Search results for: KK remote station
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1859

Search results for: KK remote station

239 Impact of Emotional Intelligence and Cognitive Intelligence on Radio Presenter's Performance in All India Radio, Kolkata, India

Authors: Soumya Dutta

Abstract:

This research paper aims at investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance in the All India Radio, Kolkata (India’s public service broadcaster). The ancient concept of productivity is the ratio of what is produced to what is required to produce it. But, father of modern management Peter F. Drucker (1909-2005) defined productivity of knowledge work and knowledge workers in a new form. In the other hand, the concept of Emotional Intelligence (EI) originated back in 1920’s when Thorndike (1920) for the first time proposed the emotional intelligence into three dimensions, i.e., abstract intelligence, mechanical intelligence, and social intelligence. The contribution of Salovey and Mayer (1990) is substantive, as they proposed a model for emotional intelligence by defining EI as part of the social intelligence, which takes measures the ability of an individual to regulate his/her personal and other’s emotions and feeling. Cognitive intelligence illustrates the specialization of general intelligence in the domain of cognition in ways that possess experience and learning about cognitive processes such as memory. The outcomes of past research on emotional intelligence show that emotional intelligence has a positive effect on social- mental factors of human resource; positive effects of emotional intelligence on leaders and followers in terms of performance, results, work, satisfaction; emotional intelligence has a positive and significant relationship with the teachers' job performance. In this paper, we made a conceptual framework based on theories of emotional intelligence proposed by Salovey and Mayer (1989-1990) and a compensatory model of emotional intelligence, cognitive intelligence, and job performance proposed by Stephen Cote and Christopher T. H. Miners (2006). For investigating the impact of emotional intelligence and cognitive intelligence on radio presenter’s performance, sample size consists 59 radio presenters (considering gender, academic qualification, instructional mood, age group, etc.) from All India Radio, Kolkata station. Questionnaires prepared based on cognitive (henceforth called C based and represented by C1, C2,.., C5) as well as emotional intelligence (henceforth called E based and represented by E1, E2,., E20). These were sent to around 59 respondents (Presenters) for getting their responses. Performance score was collected from the report of program executive of All India Radio, Kolkata. The linear regression has been carried out using all the E-based and C-based variables as the predictor variables. The possible problem of autocorrelation has been tested by having the Durbinson-Watson (DW) Statistic. Values of this statistic, almost within the range of 1.80-2.20, indicate the absence of any significant problem of autocorrelation. The possible problem of multicollinearity has been tested by having the Variable Inflation Factor (VIF) value. Values of this statistic, around within 2, indicates the absence of any significant problem of multicollinearity. It is inferred that the performance scores can be statistically regressed linearly on the E-based and C-based scores, which can explain 74.50% of the variations in the performance.

Keywords: cognitive intelligence, emotional intelligence, performance, productivity

Procedia PDF Downloads 143
238 Airborne CO₂ Lidar Measurements for Atmospheric Carbon and Transport: America (ACT-America) Project and Active Sensing of CO₂ Emissions over Nights, Days, and Seasons 2017-2018 Field Campaigns

Authors: Joel F. Campbell, Bing Lin, Michael Obland, Susan Kooi, Tai-Fang Fan, Byron Meadows, Edward Browell, Wayne Erxleben, Doug McGregor, Jeremy Dobler, Sandip Pal, Christopher O'Dell, Ken Davis

Abstract:

The Active Sensing of CO₂ Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASA’s Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO₂ ) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. The ACES design demonstrates advanced technologies critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. The Atmospheric Carbon and Transport – America (ACT-America) is an Earth Venture Suborbital -2 (EVS-2) mission sponsored by the Earth Science Division of NASA’s Science Mission Directorate. A major objective is to enhance knowledge of the sources/sinks and transport of atmospheric CO₂ through the application of remote and in situ airborne measurements of CO₂ and other atmospheric properties on spatial and temporal scales. ACT-America consists of five campaigns to measure regional carbon and evaluate transport under various meteorological conditions in three regional areas of the Continental United States. Regional CO₂ distributions of the lower atmosphere were observed from the C-130 aircraft by the Harris Corp. Multi-Frequency Fiber Laser Lidar (MFLL) and the ACES lidar. The airborne lidars provide unique data that complement the more traditional in situ sensors. This presentation shows the applications of CO₂ lidars in support of these science needs.

Keywords: CO₂ measurement, IMCW, CW lidar, laser spectroscopy

Procedia PDF Downloads 143
237 A Multi-Role Oriented Collaboration Platform for Distributed Disaster Reduction in China

Authors: Linyao Qiu, Zhiqiang Du

Abstract:

