Search results for: panel regression techniques
8837 Association of Laterality and Sports Specific Rotational Preference with Number of Injuries in Artistic Gymnasts
Authors: Teja Joshi
Abstract:
Laterality has shown to play a role in performance as well as injuries especially in unilateral sports disciplines. Uniquely, Artistic Gymnastics involves combination of unilateral, bilateral and complex multi-planer elements as well as gymnastics specific rotational preference. Therefore, this study was conducted to explore if any such preferences are associated with number of injuries in artistic gymnasts. To explore the association between lateral preferences, rotational preferences and injuries incidence in artistic gymnastics. Artistic gymnasts above 16 years of age, were invited to participate in an online survey. The survey included consent, lateral preference inventory, injury data collection according to anatomical locations and rotational preference for selected gymnastics elements performed on the floor exercise. SPSS version 24 was used to analyse Non-parametric data using Kruskal-Wallis (K- independent test) test. Multiple regression was performed to identify the predictor for injuries and their side in gymnasts. Total number of injuries per gymnast was associated with handedness (p value-0.049) and no significant association was noted for footdness (p value-0.207), eyedness (p value-0.491) and eardness (p value-0.798). Additionally, rotational preferences did not influence number of injuries (p value-0.521). In multiple regression, eyedness was identified as a predicting factor to determine the number of injuries. Rotational preferences were neither determined as a national strategy nor a product of lateral preference. Dominant hand had higher number of injuries in artistic gymnasts. Rotational preference is independent of laterality, number of injuries and nationality.Keywords: sports injury, rotational preference, gymnastics, handedness
Procedia PDF Downloads 1198836 Risk, Capital Buffers, and Bank Lending: The Adjustment of Euro Area Banks
Authors: Laurent Maurin, Mervi Toivanen
Abstract:
This paper estimates euro area banks’ internal target capital ratios and investigates whether banks’ adjustment to the targets have an impact on credit supply and holding of securities during the financial crisis in 2005-2011. Using data on listed banks and country-specific macro-variables a partial adjustment model is estimated in a panel context. The results indicate, firstly, that an increase in the riskiness of banks’ balance sheets influences positively on the target capital ratios. Secondly, the adjustment towards higher equilibrium capital ratios has a significant impact on banks’ assets. The impact is found to be more size-able on security holdings than on loans, thereby suggesting a pecking order.Keywords: Euro area, capital ratios, credit supply, partial adjustment model
Procedia PDF Downloads 4488835 Leachate Discharges: Review Treatment Techniques
Authors: Abdelkader Anouzla, Soukaina Bouaouda, Roukaya Bouyakhsass, Salah Souabi, Abdeslam Taleb
Abstract:
During storage and under the combined action of rainwater and natural fermentation, these wastes produce over 800.000 m3 of landfill leachates. Due to population growth and changing global economic activities, the amount of waste constantly generated increases, making more significant volumes of leachate. Leachate, when leaching into the soil, can negatively impact soil, surface water, groundwater, and the overall environment and human life. The leachate must first be treated because of its high pollutant load before being released into the environment. This article reviews the different leachate treatments in September 2022 techniques. Different techniques can be used for this purpose, such as biological, physical-chemical, and membrane methods. Young leachate is biodegradable; in contrast, these biological processes lose their effectiveness with leachate aging. They are characterized by high ammonia nitrogen concentrations that inhibit their activity. Most physical-chemical treatments serve as pre-treatment or post-treatment to complement conventional treatment processes or remove specific contaminants. After the introduction, the different types of pollutants present in leachates and their impacts have been made, followed by a discussion highlighting the advantages and disadvantages of the various treatments, whether biological, physicochemical, or membrane. From this work, due to their simplicity and reasonable cost compared to other treatment procedures, biological treatments offer the most suitable alternative to limit the effects produced by the pollutants in landfill leachates.Keywords: landfill leachate, landfill pollution, impact, wastewater
Procedia PDF Downloads 898834 The Salespeople's Reactions to Customer Sexual Harassment: A Case Study of Taiwan's Life Insurance Industry
Authors: Yi-Ling Lin, Lu-Ming Tseng
Abstract:
Customer sexual harassment is recognized as a serious problem in the personal selling industry. At a personal level, customer sexual harassment could have very negative impacts on the salespeople's physical and mental health. At the organizational level, customer sexual harassment is destructive in terms of organizational reputation. Therefore, this research takes Taiwan's life insurance salesperson as the research sample and explores the impacts of customer power and perceived behavioral control on the life insurance salespeople's whistleblowing intentions to report quid pro quo and hostile work environment types of customer sexual harassment. This study then investigates how personal factors (such as gender difference) may relate to the intentions. Questionnaires are often used as a data collection instrument in studies on workplace sexual harassment. This study collects data through questionnaire surveys, and the research sample of this research is the full-time life insurance salespeople in Taiwan. The hypotheses are examined by using PLS regression approach. The main results show that the types of customer sexual harassment, customer power, and gender are related to the whistleblowing intentions. To our best knowledge, this is the first empirical study to test the relationships among customer reward power, customer coercive power, perceived behavioral control, and the salespeople's whistleblowing intentions toward customer sexual harassment. The findings may provide some implications for the researchers and official authorities.Keywords: customer sexual harassment, life insurance salespeople, perceived behavioral control, PLS regression
Procedia PDF Downloads 1288833 Renewable Energy in Morocco: Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq, R. El Bachtiri
Abstract:
Renewable energies have a major importance of Morocco's new energy strategy. The geographical location of the Kingdom promotes the development of the use of solar energy. The use of this energy reduces the dependence on imports of primary energy, meets the growing demand for water and electricity in remote areas encourages the deployment of a local industry in the renewable energy sector and Minimize carbon emissions. Indeed, given the importance of the radiation intensity received and the duration of the sunshine, the country can cover some of its solar energy needs. The use of solar energy to pump water is one of the most promising application, this technique represents a solution wherever the grid does not exist. In this paper, we will present a presentation of photovoltaic pumping system components, and the important solar pumping projects installed in Morocco to supply water from remote area.Keywords: PV pumping system, Morocco, PV panel, renewable energy
Procedia PDF Downloads 4988832 3D Object Detection for Autonomous Driving: A Comprehensive Review
Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy
Abstract:
Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning
Procedia PDF Downloads 628831 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency
Abstract:
Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.Keywords: thermoelectric, finite element method, 3d print, energy conversion
Procedia PDF Downloads 678830 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients
Procedia PDF Downloads 3748829 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu
Abstract:
Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks
Procedia PDF Downloads 2328828 Effect of Anion Variation on the CO2 Capture Performance of Pyridinium Containing Poly(ionic liquid)s
Authors: Sonia Zulfiqar, Daniele Mantione, Muhammad Ilyas Sarwar, Alexander Rothenberger, David Mecerreyes
Abstract:
Climate change due to escalating carbon dioxide concentration in the atmosphere is an issue of paramount importance that needs immediate attention. CO2 capture and sequestration (CCS) is a promising route to mitigate climate change and adsorption is the most widely recognized technology owing to possible energy savings relative to the conventional absorption techniques. In this conference, the potential of a new family of solid sorbents for CO2 capture and separation will be presented. Novel pyridinium containing poly(ionic liquid)s (PILs) were synthesized with varying anions i.e bis(trifluoromethylsulfonyl)imide and hexafluorophosphate. The resulting polymers were characterized using NMR, XRD, TGA, BET surface area and microscopic techniques. Furthermore, CO2 adsorption measurements at two different temperatures were also carried out and revealed great potential of these PILs as CO2 scavengers.Keywords: climate change, CO2 capture, poly(ionic liquid)s, CO2/N2 selectivity
Procedia PDF Downloads 3738827 Parallels Between Indian Art Music and Western Art Music: The Suppression of the Notion of the 'Melody'
Authors: Kedarnath Awati
Abstract:
Some parallels between Indian Art Music and Western Art Music, such as the identity of the basic heptatonic scale structure, are quite obvious and need no further discussion. Other parallels are far less obvious, and it is one of them that the author is interested in. Specifically, the author would like to make a serious claim that in both types of music, there is an unspoken dependence on melody. Yes, it is true that the techniques that the two systems use for elaboration are very, very different: Western music uses the techniques of harmony, counterpoint, orchestration and motivic variation, while the Indian systems, both the Hindustani and the Carnatic traditions use the technique of raagdaari. The reason that this point is barely spoken about is that both in the West as well as in India, artists tend to think of melody as something elementary or as something 'given'. The Indian musicians would much rather dwell upon this or that meend or taan or other technical device, while the West thinks that melody is passé and would rather discuss the merits and demerits of spectralism and perhaps serialism. The author would like to explore this theme further in his paper.Keywords: Indian art music, Western art music, melody, raagdaari, motivic variation.
