Search results for: online and adaptive learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9906

Search results for: online and adaptive learning

8316 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 166
8315 Evaluating the Implementation of Machine Learning Techniques in the South African Built Environment

Authors: Peter Adekunle, Clinton Aigbavboa, Matthew Ikuabe, Opeoluwa Akinradewo

Abstract:

The future of machine learning (ML) in building may seem like a distant idea that will take decades to materialize, but it is actually far closer than previously believed. In reality, the built environment has been progressively increasing interest in machine learning. Although it could appear to be a very technical, impersonal approach, it can really make things more personable. Instead of eliminating humans out of the equation, machine learning allows people do their real work more efficiently. It is therefore vital to evaluate the factors influencing the implementation and challenges of implementing machine learning techniques in the South African built environment. The study's design was one of a survey. In South Africa, construction workers and professionals were given a total of one hundred fifty (150) questionnaires, of which one hundred and twenty-four (124) were returned and deemed eligible for study. Utilizing percentage, mean item scores, standard deviation, and Kruskal-Wallis, the collected data was analyzed. The results demonstrate that the top factors influencing the adoption of machine learning are knowledge level and a lack of understanding of its potential benefits. While lack of collaboration among stakeholders and lack of tools and services are the key hurdles to the deployment of machine learning within the South African built environment. The study came to the conclusion that ML adoption should be promoted in order to increase safety, productivity, and service quality within the built environment.

Keywords: machine learning, implementation, built environment, construction stakeholders

Procedia PDF Downloads 129
8314 Integrations of Students' Learning Achievements and Their Analytical Thinking Abilities with the Problem-Based Learning and the Concept Mapping Instructional Methods on Gene and Chromosome Issue at the 12th Grade Level

Authors: Waraporn Thaimit, Yuwadee Insamran, Natchanok Jansawang

Abstract:

Focusing on Analytical Thinking and Learning Achievement are the critical component of visual thinking that gives one the ability to solve problems quickly and effectively that allows to complex problems into components, and the result had been achieved or acquired form of the subject students of which resulted in changes within the individual as a result of activity in learning. The aims of this study are to administer on comparisons between students’ analytical thinking abilities and their learning achievements sample size consisted of 80 students who sat at the 12th grade level in 2 classes from Chaturaphak Phiman Ratchadaphisek School, the 40-student experimental group with the Problem-Based Learning (PBL) and 40-student controlling group with the Concept Mapping Instructional (CMI) methods were designed. Research instruments composed with the 5-lesson instructional plans to be assessed with the pretest and posttest techniques on each instructional method. Students’ responses of their analytical thinking abilities were assessed with the Analytical Thinking Tests and students’ learning achievements were tested of the Learning Achievement Tests. Statistically significant differences with the paired t-test and F-test (Two-way MANCOVA) between post- and pre-tests of the whole students in two chemistry classes were found. Associations between student learning outcomes in each instructional method and their analytical thinking abilities to their learning achievements also were found (ρ < .05). The use of two instructional methods for this study is revealed that the students perceive their abilities to be highly learning achievement in chemistry classes with the PBL group ought to higher than the CMI group. Suggestions that analytical thinking ability involves the process of gathering relevant information and identifying key issues related to the learning achievement information.

Keywords: comparisons, students learning achievements, analytical thinking abilities, the problem-based learning method, the concept mapping instructional method, gene and chromosome issue, chemistry classes

Procedia PDF Downloads 260
8313 Handy EKG: Low-Cost ECG For Primary Care Screening In Developing Countries

Authors: Jhiamluka Zservando Solano Velasquez, Raul Palma, Alejandro Calderon, Servio Paguada, Erick Marin, Kellyn Funes, Hana Sandoval, Oscar Hernandez

Abstract:

Background: Screening cardiac conditions in primary care in developing countries can be challenging, and Honduras is not the exception. One of the main limitations is the underfunding of the Healthcare System in general, causing conventional ECG acquisition to become a secondary priority. Objective: Development of a low-cost ECG to improve screening of arrhythmias in primary care and communication with a specialist in secondary and tertiary care. Methods: Design a portable, pocket-size low-cost 3 lead ECG (Handy EKG). The device is autonomous and has Wi-Fi/Bluetooth connectivity options. A mobile app was designed which can access online servers with machine learning, a subset of artificial intelligence to learn from the data and aid clinicians in their interpretation of readings. Additionally, the device would use the online servers to transfer patient’s data and readings to a specialist in secondary and tertiary care. 50 randomized patients volunteer to participate to test the device. The patients had no previous cardiac-related conditions, and readings were taken. One reading was performed with the conventional ECG and 3 readings with the Handy EKG using different lead positions. This project was possible thanks to the funding provided by the National Autonomous University of Honduras. Results: Preliminary results show that the Handy EKG performs readings of the cardiac activity similar to those of a conventional electrocardiograph in lead I, II, and III depending on the position of the leads at a lower cost. The wave and segment duration, amplitude, and morphology of the readings were similar to the conventional ECG, and interpretation was possible to conclude whether there was an arrhythmia or not. Two cases of prolonged PR segment were found in both ECG device readings. Conclusion: Using a Frugal innovation approach can allow lower income countries to develop innovative medical devices such as the Handy EKG to fulfill unmet needs at lower prices without compromising effectiveness, safety, and quality. The Handy EKG provides a solution for primary care screening at a much lower cost and allows for convenient storage of the readings in online servers where clinical data of patients can then be accessed remotely by Cardiology specialists.

Keywords: low-cost hardware, portable electrocardiograph, prototype, remote healthcare

Procedia PDF Downloads 179
8312 Implementation of Learning Disability Annual Review Clinics to Ensure Good Patient Care, Safety, and Equality in Covid-19: A Two Pass Audit in General Practice

Authors: Liam Martin, Martha Watson

Abstract:

Patients with learning disabilities (LD) are at increased risk of physical and mental illness due to health inequality. To address this, NICE recommends that people from the age of 14 with a learning disability should have an annual LD health check. This consultation should include a holistic review of the patient’s physical, mental and social health needs with a view of creating an action plan to support the patient’s care. The expected standard set by the Quality and Outcomes Framework (QOF) is that each general practice should review at least 75% of their LD patients annually. During COVID-19, there have been barriers to primary care, including health anxiety, the shift to online general practice and the increase in GP workloads. A surgery in North London wanted to assess whether they were falling short of the expected standard for LD patient annual reviews in order to optimize care post Covid-19. A baseline audit was completed to assess how many LD patients were receiving their annual reviews over the period of 29th September 2020 to 29th September 2021. This information was accessed using EMIS Web Health Care System (EMIS). Patients included were aged 14 and over as per QOF standards. Doctors were not notified of this audit taking place. Following the results of this audit, the creation of learning disability clinics was recommended. These clinics were recommended to be on the ground floor and should be a dedicated time for LD reviews. A re-audit was performed via the same process 6 months later in March 2022. At the time of the baseline audit, there were 71 patients aged 14 and over that were on the LD register. 54% of these LD patients were found to have documentation of an annual LD review within the last 12 months. None of the LD patients between the ages of 14-18 years old had received their annual review. The results were discussed with the practice, and dedicated clinics were set up to review their LD patients. A second pass of the audit was completed 6 months later. This showed an improvement, with 84% of the LD patients registered at the surgery now having a documented annual review within the last 12 months. 78% of the patients between the ages of 14-18 years old had now been reviewed. The baseline audit revealed that the practice was not meeting the expected standard for LD patient’s annual health checks as outlined by QOF, with the most neglected patients being between the ages of 14-18. Identification and awareness of this vulnerable cohort is important to ensure measures can be put into place to support their physical, mental and social wellbeing. Other practices could consider an audit of their annual LD health checks to make sure they are practicing within QOF standards, and if there is a shortfall, they could consider implementing similar actions as used here; dedicated clinics for LD patient reviews.