As the rapid development of urbanization, economic developments, and steady population growth in China, the widespread devastation, economic damages, and loss of human lives caused by numerous forms of natural disasters are becoming increasingly serious every year. Disaster management requires available and effective cooperation of different roles and organizations in whole process including mitigation, preparedness, response and recovery. Due to the imbalance of regional development in China, the disaster management capabilities of national and provincial disaster reduction centers are uneven. When an undeveloped area suffers from disaster, neither local reduction department could get first-hand information like high-resolution remote sensing images from satellites and aircrafts independently, nor sharing mechanism is provided for the department to access to data resources deployed in other place directly. Most existing disaster management systems operate in a typical passive data-centric mode and work for single department, where resources cannot be fully shared. The impediment blocks local department and group from quick emergency response and decision-making. In this paper, we introduce a collaborative platform for distributed disaster reduction. To address the issues of imbalance of sharing data sources and technology in the process of disaster reduction, we propose a multi-role oriented collaboration business mechanism, which is capable of scheduling and allocating for optimum utilization of multiple resources, to link various roles for collaborative reduction business in different place. The platform fully considers the difference of equipment conditions in different provinces and provide several service modes to satisfy technology need in disaster reduction. An integrated collaboration system based on focusing services mechanism is designed and implemented for resource scheduling, functional integration, data processing, task management, collaborative mapping, and visualization. Actual applications illustrate that the platform can well support data sharing and business collaboration between national and provincial department. It could significantly improve the capability of disaster reduction in China.

Keywords: business collaboration, data sharing, distributed disaster reduction, focusing service

Procedia PDF Downloads 279
236 Genetic Variability and Heritability Among Indigenous Pearl Millet (Pennisetum Glaucum L. R. BR.) in Striga Infested Fields of Sudan Savanna, Nigeria

Authors: Adamu Usman, Grace Stanley Balami

Abstract:

Pearl millet (Pennisetum glaucum L. R. Br.) is a cereal cultivated in arid and semi-arid areas of the world. It supports more than 100 million people around the world. Parasitic weed (Striga hermonthica Del. Benth) is a major constraint to its production. Estimated yield losses are put at 10 - 95% depending on variety, ecology and cultural practices. Potentials in selection of traits in pearl millets for grain yield have been reported and it depends on genotypic variability and heritability among landraces. Variability and heritability among cultivars could offer opportunities for improvement. The study was conducted to determine the genetic variability among cultivars and estimate broad sense heritability among grain yield and related traits. F1 breeding populations were generated with 9 parental cultivars, viz; Ex-Gubio, Ex-Monguno, Ex-Baga as males and PEO 5984, Super-SOSAT, SOSAT-C88, Ex-Borno and LCIC9702 as females through Line × Tester mating during 2017 dry season at Lushi Irrigation Station, Bauchi Metropolitan in Bauchi State, Nigeria. The F1 population and the parents were evaluated during cropping season of 2018 at Bauchi and Maiduguri. Data collected were subjected to analysis of variance. Results showed significant difference among cultivars and among traits indicating variability. Number of plants at emergence, days to 50% flowering, days to 100% flowering, plant height, panicle length, number of plants at harvest, Striga count at 90 days after sowing, panicle weight and grain yield were significantly different. Significant variability offer opportunity for improvement as superior individuals can be isolated. Genotypic variance estimates of traits were largely greater than environmental variances except in plant height and 1000 seed weight. Environmental variances were low and in some cases negligible. The phenotypic variances of all traits were higher than genotypic variances. Similarly phenotypic coefficient of variation (PCV) was higher than genotypic coefficient of variation (GCV). High heritability was found in days to 50% flowering (90.27%), Striga count at 90 days after sowing (90.07%), number of plants at harvest (87.97%), days to 100% flowering (83.89%), number of plants at emergence (82.19%) and plant height (73.18%). Greater heritability estimates could be due to presence of additive gene. The result revealed wider variability among genotypes and traits. Traits having high heritability could easily respond to selection. High value of GCV, PCV and heritability estimates indicate that selection for these traits are possible and could be effective.

Keywords: variability, heritability, phenotypic, genotypic, striga

Procedia PDF Downloads 36
235 Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator

Authors: Gómez R. Marta, Martín M. Jesús María

Abstract:

The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case.

Keywords: atmospheric dispersion, dioxin, furan, incinerator

Procedia PDF Downloads 188
234 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature

Authors: Kibrom Hadush

Abstract:

Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.

Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature

Procedia PDF Downloads 129
233 Modelling of Meandering River Dynamics in Colombia: A Case Study of the Magdalena River

Authors: Laura Isabel Guarin, Juliana Vargas, Philippe Chang

Abstract:

The analysis and study of Open Channel flow dynamics for River applications has been based on flow modelling using discreet numerical models based on hydrodynamic equations. The overall spatial characteristics of rivers, i.e. its length to depth to width ratio generally allows one to correctly disregard processes occurring in the vertical or transverse dimensions thus imposing hydrostatic pressure conditions and considering solely a 1D flow model along the river length. Through a calibration process an accurate flow model may thus be developed allowing for channel study and extrapolation of various scenarios. The Magdalena River in Colombia is a large river basin draining the country from South to North with 1550 km with 0.0024 average slope and 275 average width across. The river displays high water level fluctuation and is characterized by a series of meanders. The city of La Dorada has been affected over the years by serious flooding in the rainy and dry seasons. As the meander is evolving at a steady pace repeated flooding has endangered a number of neighborhoods. This study has been undertaken in pro of correctly model flow characteristics of the river in this region in order to evaluate various scenarios and provide decision makers with erosion control measures options and a forecasting tool. Two field campaigns have been completed over the dry and rainy seasons including extensive topographical and channel survey using Topcon GR5 DGPS and River Surveyor ADCP. Also in order to characterize the erosion process occurring through the meander, extensive suspended and river bed samples were retrieved as well as soil perforation over the banks. Hence based on DEM ground digital mapping survey and field data a 2DH flow model was prepared using the Iber freeware based on the finite volume method in a non-structured mesh environment. The calibration process was carried out comparing available historical data of nearby hydrologic gauging station. Although the model was able to effectively predict overall flow processes in the region, its spatial characteristics and limitations related to pressure conditions did not allow for an accurate representation of erosion processes occurring over specific bank areas and dwellings. As such a significant helical flow has been observed through the meander. Furthermore, the rapidly changing channel cross section as a consequence of severe erosion has hindered the model’s ability to provide decision makers with a valid up to date planning tool.

