the French population is sensitive to biodiversity and ecosystem services loss, but the value given to these issues within urban fabric and real estate market lacks evidence. Using GIS data and economic evaluation, by hedonic price methods, weassess the isolated contribution of the explanatory variables of biodiversityand UES on the price of residential real estate. We analyze the variation of the valuefor three urban ecosystem services - flood control, proximity to green spaces, and refreshment - on the price of real estate whena property changes ownership. Our modeling and mapping focus on the price at theIRIS scale (statistical information unit) from 2014 to 2019. The main variables are internal characteristics of housing (area, kind of housing, heating), external characteristics(accessibility and infrastructure, economic, social, and physical environmentsuch as air pollution, noise), and biodiversity indicators and urban ecosystemservices for the Ile-de-France region. Moreover, we compare environmental values on the enhancement of greenspaces and their impact on residential choices. These studies are very useful for real estate developers because they enable them to promote green spaces, and municipalities to become more attractive.

Keywords: urban ecosystem services, sustainable real estate, urban biodiversity perception, hedonic price, environmental values

Procedia PDF Downloads 139
26202 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 39
26201 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining

Authors: Hina Kausher, Sangita Srivastava

Abstract:

In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.

Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments

Procedia PDF Downloads 137
26200 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 388
26199 Generation-Based Travel Decision Analysis in the Post-Pandemic Era

Authors: Hsuan Yu Lai, Hsuan Hsuan Chang

Abstract:

The consumer decision process steps through problems by weighing evidence, examining alternatives, and choosing a decision path. Currently, the COVID 19 made the tourism industry encounter a huge challenge and suffer the biggest amount of economic loss. It would be very important to reexamine the decision-making process model, especially after the pandemic, and consider the differences among different generations. The tourism industry has been significantly impacted by the global outbreak of COVID-19, but as the pandemic subsides, the sector is recovering. This study addresses the scarcity of research on travel decision-making patterns among generations in Taiwan. Specifically targeting individuals who frequently traveled abroad before the pandemic, the study explores differences in decision-making at different stages post-outbreak. So this study investigates differences in travel decision-making among individuals from different generations during/after the COVID-19 pandemic and examines the moderating effects of social media usage and individuals' perception of health risks. The study hypotheses are “there are significant differences in the decision-making process including travel motivation, information searching preferences, and criteria for decision-making” and that social-media usage and health-risk perception would moderate the results of the previous study hypothesis. The X, Y, and Z generations are defined and categorized based on a literature review. The survey collected data including their social-economic background, travel behaviors, motivations, considerations for destinations, travel information searching preferences, and decision-making criteria before/after the pandemic based on the reviews of previous studies. Data from 656 online questionnaires were collected between January to May 2023 and from Taiwanese travel consumers who used to travel at least one time abroad before Covid-19. SPSS is used to analyze the data with One-Way ANOVA and Two-Way ANOVA. The analysis includes demand perception, information gathering, alternative comparison, purchase behavior, and post-travel experience sharing. Social media influence and perception of health risks are examined as moderating factors. The findings show that before the pandemic, the Y Generation preferred natural environments, while the X Generation favored historical and cultural sites compared to the Z Generation. However, after the outbreak, the Z Generation displayed a significant preference for entertainment activities. This study contributes to understanding changes in travel decision-making patterns following COVID-19 and the influence of social media and health risks. The findings have practical implications for the tourism industry.

Keywords: consumer decision-making, generation study, health risk perception, post-pandemic era, social media

Procedia PDF Downloads 64
26198 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 133
26197 Facility Data Model as Integration and Interoperability Platform

Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes

Abstract:

Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.

Keywords: airport ontology, energy management, facility data model, ontology modeling

Procedia PDF Downloads 453
26196 Cultural Practices as a Coping Measure for Women who Terminated a Pregnancy in Adolescence: A Qualitative Study

Authors: Botshelo Rachel Sebola

Abstract:

Unintended pregnancy often results in pregnancy termination. Most countries have legalised the termination of a pregnancy, and pregnant adolescents can visit designated clinics without their parents’ consent. In most African and Asian countries, certain cultural practices are performed following any form of childbirth, including abortion, and such practices are ingrained in societies. The aim of this paper was to understand how women who terminated a pregnancy during adolescence coped by embracing cultural practices. A descriptive multiple case study design was adopted for the study. In-depth, semi-structured interviews and reflective diaries were used for data collection. 13 women aged 20 to 35 years who had terminated a pregnancy in adolescence participated in the study. Three women kept their soiled sanitary pads, burned them to ash and waited for the rainy season to scatter the ash in a flowing stream. This ritual was performed to appease the ancestors, ask them for forgiveness and as a send-off for the aborted foetus. Five women secretly consulted Sangoma (traditional healers) to perform certain rituals. Three women isolated themselves to perform herbal cleansings, and the last two chose not to engage in any sexual activity for one year, which led to the loss of their partners. This study offers a unique contribution to understanding the solitary journey of women who terminate a pregnancy. The study challenges healthcare professionals who work in clinics that offer pregnancy termination services to look beyond releasing the foetus to advocating and providing women with the necessary care and support in performing cultural practices.

