Search results for: sensor technologies
3330 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks
Authors: Wided Abidi, Tahar Ezzedine
Abstract:
Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency
Procedia PDF Downloads 3293329 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance
Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty
Abstract:
One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.Keywords: fouling, monitoring, QCM, water quality
Procedia PDF Downloads 2123328 3D Printing of Dual Tablets: Modified Multiple Release Profiles for Personalized Medicine
Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek
Abstract:
Additive manufacturing technologies producing drug dosage forms aimed at personalized medicine applications are promising strategies with several advantages over the conventional production methods. One of the emerging technologies is 3D printing which reduces manufacturing steps and thus allows a significant drop in expenses. A decrease in material consumption is also a highly impactful benefit as the tested drugs are frequently expensive substances. In addition, 3D printed dosage forms enable increased patient compliance and prevent misdosing as the dosage forms are carefully designed according to the patient’s needs. The incorporation of multiple drugs into a single dosage form further increases the degree of personalization. Our research focuses on the development of 3D printed tablets incorporating multiple drugs (candesartan, losartan) and thermoplastic polymers (e.g., KlucelTM HPC EF). The filaments, an essential feed material for 3D printing,wereproduced via hot-melt extrusion. Subsequently, the extruded filaments of various formulations were 3D printed into tablets using an FDM 3D printer. Then, we have assessed the influence of the internal structure of 3D printed tablets and formulation on dissolution behaviour by obtaining the dissolution profiles of drugs present in the 3D printed tablets. In conclusion, we have developed tablets containing multiple drugs providing modified release profiles. The 3D printing experiments demonstrate the high tunability of 3D printing as each tablet compartment is constructed with a different formulation. Overall, the results suggest that the 3D printing technology is a promising manufacturing approach to dual tablet preparation for personalized medicine.Keywords: 3D printing, drug delivery, hot-melt extrusion, dissolution kinetics
Procedia PDF Downloads 1683327 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks
Authors: P. R. Dushantha Chaminda, Peng Kai
Abstract:
In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM
Procedia PDF Downloads 2143326 From Servicescape to Servicespace: Qualitative Research in a Post-Cartesian Retail Context
Authors: Chris Houliez
Abstract:
This study addresses the complex dynamics of the modern retail environment, focusing on how the ubiquitous nature of mobile communication technologies has reshaped the shopper experience and tested the limits of the conventional "servicescape" concept commonly used to describe retail experiences. The objective is to redefine the conceptualization of retail space by introducing an approach to space that aligns with a retail context where physical and digital interactions are increasingly intertwined. To offer a more shopper-centric understanding of the retail experience, this study draws from phenomenology, particularly Henri Lefebvre’s work on the production of space. The presented protocol differs from traditional methodologies by not making assumptions about what constitutes a retail space. Instead, it adopts a perspective based on Lefebvre’s seminal work, which posits that space is not a three-dimensional container commonly referred to as “servicescape” but is actively produced through shoppers’ spatial practices. This approach allows for an in-depth exploration of the retail experience by capturing the everyday spatial practices of shoppers without preconceived notions of what constitutes a retail space. The designed protocol was tested with eight participants during 209 hours of day-long field trips, immersing the researcher into the shopper's lived experience by combining multiple data collection methods, including participant observation, videography, photography, and both pre-fieldwork and post-fieldwork interviews. By giving equal importance to both locations and connections, this study unpacked various spatial practices that contribute to the production of retail space. These findings highlight the relative inadequacy of some traditional retail space conceptualizations, which often fail to capture the fluid nature of contemporary shopping experiences. The study's emphasis on the customization process, through which shoppers optimize their retail experience by producing a “fully lived retail space,” offers a more comprehensive understanding of consumer shopping behavior in the digital age. In conclusion, this research presents a significant shift in the conceptualization of retail space. By employing a phenomenological approach rooted in Lefebvre’s theory, the study provides a more efficient framework to understand the retail experience in the age of mobile communication technologies. Although this research is limited by its small sample size and the demographic profile of participants, it offers valuable insights into the spatial practices of modern shoppers and their implications for retail researchers and retailers alike.Keywords: shopper behavior, mobile telecommunication technologies, qualitative research, servicescape, servicespace