Keywords: erosion, finite volume method, flow dynamics, flow modelling, meander

Procedia PDF Downloads 305
232 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system

Procedia PDF Downloads 338
231 Fuel Cells Not Only for Cars: Technological Development in Railways

Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz

Abstract:

Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.

Keywords: railway, hydrogen, fuel cells, hybrid vehicles

Procedia PDF Downloads 168
230 The Role of Social Capital in Community-Based Water Resources Management in Kenya's Polycentric Water Resource Governance System

Authors: Brenda Margaret Behan

Abstract:

Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions.

Keywords: community-based natural resource management, social capital, traditional institutions, water governance

Procedia PDF Downloads 151
229 Barriers and Facilitators of Community Based Mental Health Intervention (CMHI) in Rural Bangladesh: Findings from a Descriptive Study

Authors: Rubina Jahan, Mohammad Zayeed Bin Alam, Sazzad Chowdhury, Sadia Chowdhury

Abstract:

Access to mental health services in Bangladesh is a tale of urban privilege and rural struggle. Mental health services in the country are primarily centered in urban medical hospitals, with only 260 psychiatrists for a population of more than 162 million, while rural populations face far more severe and daunting challenges. In alignment with the World Health Organization's perspective on mental health as a basic human right and a crucial component for personal, community, and socioeconomic development; SAJIDA Foundation a value driven non-government organization in Bangladesh has introduced a Community Based Mental Health (CMHI) program to fill critical gaps in mental health care, providing accessible and affordable community-based services to protect and promote mental health, offering support for those grappling with mental health conditions. The CMHI programme is being implemented in 3 districts in Bangladesh, 2 of them are remote and most climate vulnerable areas targeting total 6,797 individual. The intervention plan involves a screening of all participants using a 10-point vulnerability assessment tool to identify vulnerable individuals. The assumption underlying this is that individuals assessed as vulnerable is primarily due to biological, psychological, social and economic factors and they are at an increased risk of developing common mental health issues. Those identified as vulnerable with high risk and emergency conditions will receive Mental Health First Aid (MHFA) and undergo further screening with GHQ-12 to be identified as cases and non-cases. The identified cases are then referred to community lay counsellors with basic training and knowledge in providing 4-6 sessions on problem solving or behavior activation. In situations where no improvement occurs post lay counselling or for individuals with severe mental health conditions, a referral process will be initiated, directing individuals to ensure appropriate mental health care. In our presentation, it will present the findings from 6-month pilot implementation focusing on the community-based screening versus outcome of the lay counseling session and barriers and facilitators of implementing community based mental health care in a resource constraint country like Bangladesh.

Keywords: community-based mental health, lay counseling, rural bangladesh, treatment gap

Procedia PDF Downloads 15
228 Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density

Authors: Lalit Kumar, Rashid Al Shidi

Abstract:

Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs.

Keywords: dubas bug, date palm, tree density, infestation levels

Procedia PDF Downloads 171
227 Doing Durable Organisational Identity Work in the Transforming World of Work: Meeting the Challenge of Different Workplace Strategies

Authors: Theo Heyns Veldsman, Dieter Veldsman

Abstract:

Organisational Identity (OI) refers to who and what the organisation is, what it stands for and does, and what it aspires to become. OI explores the perspectives of how we see ourselves, are seen by others and aspire to be seen. It provides as rationale the ‘why’ for the organisation’s continued existence. The most widely accepted differentiating features of OI are encapsulated in the organisation’s core, distinctive, differentiating, and enduring attributes. OI finds its concrete expression in the organisation’s Purpose, Vision, Strategy, Core Ideology, and Legacy. In the emerging new order infused by hyper-turbulence and hyper-fluidity, the VICCAS world, OI provides a secure anchor and steady reference point for the organisation, particularly the growing widespread focus on Purpose, which is indicative of the organisation’s sense of social citizenship. However, the transforming world of work (TWOW) - particularly the potent mix of ongoing disruptive innovation, the 4th Industrial Revolution, and the gig economy with the totally unpredicted COVID19 pandemic - has resulted in the consequential adoption of different workplace strategies by organisations in terms of how, where, and when work takes place. Different employment relations (transient to permanent); work locations (on-site to remote); work time arrangements (full-time at work to flexible work schedules); and technology enablement (face-to-face to virtual) now form the basis of the employer/employee relationship. The different workplace strategies, fueled by the demands of TWOW, pose a substantive challenge to organisations of doing durable OI work, able to fulfill OI’s critical attributes of core, distinctive, differentiating, and enduring. OI work is contained in the ongoing, reciprocally interdependent stages of sense-breaking, sense-giving, internalisation, enactment, and affirmation. The objective of our paper is to explore how to do durable OI work relative to different workplace strategies in the TWOW. Using a conceptual-theoretical approach from a practice-based orientation, the paper addresses the following topics: distinguishes different workplace strategies based upon a time/place continuum; explicates stage-wise the differential organisational content and process consequences of these strategies for durable OI work; indicates the critical success factors of durable OI work under these differential conditions; recommends guidelines for OI work relative to TWOW; and points out ethical implications of all of the above.