Keywords: adolescence, culture, case study, pregnancy

Procedia PDF Downloads 88
26195 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye

Abstract:

Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution

Procedia PDF Downloads 139
26194 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 111
26193 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)

Procedia PDF Downloads 280
26192 Optimizing the Insertion of Renewables in the Colombian Power Sector

Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner

Abstract:

Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.

Keywords: energy policy and planning, stochastic programming, sustainable development, water management

Procedia PDF Downloads 300
26191 A Relational Data Base for Radiation Therapy

Authors: Raffaele Danilo Esposito, Domingo Planes Meseguer, Maria Del Pilar Dorado Rodriguez

Abstract:

As far as we know, it is still unavailable a commercial solution which would allow to manage, openly and configurable up to user needs, the huge amount of data generated in a modern Radiation Oncology Department. Currently, available information management systems are mainly focused on Record & Verify and clinical data, and only to a small extent on physical data. Thus, results in a partial and limited use of the actually available information. In the present work we describe the implementation at our department of a centralized information management system based on a web server. Our system manages both information generated during patient planning and treatment, and information of general interest for the whole department (i.e. treatment protocols, quality assurance protocols etc.). Our objective it to be able to analyze in a simple and efficient way all the available data and thus to obtain quantitative evaluations of our treatments. This would allow us to improve our work flow and protocols. To this end we have implemented a relational data base which would allow us to use in a practical and efficient way all the available information. As always we only use license free software.

Keywords: information management system, radiation oncology, medical physics, free software

Procedia PDF Downloads 247
26190 A Study of Safety of Data Storage Devices of Graduate Students at Suan Sunandha Rajabhat University

Authors: Komol Phaisarn, Natcha Wattanaprapa

Abstract:

This research is a survey research with an objective to study the safety of data storage devices of graduate students of academic year 2013, Suan Sunandha Rajabhat University. Data were collected by questionnaire on the safety of data storage devices according to CIA principle. A sample size of 81 was drawn from population by purposive sampling method. The results show that most of the graduate students of academic year 2013 at Suan Sunandha Rajabhat University use handy drive to store their data and the safety level of the devices is at good level.

Keywords: security, safety, storage devices, graduate students

Procedia PDF Downloads 356
26189 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 73
26188 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment

Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah

Abstract:

Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.

Keywords: response time, query, consistency, bandwidth, storage capacity, CERN

Procedia PDF Downloads 276
26187 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 48
26186 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece

Authors: N. Samarinas, C. Evangelides, C. Vrekos

Abstract:

The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.

Keywords: classification, fuzzy logic, tolerance relations, rainfall data

Procedia PDF Downloads 318
26185 Enhancing Postharvest Quality and Shelf-Life of Leaf Lettuce (Lactuca sativa L.) by Altering Growing Conditions

Authors: Jung-Soo Lee, Ujjal Kumar Nath, IllSup Nou, Dulal Chandra

Abstract:

Leaf lettuce is one of the most important leafy vegetables that is used as raw for salad and part of everyday dishes in many parts of the world including Asian countries. Since it is used as fresh, its quality maintenance is crucial which depends on several pre- and postharvest factors. In order to investigate the effects of pre-fix factors on the postharvest quality, the interaction of pre-fix factors such as growing conditions and fixed factor like cultivars were evaluated. Four Korean leaf lettuce cultivars ‘Cheongchima’, ‘Cheongchuckmyeon’, ‘Geockchima’ and ‘Geockchuckmyeon’ were grown under natural condition (as control) and altered growing condition (green house) with excess soil water and 50% shading to monitor their postharvest qualities. Several growth parameters like plant height, number of leaves, leaf thickness, fresh biomass yield as well as postharvest qualities like fresh weight loss, respiration rate, changes in color and shelf-life were measured in lettuce during storage up to 36 days at 5°C. Plant height and the number of leaves were affected by both pre-fix growing conditions as well as the cultivars. However, fresh biomass yield was affected by only growing condition, whereas leaf thickness was affected by cultivars. Additionally, the degrees of fresh weight loss and respiration rate of leaf lettuce at postharvest stages were influenced by pre-fix growing conditions and cultivars. However, changes in color of leaves during storage were less remarkable in samples harvested from of ‘Cheongchima’ and ‘Cheongchuckmyeon’ cultivars grown in excess watering with 50% shade than that grown in control condition. Consequently, these two cultivars also showed longer shelf-life when they were grown in excess watering with 50% shade than other cultivars or samples were grown in control condition. Based on the measured parameters, it can be concluded that postharvest quality of leaf lettuce might be accelerated by growing lettuce under excess soil water with 50% shading.