Keywords: COVID-19, learning disability, learning disability health review, quality and outcomes framework

Procedia PDF Downloads 85
8311 Cultural Dynamics in Online Consumer Behavior: Exploring Cross-Country Variances in Review Influence

Authors: Eunjung Lee

Abstract:

This research investigates the intricate connection between cultural differences and online consumer behaviors by integrating Hofstede's Cultural Dimensions theory with analysis methodologies such as text mining, data mining, and topic analysis. Our aim is to provide a comprehensive understanding of how national cultural differences influence individuals' behaviors when engaging with online reviews. To ensure the relevance of our investigation, we systematically analyze and interpret the cultural nuances influencing online consumer behaviors, especially in the context of online reviews. By anchoring our research in Hofstede's Cultural Dimensions theory, we seek to offer valuable insights for marketers to tailor their strategies based on the cultural preferences of diverse global consumer bases. In our methodology, we employ advanced text mining techniques to extract insights from a diverse range of online reviews gathered globally for a specific product or service like Netflix. This approach allows us to reveal hidden cultural cues in the language used by consumers from various backgrounds. Complementing text mining, data mining techniques are applied to extract meaningful patterns from online review datasets collected from different countries, aiming to unveil underlying structures and gain a deeper understanding of the impact of cultural differences on online consumer behaviors. The study also integrates topic analysis to identify recurring subjects, sentiments, and opinions within online reviews. Marketers can leverage these insights to inform the development of culturally sensitive strategies, enhance target audience segmentation, and refine messaging approaches aligned with cultural preferences. Anchored in Hofstede's Cultural Dimensions theory, our research employs sophisticated methodologies to delve into the intricate relationship between cultural differences and online consumer behaviors. Applied to specific cultural dimensions, such as individualism vs. collectivism, masculinity vs. femininity, uncertainty avoidance, and long-term vs. short-term orientation, the study uncovers nuanced insights. For example, in exploring individualism vs. collectivism, we examine how reviewers from individualistic cultures prioritize personal experiences while those from collectivistic cultures emphasize communal opinions. Similarly, within masculinity vs. femininity, we investigate whether distinct topics align with cultural notions, such as robust features in masculine cultures and user-friendliness in feminine cultures. Examining information-seeking behaviors under uncertainty avoidance reveals how cultures differ in seeking detailed information or providing succinct reviews based on their comfort with ambiguity. Additionally, in assessing long-term vs. short-term orientation, the research explores how cultural focus on enduring benefits or immediate gratification influences reviews. These concrete examples contribute to the theoretical enhancement of Hofstede's Cultural Dimensions theory, providing a detailed understanding of cultural impacts on online consumer behaviors. As online reviews become increasingly crucial in decision-making, this research not only contributes to the academic understanding of cultural influences but also proposes practical recommendations for enhancing online review systems. Marketers can leverage these findings to design targeted and culturally relevant strategies, ultimately enhancing their global marketing effectiveness and optimizing online review systems for maximum impact.

Keywords: comparative analysis, cultural dimensions, marketing intelligence, national culture, online consumer behavior, text mining

Procedia PDF Downloads 47
8310 Effectiveness of a Traits Cooperative Learning on Developing Writing Achievement and Composition among Teacher Candidates

Authors: Abdelaziz Hussien

Abstract:

This article reports investigations of a study into the effectiveness of a traits cooperative learning (TCL) on teacher candidates’ writing achievement, composition, and attitudes towards traits of writing approach and small group learning. Mixed methodologies were used with the participants in a repeated measures quasi-experimental design. Forty-two class teacher candidates, enrolled in the Bahrain Teachers College, completed the pre and post author-developed measures. The results suggest that TCL has a positive effect on the participants’ writing achievement, composition, and attitudes towards traits of writing approach, but not on the attitudes towards small group learning. Further implications to teacher education are presented.