Procedia PDF Downloads 648826 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 1088825 Testing the Validity of Feldstein-Horioka Puzzle in BRICS Countries
Authors: Teboho J. Mosikari, Johannes T. Tsoku, Diteboho L. Xaba
Abstract:
The increase of capital mobility across emerging economies has become an interesting topic for many economic policy makers. The current study tests the validity of Feldstein–Horioka puzzle for 5 BRICS countries. The sample period of the study runs from 2001 to 2014. The study uses the following parameter estimates well known as the Fully Modified OLS (FMOLS), and Dynamic OLS (DOLS). The results of the study show that investment and savings are cointegrated in the long run. The parameters estimated using FMOLS and DOLS are 0.85 and 0.74, respectively. These results imply that policy makers within BRICS countries have to consider flexible monetary and fiscal policy instruments to influence the mobility of capital with the bloc.Keywords: Feldstein and Horioka puzzle, saving and investment, panel models, BRICS countries
Procedia PDF Downloads 2598824 Corruption and Income: Case of Independent Turkish Republic
Authors: Rahime Hülya Öztürk
Abstract:
Along with the development of globalization, the relationship between economic, politic and commercial behaviors became unlimited. The liberalization of capital has many advantages for countries, but it also has some disadvantages. In these disadvantages the most important one is corruption. Especially in Developing Countries and Underdeveloped countries, corruption is very extensive. Corruption causes inefficient use of resources and promotes income inequality. Especially in the transition period of economies corruption increases and sometimes governments don’t interfere. To fight against corruption domestic and international measures are taken. Corruption is an economic problem, but it also has social and moral effects. The aim of this study is to define the relationship between corruption and income in Independent Turkish State. In the first part of the study, the concept of corruption is examined. In the second part of the study, information about The Independent Turkish Republic is given. In the third part of the study, country’s relationship between corruption and income is analyzed with panel data analysis.Keywords: corruption, income, independent Turkish Republic, distribution of income
Procedia PDF Downloads 3158823 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 228822 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing
Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik
Abstract:
The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.Keywords: life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development
Procedia PDF Downloads 1738821 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques
Authors: Tosin Ige
Abstract:
Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique
Procedia PDF Downloads 1738820 Blast Resistance Enhancement of Structures Subjected to Improvised Explosive Devices Attack: A Numerical Study
Authors: Michael I. Okereke, Ambrose I. Akpoyomare
Abstract:
This paper presents a numerical study of the impact mechanic of metallic and sandwich structures incorporate with blast resistance enhancements. The study focuses on structures that have been exposed to improvised explosives devices (IEDs) attacks. The results show numerical conclusions on mechanisms to ensure blast resistance enhancement for the applications studied in this work. The work has identified optimal panel configuration both in geometry and configurations to ensure optimal blast resistance response to such IEDs discharges. Findings from this work will drive improvements in especially military and civilian vehicles in countries where blast attacks on vehicular occupants are quite rampant like Pakistan and Afghanistan.Keywords: blast resistance, blast enhancement, explosives, material behavior
Procedia PDF Downloads 3738819 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot
Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.