Keywords: cultivar, growing condition, leaf lettuce, postharvest quality, shelf-life

Procedia PDF Downloads 267
26184 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)

Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar

Abstract:

Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.

Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli

Procedia PDF Downloads 173
26183 Customer Satisfaction and Effective HRM Policies: Customer and Employee Satisfaction

Authors: S. Anastasiou, C. Nathanailides

Abstract:

The purpose of this study is to examine the possible link between employee and customer satisfaction. The service provided by employees, help to build a good relationship with customers and can help at increasing their loyalty. Published data for job satisfaction and indicators of customer services were gathered from relevant published works which included data from five different countries. The reviewed data indicate a significant correlation between indicators of customer and employee satisfaction in the Banking sector. There was a significant correlation between the two parameters (Pearson correlation R2=0.52 P<0.05) The reviewed data provide evidence that there is some practical evidence which links these two parameters.

Keywords: job satisfaction, job performance, customer’ service, banks, human resources management

Procedia PDF Downloads 326
26182 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 255
26181 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 345
26180 Positive Effects of Aerobic Exercise after Bone Marrow Stem Cell Transplantation on Recovery of Dopaminergic Neurons and Promotion of Angiogenesis Markers in the Striatum of Parkinsonian Rats

Authors: S. A. Hashemvarzi, A. Heidarianpour, Z. Fallahmohammadi, M. Pourghasem, M. Kaviani

Abstract:

Introduction: Parkinson’s disease (PD) is a progressive neurodegenerative in the central nervous system characterized by the loss of dopaminergic neurons in the substantia nigra resulting in loss of dopamine release in the striatum. Non-drug treatment options such as Stem cell transplantation and exercise have been considered for treatment of Parkinson's disease. Purpose: The purpose of this study was to evaluate the effect of aerobic exercise after bone marrow stem cells transplantation on recovery of dopaminergic neurons and promotion of angiogenesis markers in the striatum of parkinsonian rats. Materials and Methods: 42 male Wistar rats were divided randomly into six groups: Normal (N), Sham (S), Parkinson’s (P), Stem cells transplanted Parkinson’s (SP), Exercised Parkinson’s (EP) and Stem cells transplanted + Exercised Parkinson’s (SEP). To create a model of Parkinson's, the striatum was destroyed by injection of 6-hydroxy-dopamine into the striatum through stereotaxic apparatus. Stem cells were derived from the bone marrow of femur and tibia of male rats with 6-8 weeks old. After cultivation, approximately 5×105 cells in 5 microliter of medium were injected into the striatum of rats through the channel. Aerobic exercise was included 8 weeks of running on the treadmill with a speed of 15 meters per minute. At the end, all subjects were decapitated and striatum tissues were separately isolated for measurement of vascular endothelial growth factor (VEGF), dopamine (DA) and tyrosine hydroxylase (TH) levels. Results: VEGF, DA and TH levels in the striatum of parkinsonian rats significantly increased in treatment groups (SP, EP and SEP), especially in SEP group compared to P group after treatment (P<0.05). Conclusion: The findings implicate that the BMSCs transplantation in combination with exercise would have synergistic effects leading to functional recovery, dopaminergic neurons recovery and promotion of angiogenesis marker in the striatum of parkinsonian rats.

Keywords: stem cells, treadmill training, neurotrophic factors, Parkinson

Procedia PDF Downloads 345
26179 Women’s Empowerment on Modern Contraceptive Use in Poor-Rich Segment of Population: Evidence From South Asian Countries

Authors: Muhammad Asim, Mehvish Amjad

Abstract:

Background: Less than half of women in South Asia (SA) use any modern contraceptive method which leads to a huge burden of unintended pregnancies, unsafe abortions, maternal deaths, and socioeconomic loss. Women empowerment plays a pivotal role in improving various health seeking behaviours, including contraceptive use. The objective of this study to explore the association between women's empowerment and modern contraceptive, among rich and poor segment of population in SA. Methods: We used the most recent, large-scale, demographic health survey data of five South Asian countries, namely Afghanistan, Pakistan, Bangladesh, India, and Nepal. The outcome variable was the current use of modern contraceptive methods. The main exposure variable was a combination (interaction) of socio-economic status (SES) and women’s level of empowerment (low, medium, and high), where SES was bifurcated into poor and rich; and women empowerment was divided into three categories: decision making, attitude to violence and social independence. Moreover, overall women empowerment indicator was also created by using three dimensions of women empowerment. We applied both descriptive statistics and multivariable logistic regression techniques for data analyses. Results: Most of the women possessed ‘medium’ level of empowerment across South Asian Countries. The lowest attitude to violence empowerment was found in Afghanistan, and the lowest social independence empowerment was observed in Bangladesh across SA. However, Pakistani women have the lowest decision-making empowerment in the region. The lowest modern contraceptive use (22.1%) was found in Afghanistan and the highest (53.2%) in Bangladesh. The multivariate results depict that the overall measure of women empowerment does not affect modern contraceptive use among poor and rich women in most of South Asian countries. However, the decision-making empowerment plays a significant role among both poor and rich women to use modern contraceptive methods across South Asian countries. Conclusions: The effect of women’s empowerment on modern contraceptive use is not consistent across countries, and among poor and rich segment of population. Of the three dimensions of women’s empowerment, the autonomy of decision making in household affairs emerged as a stronger determinant of mCPR as compared with social independence and attitude towards violence against women.