Keywords: trait-based language education, cooperative learning, writing achievement, writing composition, traits of writing, teacher education

Procedia PDF Downloads 167
8309 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway

Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim

Abstract:

Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.

Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning

Procedia PDF Downloads 338
8308 Assessment of E-Learning Facilities in Open and Distance Learning and Information Need by Students

Authors: Sabo Elizabeth

Abstract:

Electronic learning is increasingly popular learning approach in higher educational institutions due to vast growth of internet technology. This approach is important in human capital development. An investigation of open distance and e-learning facilities and information need by open and distance learning students was carried out in Jalingo, Nigeria. Structured questionnaires were administered to 70 registered ODL students of the NOUN. Information sourced from the respondents covered demographic, economic and institutional variables. Data collected for demographic variables were computed as frequency count and percentages. Assessment of the effectiveness of ODL facilities and information need among open and distance learning students was computed on a three or four point Likert Rating Scale. Findings indicated that there are more men compared to women. A large proportion of the respondents are married and there are more matured students in ODL compared to the youth. A high proportion of the ODL students obtained qualifications higher than the secondary school certificate. The proportion of computer literate ODL students was high, and large number of the students does not own a laptop computer. Inadequate e -books and reference materials, internet gadgets and inadequate books (hard copies) and reference material are factors that limit utilization of e-learning facilities in the study areas. Inadequate computer facilities and power back up caused inconveniences and delay in administering and use of e learning facilities. To a high extent, open and distance learning students needed information on university time table and schedule of activities, availability and access to books (hard and e-books) and reference materials. The respondents emphasized that contact with course coordinators via internet will provide a better learning and academic performance.

Keywords: open and distance learning, information required, electronic books, internet gadgets, Likert scale test

Procedia PDF Downloads 323
8307 Autonomous Learning Motivates EFL Students to Learn English at Al Buraimi University College in the Sultanate of Oman: A Case Study

Authors: Yahia A. M. AlKhoudary

Abstract:

This Study presents the outcome of an investigation to evaluate the importance of autonomous learning as a means of motivation. However, very little research done in this field. Thus, the aims of this study are to ascertain the needs of the learners and to investigate their attitudes and motivation towards the mode of learning. Various suggestions made on how to improve learners’ participation in the learning process. A survey conducted on a sample group of 60 Omani College students. Self-report questionnaires and retrospective interviews conducted to find out their material-type preferences in a self-access learning context. Achieving autonomous learning system, which learners is one of the Ministry of Education goals in the Sultanate of Oman. As a result, this study presents the outcome of an investigation to evaluate the students’ performance in English as a Foreign Language (EFL). It focuses on the effect of autonomous learning that encourages students to learn English, a research conducted at Buraimi city, the Sultanate of Oman. The procedure of this investigation based on four dimensions: (1) sixty students are selected and divided into two groups, (2) pre and posttest projects are given to them, and (3) questionnaires are administered to both students who are involved in the experiment and 50 teachers (25 males and 25 females) to collect accurate data, (4) an interview with students and teachers to find out their attitude towards autonomous learning. Analysis of participants’ responses indicated that autonomous learning motivates students to learn English independently and increase the intrinsic rather than extrinsic motivation to improve their English language as a long-life active learning. The findings of this study show that autonomous learning approach is the best remedy to empower the students’ skills and overcome all relevant difficulties. They also show that secondary school teachers can fully rely on this learning approach that encourages language learners to monitor their progress, increase both learners and teachers’ motivation and ameliorate students’ behavior in the classroom. This approach is also an ongoing process, which takes time, patience and support to be lifelong learning.