Abstract:
Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud
Procedia PDF Downloads 748818 Artificial Intelligence for Generative Modelling
Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta
Abstract:
As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques
Procedia PDF Downloads 1498817 Determinants of Travel to Western Countries by Kuwaiti Nationals
Authors: Yvette Reisinger
Abstract:
Relatively little is known about the Arab travel market, especially the outbound travel market from Arab countries in the Middle East. The Kuwaiti travel market is the smallest yet fastest growing in the Gulf Cooperation Council (GCC) region. The Kuwaiti travel market represents a great potential for the international tourism industry. Kuwaiti nationals have a very high spending power due to the Kuwaiti dinar being the highest-valued currency unit in the world. Although Europe, North America, and Asia/Pacific try to attract the Arab tourist market the number of Kuwaiti travellers attracted to these destinations is very low. The success in attracting the Kuwaiti travel market to Western countries must be guided by an analysis of the factors that affect its travel decisions. The objective of the study is to identify major factors that influence Kuwaiti nationals’ intentions to travel to Western countries. A model is developed and empirically tested on a sample of 343 Kuwaiti nationals. A series of regression analyses are run to determine the effects of different factors on Kuwaiti’s travel decisions. A Herman’s single factor test and Durbin-Watson test are used to assess the validity of the regression model. Analysis is controlled for socio-demographics. The results show that the Muslim friendly amenities and destination cognitive image exert significant effects on Kuwaiti nationals’ intentions to travel to Western countries. The study provides a better understanding of the factors that attract Kuwaiti tourists to Western countries. By knowing what encourages Kuwaitis to travel to Western countries marketers can plan and promote these countries accordingly. The study provides a foundation of future empirical research into the Kuwaiti/Arab travel market.Keywords: Kuwaiti travel market, travel decisions, Western countries
Procedia PDF Downloads 1928816 The Transcriptome of Carnation (Dianthus Caryophyllus) of Elicited Cells with Fusarium Oxysporum f.sp. Dianthi
Authors: Juan Jose Filgueira, Daniela Londono-Serna, Liliana Maria Hoyos
Abstract:
Carnation (Dianthus caryophyllus) is one of the most important products of exportation in the floriculture industry worldwide. Fusariosis is the disease that causes the highest losses on farms, in particular the one produced by Fusarium oxysporum f.sp. dianthi, called vascular wilt. Gene identification and metabolic routes of the genes that participate in the building of the plant response to Fusarium are some of the current targets in the carnation breeding industry. The techniques for the identifying of resistant genes in the plants, is the analysis of the transcriptome obtained during the host-pathogen interaction. In this work, we report the cell transcriptome of different varieties of carnation that present differential response from Fusarium oxysporum f.sp. dianthi attack. The cells of the different hybrids produced in the outbreeding program were cultured in vitro and elicited with the parasite in a dual culture. The isolation and purification of mRNA was achieved by using affinity chromatography Oligo dT columns and the transcriptomes were obtained by using Illumina NGS techniques. A total of 85,669 unigenes were detected in all the transcriptomes analyzed and 31,000 annotations were found in databases, which correspond to 36.2%. The library construction of genic expression techniques used, allowed to recognize the variation in the expression of genes such as Germin-like protein, Glycosyl hydrolase family and Cinnamate 4-hydroxylase. These have been reported in this study for the first time as part of the response mechanism to the presence of Fusarium oxysporum.Keywords: Carnation, Fusarium, vascular wilt, transcriptome
Procedia PDF Downloads 1508815 A Review of Spatial Analysis as a Geographic Information Management Tool
Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku
Abstract:
Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.Keywords: aspatial technique, buffer analysis, epidemiology, interpolation
Procedia PDF Downloads 3188814 Teachers’ Intention to Leave: Educational Policies as External Stress Factor
Authors: A. Myrzabekova, D. Nurmukhamed, K. Nurumov, A. Zhulbarissova
Abstract:
It is widely believed that stress can affect teachers’ intention to change the workplace. While existing research primarily focuses on the intrinsic sources of stress stemming from the school climate, the current attempt analyzes educational policies as one of the determinants of teacher’s intention to leave schools. In this respect, Kazakhstan presents a unique case since the country endorsed several educational policies which directly impacted teaching and administrative practices within schools. Using Teaching and Learning International Survey 2018 (TALIS) data with the country specific questionnaire, we construct a statistical measure of stress caused by the implementation of educational policies and test its impact on teacher’s intention to leave through the logistic regression. In addition, we control for sociodemographic, professional, and students related covariates while considering the intrinsic dimension of stress stemming from the school climate. Overall, our results suggest that stress caused by the educational policies has a statistically significant positive effect on teachers’ intentions to transfer between schools. Both policy makers and educational scholars could find these results beneficial. For the former careful planning and addressing the negative effects of the educational policies is critical for the sustainability of the educational process. For the latter, accounting for exogenous sources of stress can lead to a more complete understanding of why teachers decide to change their schools.Keywords: educational policies, Kazakhstani teachers, logistic regression factor analysis, sustainability education TALIS, teacher turnover intention, work stress
Procedia PDF Downloads 1098813 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration
Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef
Abstract:
Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab
Procedia PDF Downloads 3828812 Design of Personal Job Recommendation Framework on Smartphone Platform
Authors: Chayaporn Kaensar
Abstract:
Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries have gained attention and implemented for this application. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.Keywords: recommendation, user profile, data mining, web and mobile technology
Procedia PDF Downloads 3138811 Aspects of the Detail Design of an Automated Biomethane Test
Authors: Ilias Katsanis, Paraskevas Papanikos, Nikolas Zacharopoulos, Vassilis C. Moulianitis, Evgenios Scourboutis, Diamantis T. Panagiotarakos
Abstract:
This paper presents aspects of the detailed design of an automated biomethane potential measurement system using CAD techniques. First, the design specifications grouped in eight sets that are used to design the design alternatives are briefly presented. Then, the major components of the final concept, as well as the design of the test, are presented. The material selection process is made using ANSYS EduPack database software. The mechanical behavior of one component developed in Creo v.5 is evaluated using finite element analysis. Finally, aspects of software development that integrate the BMP test is finally presented. This paper shows the advantages of CAD techniques in product design applied in the design of a mechatronic product.Keywords: automated biomethane test, detail mechatronics design, materials selection, mechanical analysis
Procedia PDF Downloads 888810 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 2418809 Child Homicide Victimization and Community Context: A Research Note
Authors: Bohsiu Wu
Abstract:
Among serious crimes, child homicide is a rather rare event. However, the killing of children stirs up a special type of emotion in society that pales other criminal acts. This study examines the relevancy of three possible community-level explanations for child homicide: social deprivation, female empowerment, and social isolation. The social deprivation hypothesis posits that child homicide results from lack of resources in communities. The female empowerment hypothesis argues that a higher female status translates into a higher level of capability to prevent child homicide. Finally, the social isolation hypothesis regards child homicide as a result of lack of social connectivity. Child homicide data, aggregated by US postal ZIP codes in California from 1990 to 1999, were analyzed with a negative binomial regression. The results of the negative binomial analysis demonstrate that social deprivation is the most salient and consistent predictor among all other factors in explaining child homicide victimization at the ZIP-code level. Both social isolation and female labor force participation are weak predictors of child homicide victimization across communities. Further, results from the negative binomial regression show that it is the communities with a higher, not lower, degree of female labor force participation that are associated with a higher count of child homicide. It is possible that poor communities with a higher level of female employment have a lesser capacity to provide the necessary care and protection for the children. Policies aiming at reducing social deprivation and strengthening female empowerment possess the potential to reduce child homicide in the community.Keywords: child homicide, deprivation, empowerment, isolation
Procedia PDF Downloads 1948808 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 278