Procedia PDF Downloads 223325 Concrete-Wall-Climbing Testing Robot
Authors: S. Tokuomi, K. Mori, Y. Tsuruzono
Abstract:
A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method
Procedia PDF Downloads 6593324 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
A kinetic façade responds to user requirements and environmental conditions. In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization
Procedia PDF Downloads 5173323 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings
Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt
Abstract:
Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy
Procedia PDF Downloads 1753322 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact
Authors: Edward Nartey
Abstract:
Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations
Procedia PDF Downloads 643321 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: routing protocol, optimization, clustering, WSN
Procedia PDF Downloads 4693320 Mapping a Data Governance Framework to the Continuum of Care in the Active Assisted Living Context
Authors: Gaya Bin Noon, Thoko Hanjahanja-Phiri, Laura Xavier Fadrique, Plinio Pelegrini Morita, Hélène Vaillancourt, Jennifer Teague, Tania Donovska
Abstract:
Active Assisted Living (AAL) refers to systems designed to improve the quality of life, aid in independence, and create healthier lifestyles for care recipients. As the population ages, there is a pressing need for non-intrusive, continuous, adaptable, and reliable health monitoring tools to support aging in place. AAL has great potential to support these efforts with the wide variety of solutions currently available, but insufficient efforts have been made to address concerns arising from the integration of AAL into care. The purpose of this research was to (1) explore the integration of AAL technologies and data into the clinical pathway, and (2) map data access and governance for AAL technology in order to develop standards for use by policy-makers, technology manufacturers, and developers of smart communities for seniors. This was done through four successive research phases: (1) literature search to explore existing work in this area and identify lessons learned; (2) modeling of the continuum of care; (3) adapting a framework for data governance into the AAL context; and (4) interviews with stakeholders to explore the applicability of previous work. Opportunities for standards found in these research phases included a need for greater consistency in language and technology requirements, better role definition regarding who can access and who is responsible for taking action based on the gathered data, and understanding of the privacy-utility tradeoff inherent in using AAL technologies in care settings.Keywords: active assisted living, aging in place, internet of things, standards
Procedia PDF Downloads 1313319 [Keynote Talk]: Some Underlying Factors and Partial Solutions to the Global Water Crisis
Authors: Emery Jr. Coppola
Abstract:
Water resources are being depleted and degraded at an alarming and non-sustainable rate worldwide. In some areas, it is progressing more slowly. In other areas, irreversible damage has already occurred, rendering regions largely unsuitable for human existence with destruction of the environment and the economy. Today, 2.5 billion people or 36 percent of the world population live in water-stressed areas. The convergence of factors that created this global water crisis includes local, regional, and global failures. In this paper, a survey of some of these factors is presented. They include abuse of political power and regulatory acquiescence, improper planning and design, ignoring good science and models, systemic failures, and division between the powerful and the powerless. Increasing water demand imposed by exploding human populations and growing economies with short-falls exacerbated by climate change and continuing water quality degradation will accelerate this growing water crisis in many areas. Without regional measures to improve water efficiencies and protect dwindling and vulnerable water resources, environmental and economic displacement of populations and conflict over water resources will only grow. Perhaps more challenging, a global commitment is necessary to curtail if not reverse the devastating effects of climate change. Factors will be illustrated by real-world examples, followed by some partial solutions offered by water experts for helping to mitigate the growing water crisis. These solutions include more water efficient technologies, education and incentivization for water conservation, wastewater treatment for reuse, and improved data collection and utilization.Keywords: climate change, water conservation, water crisis, water technologies
Procedia PDF Downloads 2353318 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production
Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu
Abstract:
Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X
Procedia PDF Downloads 2903317 Perspective for the Creation of Molecular Imprinted Polymers from Coal Waste
Authors: Alma Khasenovna Zhakina, Arnt Oxana Vasilievna, Vasilets Evgeny Petrovich
Abstract:
The aim of this project is to develop methods for obtaining new molecularly imprinted polymers from coal waste to study their structure, structural and morphological features and properties. Recently, the development of molecularly imprinted polymers has become one of the hot topics for researchers. Modern research indicates the broad prospects of rapidly developing molecular imprinting technologies for creating a new generation of sorption materials. The attractiveness of this area of research lies in the fact that the use of imprinted polymers is not limited to scientific research; they are already being introduced in the chemical, pharmaceutical and biotechnological industries, primarily at the stages of purification of the final product. For the use of molecularly imprinted polymers in the development of sorption material, their ability to selectively remove pollutants, including trace concentrations, is of fundamental importance, and the exceptional stability of polymeric materials under harsh conditions makes it possible to simplify the process of water purification as a whole. The scientific and technical effect is associated with the development of technologies for the production of new molecularly imprinted polymers, the establishment of optimal conditions for their production and the creation of effective imprinted sorbents on their basis for wastewater treatment from heavy metals. The social effect is due to the fact that the use of coal waste as a feedstock for the production of imprinted sorbents will make it possible in the future to create new industries with additional jobs and obtain competitive multi-purpose products. The economic and multiplier effect is associated with the low cost of the final product due to the involvement of local coal waste in the production, reduction of transport, customs and other costs.Keywords: imprinted polymers, coal waste, polymerization, template, customized sorbents
Procedia PDF Downloads 663316 Investigating the Feasibility of Promoting Safety in Civil Projects by BIM System Using Fuzzy Logic
Authors: Mohammad Reza Zamanian
Abstract:
The construction industry has always been recognized as one of the most dangerous available industries, and the statistics of accidents and injuries resulting from it say that the safety category needs more attention and the arrival of up-to-date technologies in this field. Building information modeling (BIM) is one of the relatively new and applicable technologies in Iran, that the necessity of using it is increasingly evident. The main purposes of this research are to evaluate the feasibility of using this technology in the safety sector of construction projects and to evaluate the effectiveness and operationality of its various applications in this sector. These applications were collected and categorized after reviewing past studies and researches then a questionnaire based on Delphi method criteria was presented to 30 experts who were thoroughly familiar with modeling software and safety guidelines. After receiving and exporting the answers to SPSS software, the validity and reliability of the questionnaire were assessed to evaluate the measuring tools. Fuzzy logic is a good way to analyze data because of its flexibility in dealing with ambiguity and uncertainty issues, and the implementation of the Delphi method in the fuzzy environment overcomes the uncertainties in decision making. Therefore, this method was used for data analysis, and the results indicate the usefulness and effectiveness of BIM in projects and improvement of safety status at different stages of construction. Finally, the applications and the sections discussed were ranked in order of priority for efficiency and effectiveness. Safety planning is considered as the most influential part of the safety of BIM among the four sectors discussed, and planning for the installation of protective fences and barriers to prevent falls and site layout planning with a safety approach based on a 3D model are the most important applications of BIM among the 18 applications to improve the safety of construction projects.Keywords: building information modeling, safety of construction projects, Delphi method, fuzzy logic
Procedia PDF Downloads 1673315 Response of Full-Scale Room Building Against Blast Loading
Authors: Eid Badshah, Amjad Naseer, Muhammad Ashraf
Abstract:
In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario.Keywords: peak pressure, composition-B, TNT, pressure sensor, scaled distance, masonry
Procedia PDF Downloads 1263314 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics
Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri
Abstract:
Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.Keywords: impedance spectroscopy, ultrasensitive detection in blood, peak frequency, electronic interface
Procedia PDF Downloads 4013313 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys
Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze
Abstract:
At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys
Procedia PDF Downloads 1433312 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays
Authors: Min Han, Di Wu, Lin Yuan, Fei Liu
Abstract:
Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance
Procedia PDF Downloads 2743311 Applying the CA Systems in Education Process
Authors: A. Javorova, M. Matusova, K. Velisek
Abstract:
The article summarizes the experience of laboratory technical subjects teaching methodologies using a number of software products. The main aim is to modernize the teaching process in accordance with the requirements of today - based on information technology. Increasing of the study attractiveness and effectiveness is due to the introduction of CA technologies in the learning process. This paper discussed the areas where individual CA system used. Environment using CA systems are briefly presented in each chapter.Keywords: education, CA systems, simulation, technology
Procedia PDF Downloads 3963310 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN
Procedia PDF Downloads 5323309 Socio-Economic Influences on Soilless Agriculture
Authors: George Vernon Byrd, Bhim Bahadur Ghaley, Eri Hayashi
Abstract:
In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agriculture land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.Keywords: aquaponics, hydroponics, soilless agriculture, urban agriculture
Procedia PDF Downloads 973308 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics
Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina
Abstract:
In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics
Procedia PDF Downloads 4923307 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection
Authors: O. Hassoon, M. Tarfoui, A. El Malk
Abstract:
Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring
Procedia PDF Downloads 3613306 Technologies of Isolation and Separation of Anthraquinone Derivatives
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina
Abstract:
In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed. Procedia PDF Downloads 3413305 LaPEA: Language for Preprocessing of Edge Applications in Smart Factory
Authors: Masaki Sakai, Tsuyoshi Nakajima, Kazuya Takahashi
Abstract:
In order to improve the productivity of a factory, it is often the case to create an inference model by collecting and analyzing operational data off-line and then to develop an edge application (EAP) that evaluates the quality of the products or diagnoses machine faults in real-time. To accelerate this development cycle, an edge application framework for the smart factory is proposed, which enables to create and modify EAPs based on prepared inference models. In the framework, the preprocessing component is the key part to make it work. This paper proposes a language for preprocessing of edge applications, called LaPEA, which can flexibly process several sensor data from machines into explanatory variables for an inference model, and proves that it meets the requirements for the preprocessing.Keywords: edge application framework, edgecross, preprocessing language, smart factory
Procedia PDF Downloads 1463304 Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them
Authors: M. Abdo, Mohamed Shalaby
Abstract:
A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes.Keywords: mechanical gyros, ring laser gyros, interferometric finer optic gyros, Resonator fiber optic gyros
Procedia PDF Downloads 803303 Enhancing Air Quality: Investigating Filter Lifespan and Byproducts in Air Purification Solutions
Authors: Freja Rydahl Rasmussen, Naja Villadsen, Stig Koust
Abstract:
Air purifiers have become widely implemented in a wide range of settings, including households, schools, institutions, and hospitals, as they tackle the pressing issue of indoor air pollution. With their ability to enhance indoor air quality and create healthier environments, air purifiers are particularly vital when ventilation options are limited. These devices incorporate a diverse array of technologies, including HEPA filters, active carbon filters, UV-C light, photocatalytic oxidation, and ionizers, each designed to combat specific pollutants and improve air quality within enclosed spaces. However, the safety of air purifiers has not been investigated thoroughly, and many questions still arise when applying them. Certain air purification technologies, such as UV-C light or ionization, can unintentionally generate undesirable byproducts that can negatively affect indoor air quality and health. It is well-established that these technologies can inadvertently generate nanoparticles or convert common gaseous compounds into harmful ones, thus exacerbating air pollution. However, the formation of byproducts can vary across products, necessitating further investigation. There is a particular concern about the formation of the carcinogenic substance formaldehyde from common gases like acetone. Many air purifiers use mechanical filtration to remove particles, dust, and pollen from the air. Filters need to be replaced periodically for optimal efficiency, resulting in an additional cost for end-users. Currently, there are no guidelines for filter lifespan, and replacement recommendations solely rely on manufacturers. A market screening revealed that manufacturers' recommended lifespans vary greatly (from 1 month to 10 years), and there is a need for general recommendations to guide consumers. Activated carbon filters are used to adsorb various types of chemicals that can pose health risks or cause unwanted odors. These filters have a certain capacity before becoming saturated. If not replaced in a timely manner, the adsorbed substances are likely to be released from the filter through off-gassing or losing adsorption efficiency. The goal of this study is to investigate the lifespan of filters as well as investigate the potentially harmful effects of air purifiers. Understanding the lifespan of filters used in air purifiers and the potential formation of harmful byproducts is essential for ensuring their optimal performance, guiding consumers in their purchasing decisions, and establishing industry standards for safer and more effective air purification solutions. At this time, a selection of air purifiers has been chosen, and test methods have been established. In the following 3 months, the tests will be conducted, and the results will be ready for presentation later.Keywords: air purifiers, activated carbon filters, byproducts, clean air, indoor air quality