Keywords: organisational identity, workplace strategies, new world of work, durable organisational identity work

Procedia PDF Downloads 182
226 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms

Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson

Abstract:

This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.

Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection

Procedia PDF Downloads 452
225 Delivery of Contraceptive and Maternal Health Commodities with Drones in the Most Remote Areas of Madagascar

Authors: Josiane Yaguibou, Ngoy Kishimba, Issiaka V. Coulibaly, Sabrina Pestilli, Falinirina Razanalison, Hantanirina Andremanisa

Abstract:

Background: Madagascar has one of the least developed road networks in the world with a majority of its national and local roads being earth roads and in poor condition. In addition, the country is affected by frequent natural disasters that further affect the road conditions limiting the accessibility to some parts of the country. In 2021 and 2022, 2.21 million people were affected by drought in the Grand Sud region, and by cyclones and floods in the coastal regions, with disruptions of the health system including last mile distribution of lifesaving maternal health commodities and reproductive health commodities in the health facilities. Program intervention: The intervention uses drone technology to deliver maternal health and family planning commodities in hard-to-reach health facilities in the Grand Sud and Sud-Est of Madagascar, the regions more affected by natural disasters. Methodology The intervention was developed in two phases. A first phase, conducted in the Grand Sud, used drones leased from a private company to deliver commodities in isolated health facilities. Based on the lesson learnt and encouraging results of the first phase, in the second phase (2023) the intervention has been extended to the Sud Est regions with the purchase of drones and the recruitment of pilots to reduce costs and ensure sustainability. Key findings: The drones ensure deliveries of lifesaving commodities in the Grand Sud of Madagascar. In 2023, 297 deliveries in commodities in forty hard-to-reach health facilities have been carried out. Drone technology reduced delivery times from the usual 3 - 7 days necessary by road or boat to only a few hours. Program Implications: The use of innovative drone technology demonstrated to be successful in the Madagascar context to reduce dramatically the distribution time of commodities in hard-to-reach health facilities and avoid stockouts of life-saving medicines. When the intervention reaches full scale with the completion of the second phase and the extension in the Sud-Est, 150 hard-to-reach facilities will receive drone deliveries, avoiding stockouts and improving the quality of maternal health and family planning services offered to 1,4 million people in targeted areas.

Keywords: commodities, drones, last-mile distribution, lifesaving supplies

Procedia PDF Downloads 44
224 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique

Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar

Abstract:

Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.

Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image

Procedia PDF Downloads 212
223 The Effectiveness of Blended Learning in Pre-Registration Nurse Education: A Mixed Methods Systematic Review and Met Analysis

Authors: Albert Amagyei, Julia Carroll, Amanda R. Amorim Adegboye, Laura Strumidlo, Rosie Kneafsey

Abstract:

Introduction: Classroom-based learning has persisted as the mainstream model of pre-registration nurse education. This model is often rigid, teacher-centered, and unable to support active learning and the practical learning needs of nursing students. Health Education England (HEE), a public body of the Department of Health and Social Care, hypothesises that blended learning (BL) programmes may address health system and nursing profession challenges, such as nursing shortages and lack of digital expertise, by exploring opportunities for providing predominantly online, remote-access study which may increase nursing student recruitment, offering alternate pathways to nursing other than the traditional classroom route. This study will provide evidence for blended learning strategies adopted in nursing education as well as examine nursing student learning experiences concerning the challenges and opportunities related to using blended learning within nursing education. Objective: This review will explore the challenges and opportunities of BL within pre-registration nurse education from the student's perspective. Methods: The search was completed within five databases. Eligible studies were appraised independently by four reviewers. The JBI-convergent segregated approach for mixed methods review was used to assess and synthesize the data. The study’s protocol has been registered with the International Register of Systematic Reviews with registration number// PROSPERO (CRD42023423532). Results: Twenty-seven (27) studies (21 quantitative and 6 qualitative) were included in the review. The study confirmed that BL positively impacts nursing students' learning outcomes, as demonstrated by the findings of the meta-analysis and meta-synthesis. Conclusion: The review compared BL to traditional learning, simulation, laboratory, and online learning on nursing students’ learning and programme outcomes as well as learning behaviour and experience. The results show that BL could effectively improve nursing students’ knowledge, academic achievement, critical skills, and clinical performance as well as enhance learner satisfaction and programme retention. The review findings outline that students’ background characteristics, BL design, and format significantly impact the success of the BL nursing programme.

Keywords: nursing student, blended learning, pre-registration nurse education, online learning

Procedia PDF Downloads 31
222 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh

Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter

Abstract:

Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.