Keywords: Omani, autonomous learning system, English as a Foreign Language (EFL), learning approach

Procedia PDF Downloads 465
8306 Collaborative Research between Malaysian and Australian Universities on Learning Analytics: Challenges and Strategies

Authors: Z. Tasir, S. N. Kew, D. West, Z. Abdullah, D. Toohey

Abstract:

Research on Learning Analytics is progressively developing in the higher education field by concentrating on the process of students' learning. Therefore, a research project between Malaysian and Australian Universities was initiated in 2015 to look at the use of Learning Analytics to support the development of teaching practice. The focal point of this article is to discuss and share the experiences of Malaysian and Australian universities in the process of developing the collaborative research on Learning Analytics. Three aspects of this will be discussed: 1) Establishing an international research project and team members, 2) cross-cultural understandings, and 3) ways of working in relation to the practicalities of the project. This article is intended to benefit other researchers by highlighting the challenges as well as the strategies used in this project to ensure such collaborative research succeeds.

Keywords: academic research project, collaborative research, cross-cultural understanding, international research project

Procedia PDF Downloads 241
8305 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 145
8304 Predicting Student Performance Based on Coding Behavior in STEAMplug

Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov

Abstract:

STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.

Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology

Procedia PDF Downloads 151
8303 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 77
8302 Adaptive Power Control of the City Bus Integrated Photovoltaic System

Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker

Abstract:

This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.

Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter

Procedia PDF Downloads 210
8301 Morphological and Syntactic Meaning: An Interactive Crossword Puzzle Approach

Authors: Ibrahim Garba

Abstract:

This research involved the use of word distributions and morphological knowledge by speakers of Arabic learning English connected different allomorphs in order to realize how the morphology and syntax of English gives meaning through using interactive crossword puzzles (ICP). Fifteen chapters covered with a class of nine learners over an academic year of an intensive English program were reviewed using the ICP. Learners were questioned about how the use of this gaming element enhanced and motivated their learning of English. The findings were positive indicating a successful implementation of ICP both at creational and user levels. This indicated a positive role technology had when learning and teaching English through adopting an interactive gaming element for learning English.

Keywords: distribution, gaming, interactive-crossword-puzzle, morphology

Procedia PDF Downloads 329
8300 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 19
8299 The Influence of E-Learning on Teachers and Students Educational Interactions in Tehran City

Authors: Hadi Manjiri, Mahdyeh Bakhshi, Ali Jafari, Maryam Salati

Abstract:

This study investigates the influence of e-learning on teacher-student instructional interactions through the mediating role of computer literacy among elementary school teachers in Tehran. The research method is a survey that was conducted among elementary school students in Tehran. A sample size of 338 was determined based on Morgan's table. A stratified random sampling method was used to select 228 women and 110 men for the study. Bagherpour et al.'s computer literacy questionnaire, Elahi et al.'s e-learning questionnaire, and Lourdusamy and Khine's questionnaire on teacher-student instructional interactions were used to measure the variables. The data were analyzed using SPSS and LISREL software. It was found that e-learning affects teacher-student instructional interactions, mediated by teachers' computer literacy. In addition, the results suggest that e-learning predicts a 0.66 change in teacher-student instructional interactions, while computer literacy predicts a 0.56 change in instructional interactions between teachers and students.

Keywords: e-learning, instructional interactions, computer literacy, students

Procedia PDF Downloads 116
8298 Connecting Life and Learning: Transformative Learning to Increase Student Engagement

Authors: Kashi Raj Pandey

Abstract:

Transformative learning is a form of learning rooted in learners' life experiences and their inherent love for learning. It emphasizes the importance of incorporating students' everyday work through the use of learning diaries and reflective journals. It encourages learners to take a proactive role in their own improvement, fostering creativity and promoting informed discussions about the learning process. Reflecting on the personal experience with English language learning in a rural village in Nepal where rote memorization was the prevailing teaching method, this traditional approach hindered a deeper understanding of the language, prompting the author to recognize the need for more effective pedagogy. In this study, the author delved into the cultural contextualization of English language learning, taking into account learners' backgrounds. The study’s findings highlighted the importance of equity, inclusion, mutuality, and social justice in the classroom, emphasizing the significance of integrating students' lived experiences into the pedagogical approach. This, in turn, can encourage students to engage in profound and collaborative learning practices within the realm of English language education. Upon successfully implementing the research findings, including the eight key conditions of transformative learning, in multiple classrooms, the author collaborated with international educationists and government stakeholders in Nepal. The purpose was to disseminate the research findings, conduct teacher training workshops, and systematically enhance Nepali students’ English language learning. These methods have already demonstrated a significant improvement in student engagement within the same school where the author once learned English as a child. This study aims to explore teachers’ decision-making process regarding the transition from traditional teaching methods to interactive ones, which have gained national recognition within the ESL/EFL teaching community in Nepal. By sharing these experiences, it is expected that other teachers will also contemplate adopting transformative learning pedagogy in their own classrooms.