Keywords: women empowerment, modern contraceptive use, South Asia, socio economic status

Procedia PDF Downloads 84
26178 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 81
26177 Integrated On-Board Diagnostic-II and Direct Controller Area Network Access for Vehicle Monitoring System

Authors: Kavian Khosravinia, Mohd Khair Hassan, Ribhan Zafira Abdul Rahman, Syed Abdul Rahman Al-Haddad

Abstract:

The CAN (controller area network) bus is introduced as a multi-master, message broadcast system. The messages sent on the CAN are used to communicate state information, referred as a signal between different ECUs, which provides data consistency in every node of the system. OBD-II Dongles that are based on request and response method is the wide-spread solution for extracting sensor data from cars among researchers. Unfortunately, most of the past researches do not consider resolution and quantity of their input data extracted through OBD-II technology. The maximum feasible scan rate is only 9 queries per second which provide 8 data points per second with using ELM327 as well-known OBD-II dongle. This study aims to develop and design a programmable, and latency-sensitive vehicle data acquisition system that improves the modularity and flexibility to extract exact, trustworthy, and fresh car sensor data with higher frequency rates. Furthermore, the researcher must break apart, thoroughly inspect, and observe the internal network of the vehicle, which may cause severe damages to the expensive ECUs of the vehicle due to intrinsic vulnerabilities of the CAN bus during initial research. Desired sensors data were collected from various vehicles utilizing Raspberry Pi3 as computing and processing unit with using OBD (request-response) and direct CAN method at the same time. Two types of data were collected for this study. The first, CAN bus frame data that illustrates data collected for each line of hex data sent from an ECU and the second type is the OBD data that represents some limited data that is requested from ECU under standard condition. The proposed system is reconfigurable, human-readable and multi-task telematics device that can be fitted into any vehicle with minimum effort and minimum time lag in the data extraction process. The standard operational procedure experimental vehicle network test bench is developed and can be used for future vehicle network testing experiment.

Keywords: CAN bus, OBD-II, vehicle data acquisition, connected cars, telemetry, Raspberry Pi3

Procedia PDF Downloads 212
26176 Big Data in Construction Project Management: The Colombian Northeast Case

Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez

Abstract:

In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.

Keywords: big data, building information modeling, tecnology, project manamegent

Procedia PDF Downloads 133
26175 Toxicity of Acacia nilotica ( Garad) to Nubian Goats

Authors: B. Medani Amna, M. A. Elbadwi Samia, E. Amin Ahmed

Abstract:

Variable plants present in nature are used by simple rural and urban people, researchers and drug manufacturers for medicinal purposes. Garad is one of the most commonly used in Sudan for both treatment and prophylaxis of infections in the respiratory, urinogenital tracts and the skin. Water exctracts from Acacia nilotica bods were used in this very experiment to test for their toxicity to Nubian goats at two dose rates under proper experimental conditions. The clinical, pathological, haematological and biological changes in Nubian goats given daily oral doses of 1 and 5 g/kg body weight of Acacia nilotica to two groups of test goats. The goats of the control group were undosed with Acacia nilotica.Other than the dose co-related mortality rates, the clinical signs were observed to be salivation, staggered gait, intermittent loss of voice and low appetite. On histopathological testing, the main lesions were hepatic centrolobular necrosis and fatty changes associated with the significant changes in GGT and ALP are indicating hepatic dysfunction.Renal malfunction is indicated by haemorrhages in addition to the change in the urea concentration. The congested, haemorrhagic, emphysematous, edematous and cyanotic lungs may contribute to the development of dyspnea. Acacia nilotica poisoning may lead to an immunosuppression pointed out by the lymphocyte infiltration. On evaluation of the above results, Acacia nilotica was considered toxic to Nubian goats at the above mentioned doses. Future work for Acacia nilotica was forwarded and practical implications of the result were highlighted.

Keywords: Acaia nilotica, toxicity data, Nubian goats, Garad

Procedia PDF Downloads 463
26174 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints

Procedia PDF Downloads 147