Keywords: land cover change, land surface temperature, normalized difference vegetation index, urban heat island

Procedia PDF Downloads 261
221 Spatio-Temporal Dynamics of Snow Cover and Melt/Freeze Conditions in Indian Himalayas

Authors: Rajashree Bothale, Venkateswara Rao

Abstract:

Indian Himalayas also known as third pole with 0.9 Million SQ km area, contain the largest reserve of ice and snow outside poles and affect global climate and water availability in the perennial rivers. The variations in the extent of snow are indicative of climate change. The snow melt is sensitive to climate change (warming) and also an influencing factor to the climate change. A study of the spatio-temporal dynamics of snow cover and melt/freeze conditions is carried out using space based observations in visible and microwave bands. An analysis period of 2003 to 2015 is selected to identify and map the changes and trend in snow cover using Indian Remote Sensing (IRS) Advanced Wide Field Sensor (AWiFS) and Moderate Resolution Imaging Spectroradiometer(MODIS) data. For mapping of wet snow, microwave data is used, which is sensitive to the presence of liquid water in the snow. The present study uses Ku-band scatterometer data from QuikSCAT and Oceansat satellites. The enhanced resolution images at 2.25 km from the 13.6GHz sensor are used to analyze the backscatter response to dry and wet snow for the period of 2000-2013 using threshold method. The study area is divided into three major river basins namely Brahmaputra, Ganges and Indus which also represent the diversification in Himalayas as the Eastern Himalayas, Central Himalayas and Western Himalayas. Topographic variations across different zones show that a majority of the study area lies in 4000–5500 m elevation range and the maximum percent of high elevated areas (>5500 m) lies in Western Himalayas. The effect of climate change could be seen in the extent of snow cover and also on the melt/freeze status in different parts of Himalayas. Melt onset day increases from east (March11+11) to west (May12+15) with large variation in number of melt days. Western Himalayas has shorter melt duration (120+15) in comparison to Eastern Himalayas (150+16) providing lesser time for melt. Eastern Himalaya glaciers are prone for enhanced melt due to large melt duration. The extent of snow cover coupled with the status of melt/freeze indicating solar radiation can be used as precursor for monsoon prediction.

Keywords: Indian Himalaya, Scatterometer, Snow Melt/Freeze, AWiFS, Cryosphere

Procedia PDF Downloads 241
220 Handling, Exporting and Archiving Automated Mineralogy Data Using TESCAN TIMA

Authors: Marek Dosbaba

Abstract:

Within the mining sector, SEM-based Automated Mineralogy (AM) has been the standard application for quickly and efficiently handling mineral processing tasks. Over the last decade, the trend has been to analyze larger numbers of samples, often with a higher level of detail. This has necessitated a shift from interactive sample analysis performed by an operator using a SEM, to an increased reliance on offline processing to analyze and report the data. In response to this trend, TESCAN TIMA Mineral Analyzer is designed to quickly create a virtual copy of the studied samples, thereby preserving all the necessary information. Depending on the selected data acquisition mode, TESCAN TIMA can perform hyperspectral mapping and save an X-ray spectrum for each pixel or segment, respectively. This approach allows the user to browse through elemental distribution maps of all elements detectable by means of energy dispersive spectroscopy. Re-evaluation of the existing data for the presence of previously unconsidered elements is possible without the need to repeat the analysis. Additional tiers of data such as a secondary electron or cathodoluminescence images can also be recorded. To take full advantage of these information-rich datasets, TIMA utilizes a new archiving tool introduced by TESCAN. The dataset size can be reduced for long-term storage and all information can be recovered on-demand in case of renewed interest. TESCAN TIMA is optimized for network storage of its datasets because of the larger data storage capacity of servers compared to local drives, which also allows multiple users to access the data remotely. This goes hand in hand with the support of remote control for the entire data acquisition process. TESCAN also brings a newly extended open-source data format that allows other applications to extract, process and report AM data. This offers the ability to link TIMA data to large databases feeding plant performance dashboards or geometallurgical models. The traditional tabular particle-by-particle or grain-by-grain export process is preserved and can be customized with scripts to include user-defined particle/grain properties.

Keywords: Tescan, electron microscopy, mineralogy, SEM, automated mineralogy, database, TESCAN TIMA, open format, archiving, big data

Procedia PDF Downloads 93
219 Wind Energy Harvester Based on Triboelectricity: Large-Scale Energy Nanogenerator

Authors: Aravind Ravichandran, Marc Ramuz, Sylvain Blayac

Abstract:

With the rapid development of wearable electronics and sensor networks, batteries cannot meet the sustainable energy requirement due to their limited lifetime, size and degradation. Ambient energies such as wind have been considered as an attractive energy source due to its copious, ubiquity, and feasibility in nature. With miniaturization leading to high-power and robustness, triboelectric nanogenerator (TENG) have been conceived as a promising technology by harvesting mechanical energy for powering small electronics. TENG integration in large-scale applications is still unexplored considering its attractive properties. In this work, a state of the art design TENG based on wind venturi system is demonstrated for use in any complex environment. When wind introduces into the air gap of the homemade TENG venturi system, a thin flexible polymer repeatedly contacts with and separates from electrodes. This device structure makes the TENG suitable for large scale harvesting without massive volume. Multiple stacking not only amplifies the output power but also enables multi-directional wind utilization. The system converts ambient mechanical energy to electricity with 400V peak voltage by charging of a 1000mF super capacitor super rapidly. Its future implementation in an array of applications aids in environment friendly clean energy production in large scale medium and the proposed design performs with an exhaustive material testing. The relation between the interfacial micro-and nano structures and the electrical performance enhancement is comparatively studied. Nanostructures are more beneficial for the effective contact area, but they are not suitable for the anti-adhesion property due to the smaller restoring force. Considering these issues, the nano-patterning is proposed for further enhancement of the effective contact area. By considering these merits of simple fabrication, outstanding performance, robust characteristic and low-cost technology, we believe that TENG can open up great opportunities not only for powering small electronics, but can contribute to large-scale energy harvesting through engineering design being complementary to solar energy in remote areas.