Procedia PDF Downloads 723302 A Strategic Approach for Promoting Renewable Energy Technologies in Developing Countries
Authors: Hanee Ryu
Abstract:
The supporting policies for renewable energy have been designed to deploy renewable energy technology targeting domestic market. The government encourages market creation through obligations such as FIT or RPS on an energy supplier. With these policy measures, the securing vast market needs to induce technology development. Furthermore, it is crucial that ensuring developing market can make the environment nurture the renewable energy industry. Overseas expansion to countries being in demand is essential under immature domestic market. Extending its business abroad can make the domestic company get the knowledge through learning-by-doing. Besides, operation in the countries to be rich in renewable resources such as weather conditions helps to develop proven track record required for verifying technologies. This paper figures out the factor to hamper the global market entry and build up the strategies to overcome difficulties. Survey conducted renewable energy company having overseas experiences at least once. Based on the survey we check the obstacle against exporting home goods and services. As a result, securing funds is salient fact to proceed to business. It is difficult that only private bank or investment agencies participate in the project under uncertainty which renewable energy development project bears inherently. These uncertainties need public fund such as ODA to encourage private sectors to start a business. Furthermore, international organizations such as IRENA or multilateral development banks as WBG play a role to guarantee the investment including risk insurance against uncertainty. It can also manage excavation business cooperating with developing countries and supplement inadequate government funding involved. With survey results strategies to obtain the order, the international organization places are categorized according to the type of getting a contract. This paper suggests 3 types approaching to the international organization project (going through international competitive bidding, using ODA and project financing) and specifies the role of government to support the domestic firms with running out of funds. Under renewable energy industry environment where hard to being created as a spontaneous market, government policy approach needs to motivate the actors to get into the business. It is one of the good strategies that countries with the low demand of renewable energies participate in the project international agencies order in the developing countries having abundant resources. This provides crucial guidance for the formulation of renewable energy development policy and planning with consideration of business opportunities and funding.Keywords: exporting strategies, multilateral development banks, promoting in developing countries, renewable energy technologies
Procedia PDF Downloads 5183301 Digital Demands: Addressing the Digital Divide in Basic Education and Its Relation to Academic Performance and Aspirations
Authors: Jose Rodrigo Zubiri, Sofia Carmen Tomacruz
Abstract:
Amidst an increasingly digitalized society, information and communication technologies have been seamlessly integrated into the economic, social, and political life of individuals. Information has been regarded as a primary good, essential to the wellbeing and self-respect of individuals in society. The digital engagements of an individual play a key role in a variety of life outcomes ranging from academic performance to entrepreneurial success to health service uptake. As a result of varying degrees of access to the Internet and ICTs across populations and individuals, a digital divide emerges. Education, a sector pivotal to directing individual life trajectories, has been radically transformed with regards to the learning process and access to information and thus faces the implications of the digital divide, as new waves of inequalities are introduced in the classroom. As the period of basic education is critical to transitioning into civic life or higher education, digital inequalities are capable of aggravating pre-existing social inequalities. Through survey-questionnaires, conducted on 152 high school students from a Philippine public school, the study reveals the correlation of academic performance and aspirations (for their highest academic qualification) to access to digital technologies and the Internet, according to Van Dijk’s four measurements of digital poverty, namely: motivational access, material access, skills access, and usage access. The findings reveal a positive correlation for academic performance whereas no correlation was found between aspirations and digital access. In the study, significant correlational differences were also found between genders, specifically, in terms of skills access and academic performance.Keywords: digital divide, ICTs, inequality, education, life trajectories
Procedia PDF Downloads 269