Keywords: triboelectric nanogenerator, wind energy, vortex design, large scale energy

Procedia PDF Downloads 197
218 Fiberoptic Intubation Skills Training Improves Emergency Medicine Resident Comfort Using Modality

Authors: Nicholus M. Warstadt, Andres D. Mallipudi, Oluwadamilola Idowu, Joshua Rodriguez, Madison M. Hunt, Soma Pathak, Laura P. Weber

Abstract:

Endotracheal intubation is a core procedure performed by emergency physicians. This procedure is a high risk, and failure results in substantial morbidity and mortality. Fiberoptic intubation (FOI) is the standard of care in difficult airway protocols, yet no widespread practice exists for training emergency medicine (EM) residents in the technical acquisition of FOI skills. Simulation on mannequins is commonly utilized to teach advanced airway techniques. As part of a program to introduce FOI into our ED, residents received hands-on training in FOI as part of our weekly resident education conference. We hypothesized that prior to the hands-on training, residents had little experience with FOI and were uncomfortable with using fiberoptic as a modality. We further hypothesized that resident comfort with FOI would increase following the training. The education intervention consisted of two hours of focused airway teaching and skills acquisition for PGY 1-4 residents. One hour was dedicated to four case-based learning stations focusing on standard, pediatric, facial trauma, and burn airways. Direct, video, and fiberoptic airway equipment were available to use at the residents’ discretion to intubate mannequins at each station. The second hour involved direct instructor supervision and immediate feedback during deliberate practice for FOI of a mannequin. Prior to the hands-on training, a pre-survey was sent via email to all EM residents at NYU Grossman School of Medicine. The pre-survey asked how many FOI residents have performed in the ED, OR, and on a mannequin. The pre-survey and a post-survey asked residents to rate their comfort with FOI on a 5-point Likert scale ("extremely uncomfortable", "somewhat uncomfortable", "neither comfortable nor uncomfortable", "somewhat comfortable", and "extremely comfortable"). The post-survey was administered on site immediately following the training. A two-sample chi-square test of independence was calculated comparing self-reported resident comfort on the pre- and post-survey (α ≤ 0.05). Thirty-six of a total of 70 residents (51.4%) completed the pre-survey. Of pre-survey respondents, 34 residents (94.4%) had performed 0, 1 resident (2.8%) had performed 1, and 1 resident (2.8%) had performed 2 FOI in the ED. Twenty-five residents (69.4%) had performed 0, 6 residents (16.7%) had performed 1, 2 residents (5.6%) had performed 2, 1 resident (2.8%) had performed 3, and 2 residents (5.6%) had performed 4 FOI in the OR. Seven residents (19.4%) had performed 0, and 16 residents (44.4%) had performed 5 or greater FOI on a mannequin. 29 residents (41.4%) attended the hands-on training, and 27 out of 29 residents (93.1%) completed the post-survey. Self-reported resident comfort with FOI significantly increased in post-survey compared to pre-survey questionnaire responses (p = 0.00034). Twenty-one of 27 residents (77.8%) report being “somewhat comfortable” or “extremely comfortable” with FOI on the post-survey, compared to 9 of 35 residents (25.8%) on the pre-survey. We show that dedicated FOI training is associated with increased learner comfort with such techniques. Further direction includes studying technical competency, skill retention, translation to direct patient care, and optimal frequency and methodology of future FOI education.

Keywords: airway, emergency medicine, fiberoptic intubation, medical simulation, skill acquisition

Procedia PDF Downloads 167
217 Diabetes and Medical Plant's Treatment: Ethnobotanical Studies Carried out in Morocco

Authors: Jamila Fakchich, Mostafa Jamila Lazaar Elachouri, Lakhder Fakchich, Fatna Ouali, Abd Errazzak Belkacem

Abstract:

Diabetes is a chronic metabolic disease that has a significant impact on the health, quality of life, and life expectancy of patients as well as the health care system. By its nature diabetes, is a multisystem disease with wide-ranging complication that span nearly all region of the body. This epidemic problem, however, is not unique to the industrialized society, but has also hardly struck the developing countries. In Morocco, as developing country, there is an epidemic rise in diabetes, with ensuing concern about the management and control of this disease; it began a chronic burdensome disease of largely middle-aged and elderly people, with a long course and serious complications often resulting in high death-rate, the treatment of diabetes spent vast amount of resources including medicines, diets, physical training. Treatment of this disease is considered problematic due to the lack of effective and safe drugs capable of inducing sustained clinical, biochemical, and histological cure. In Moroccan society, the phytoremedies are some times the only affordable sources of healthcare, particularly for the people in remote areas. In this paper, we present a synthesis work obtained from the ethnobotanical data reported in different specialized journals. A Synthesis of four published ethnobotanical studies that have been carried out in different region of Morocco by different team seekers during the period from 1997 to 2015. Medicinal plants inventoried by different seekers in four Moroccan’s areas have been regrouped and codified, then, Factorial Analysis (FA) and Principal Components Analysis (PCA) are used to analyse the aggregated data from the four studies and plants are classified according to their frequency of use by population. Our work deals with an attempt to gather information on some traditional uses of medicinal plants from different regions of Morocco, also, it was designed to give a set of medicinal plants commonly used by Moroccan people in the treatment of diabetes; In this paper, we intended to provide a basic knowledge about plant species used by Moroccan society for treatment of diabetes. One of the most interesting aspects of this type of works is to assess the relative cultural importance of medicinal plants for specific illnesses and exploring its usefulness in the context of diabetes.

Keywords: Morocco, medicinal plants, ethnobotanical, diabetes, phytoremedies

Procedia PDF Downloads 309
216 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 105
215 Evidence-Based in Telemonitoring of Users with Pacemakers at Five Years after Implant: The Poniente Study

Authors: Antonio Lopez-Villegas, Daniel Catalan-Matamoros, Remedios Lopez-Liria

Abstract:

Objectives: The purpose of this study was to analyze clinical data, health-related quality of life (HRQoL) and functional capacity of patients using a telemonitoring follow-up system (TM) compared to patients followed-up through standard outpatient visits (HM) 5 years after the implantation of a pacemaker. Methods: This is a controlled, non-randomised, nonblinded clinical trial, with data collection carried out at 5 years after the pacemakers implant. The study was developed at Hospital de Poniente (Almeria, Spain), between October 2012 and November 2013. The same clinical outcomes were analyzed in both follow-up groups. Health-Related Quality of Life and Functional Capacity was assessed through EuroQol-5D (EQ-5D) questionnaire and Duke Activity Status Index (DASI) respectively. Sociodemographic characteristics and clinical data were also analyzed. Results: 5 years after pacemaker implant, 55 of 82 initial patients finished the study. Users with pacemakers were assigned to either a conventional follow-up group at hospital (HM=34, 50 initials) or a telemonitoring system group (TM=21, 32 initials). No significant differences were found between both groups according to sociodemographic characteristics, clinical data, Health-Related Quality of Life and Functional Capacity according to medical record and EQ5D and DASI questionnaires. In addition, conventional follow-up visits to hospital were reduced in 44,84% (p < 0,001) in the telemonitoring group in relation to hospital monitoring group. Conclusion: Results obtained in this study suggest that the telemonitoring of users with pacemakers is an equivalent option to conventional follow-up at hospital, in terms of Health-Related Quality of Life and Functional Capacity. Furthermore, it allows for the early detection of cardiovascular and pacemakers-related problem events and significantly reduces the number of in-hospital visits. Trial registration: ClinicalTrials.gov NCT02234245. The PONIENTE study has been funded by the General Secretariat for Research, Development and Innovation, Regional Government of Andalusia (Spain), project reference number PI/0256/2017, under the research call 'Development and Innovation Projects in the Field of Biomedicine and Health Sciences', 2017.

Keywords: cardiovascular diseases, health-related quality of life, pacemakers follow-up, remote monitoring, telemedicine

Procedia PDF Downloads 111
214 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems

Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas

Abstract:

Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).

Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting

Procedia PDF Downloads 100
213 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 91
212 Coastal Modelling Studies for Jumeirah First Beach Stabilization

Authors: Zongyan Yang, Gagan K. Jena, Sankar B. Karanam, Noora M. A. Hokal

Abstract:

Jumeirah First beach, a segment of coastline of length 1.5 km, is one of the popular public beaches in Dubai, UAE. The stability of the beach has been affected by several coastal developmental projects, including The World, Island 2 and La Mer. A comprehensive stabilization scheme comprising of two composite groynes (of lengths 90 m and 125m), modification to the northern breakwater of Jumeirah Fishing Harbour and beach re-nourishment was implemented by Dubai Municipality in 2012. However, the performance of the implemented stabilization scheme has been compromised by La Mer project (built in 2016), which modified the wave climate at the Jumeirah First beach. The objective of the coastal modelling studies is to establish design basis for further beach stabilization scheme(s). Comprehensive coastal modelling studies had been conducted to establish the nearshore wave climate, equilibrium beach orientations and stable beach plan forms. Based on the outcomes of the modeling studies, recommendation had been made to extend the composite groynes to stabilize the Jumeirah First beach. Wave transformation was performed following an interpolation approach with wave transformation matrixes derived from simulations of a possible range of wave conditions in the region. The Dubai coastal wave model is developed with MIKE21 SW. The offshore wave conditions were determined from PERGOS wave data at 4 offshore locations with consideration of the spatial variation. The lateral boundary conditions corresponding to the offshore conditions, at Dubai/Abu Dhabi and Dubai Sharjah borders, were derived with application of LitDrift 1D wave transformation module. The Dubai coastal wave model was calibrated with wave records at monitoring stations operated by Dubai Municipality. The wave transformation matrix approach was validated with nearshore wave measurement at a Dubai Municipality monitoring station in the vicinity of the Jumeirah First beach. One typical year wave time series was transformed to 7 locations in front of the beach to count for the variation of wave conditions which are affected by adjacent and offshore developments. Equilibrium beach orientations were estimated with application of LitDrift by finding the beach orientations with null annual littoral transport at the 7 selected locations. The littoral transport calculation results were compared with beach erosion/accretion quantities estimated from the beach monitoring program (twice a year including bathymetric and topographical surveys). An innovative integral method was developed to outline the stable beach plan forms from the estimated equilibrium beach orientations, with predetermined minimum beach width. The optimal lengths for the composite groyne extensions were recommended based on the stable beach plan forms.

Keywords: composite groyne, equilibrium beach orientation, stable beach plan form, wave transformation matrix

Procedia PDF Downloads 240
211 Middle Ordovician (Llanvirnian) Relative Sea-Level Fluctuations

Authors: Ying Jia Teoh

Abstract:

The Canning Basin is located between the Kimberley and Pilbara Precambrian cratonic blocks. It is a large but relatively poorly explored Paleozoic basin in remote Western Australia. During the early Ordovician period, the Australian continent was located near the equator. Middle Ordovician age Nita and Goldwyer Formations in Canning Basin are therefore warm water carbonates. The Nita Formation carbonates are a regressive sequence which conformably overlies the Goldwyer Formation. It contains numerous progradational cycles of limestone, vuggy dolomitized carbonate beds and shale deposited in subtidal to supratidal environments. The Goldwyer Formation contains transgressive shale sequences and regressive carbonates deposited in shallow subtidal conditions. The shales contain oil-prone Gloeocapsormorpha prisca-bearing source rocks. Llanvirnian relative sea-level fluctuations were reconstructed by using Fischer plots methodology for three key wells (wells McLarty 1, Looma 1 and Robert 1) in Broome Platform and compared with INPEFA data. The Goldwyer lower shale (interval Or1000P) shows increasing relative sea-level and this matches with a transgressive systems tract. Goldwyer middle carbonate (interval Or2000) shows relative sea-level drop and this matches with a regressive systems tract. Goldwyer upper shale (interval Or2000P) shows relative sea-level drop and this matches with a transgressive systems tract. Nita Formation Leo Member (interval Or3000) shows a relative sea level drop and this matches with a regressive systems tract. The Nita Formation Cudalgarra Member (intervals Or3000P and Or4000) with transgressive systems tract then this is followed by a regressive systems tract. This pattern matches with the relative sea-level curves in wells McLarty 1 and Robert 1. The correlation is weak for parts of well Looma 1. This is probably influenced by the fact that the thickness of this section is quite small. As a conclusion, Fischer plots for the Llanvirnian Goldwyer and Nita Formations show good agreement with the third order global sea level cycles of Haq and others. Fischer plots are generally correlated well with trend and cyclicity determined by INPEFA curves and as a method of cross-checking INPEFA data and sea-level change.

Keywords: canning basin, Fischer plots, Llanvirnian, middle Ordovician, sea-level fluctuations, stratigraphy

Procedia PDF Downloads 269
210 Shoreline Variation with Construction of a Pair of Training Walls, Ponnani Inlet, Kerala, India

Authors: Jhoga Parth, T. Nasar, K. V. Anand

Abstract:

An idealized definition of shoreline is that it is the zone of coincidence of three spheres such as atmosphere, lithosphere, and hydrosphere. Despite its apparent simplicity, this definition in practice a challenge to apply. In reality, the shoreline location deviates continually through time, because of various dynamic factors such as wave characteristics, currents, coastal orientation and the bathymetry, which makes the shoreline volatile. This necessitates us to monitor the shoreline in a temporal basis. If shoreline’s nature is understood at particular coastal stretch, it need not be the same trend at the other location, though belonging to the same sea front. Shoreline change is hence a local phenomenon and has to be studied with great intensity considering as many factors involved as possible. Erosion and accretion of sediment are such natures of a shoreline, which needs to be quantified by comparing with its predeceasing variations and understood before implementing any coastal projects. In recent years, advent of Global Positioning System (GPS) and Geographic Information System (GIS) acts as an emerging tool to quantify the intra and inter annual sediment rate getting accreted or deposited compared to other conventional methods in regards with time was taken and man power. Remote sensing data, on the other hand, paves way to acquire historical sets of data where field data is unavailable with a higher resolution. Short term and long term period shoreline change can be accurately tracked and monitored using a software residing in GIS - Digital Shoreline Analysis System (DSAS) developed by United States Geological Survey (USGS). In the present study, using DSAS, End Point Rate (EPR) is calculated analyze the intra-annual changes, and Linear Rate Regression (LRR) is adopted to study inter annual changes of shoreline. The shoreline changes are quantified for the scenario during the construction of breakwater in Ponnani river inlet along Kerala coast, India. Ponnani is a major fishing and landing center located 10°47’12.81”N and 75°54’38.62”E in Malappuram district of Kerala, India. The rate of erosion and accretion is explored using satellite and field data. The full paper contains the rate of change of shoreline, and its analysis would provide us understanding the behavior of the inlet at the study area during the construction of the training walls.

Keywords: DSAS, end point rate, field measurements, geo-informatics, shoreline variation

Procedia PDF Downloads 234