Keywords: reflection, student engagement, pedagogy, transformative learning

Procedia PDF Downloads 79
8297 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods

Authors: Issa Qabaja, Fadi Thabtah

Abstract:

Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.

Keywords: data mining, email classification, phishing, online security

Procedia PDF Downloads 430
8296 Developing Leadership and Teamwork Skills of Pre-Service Teachers through Learning Camp

Authors: Sirimanee Banjong

Abstract:

This study aimed to 1) develop pre-service teachers’ leadership skills through camp-based learning, and 2) develop pre-service teachers’ teamwork skills through camp-based learning. An applied research methodology was used. The target group was derived from a purposive selection. It involved 32 fourth-year students in Early Childhood Education Program enrolling in a course entitled Seminar in Early Childhood Education provided during the second semester of the academic year 2013. The treatment was camp-based learning activities which applied a PDCA process including four stages: 1) plan, 2) do, 3) check, and 4) act. Research instruments were a learning camp program, a camp-based learning management plan, a 5-level assessment form for leadership skills and a 5-level assessment form for assessing teamwork skills. Data were analyzed using descriptive statistics. Results were: 1) pre-service teachers’ leadership skills yielded the before treatment average score at ¯("x" )=3.4, S.D.= 0.62 and the after-treatment average score at ¯("x" ) 4.29, S.D.=0.66 pre-service teachers’ teamwork skills yielded the before-treatment average score at ¯("x" )=3.31, S.D.= 0.60 and the after-treatment average score at ¯("x" )=4.42, S.D.= 0.66. Both differences were statistically significant at the .05 level. Thus, the pre-service teachers’ leadership and teamwork skills were significantly improved through the camp-based learning approach.

Keywords: learning camp, leadership skills, teamwork skills, pre-service teachers

Procedia PDF Downloads 359
8295 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 124
8294 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action

Authors: Elisabeth Unterfrauner, Christian Voigt

Abstract:

Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.

Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement

Procedia PDF Downloads 129
8293 Adaptive Reuse of Lost Urban Space

Authors: Rana Sameeh

Abstract:

The city is the greatest symbol of human civilization and has been built for safety and comfort. However, uncontrolled urban growth caused some anonymous and unsightly images of the cities such as unused or abandoned spaces. When social interaction is missed in a public space it means the public space is lost since public spaces reflect the social life and interaction of people. Accordingly; this space became one of the most meaningless parts of the cities and has broken the continuity of the urban fabric. Lost urban spaces are the leftover unstructured landscape within the urban fabric. They are generally the unrecognized urban areas that are in need of redesign, since they have a great value that can add to their surrounding urban context. The research significance lies within the importance of urban open spaces, their value and their impact on the urban fabric. The research also addresses the reuse and reclamation of lost urban spaces in order to increase the percentage of green areas along the urban fabric, provide urban open spaces, develop a sustainable approach towards urban landscape and enhance the quality of the public open space and user experience. In addition, the reuse of lost space will give it the identity and function it lacks while also providing places for presence, spending time and observing. Creating continuity in a broken urban fabric represents an exploratory process in the relationship between infrastructure and the urban fabric and seeks to establish an architectural solution to leftover space within the city. In doing so, the research establishes a framework (criteria) for adaptive reuse of lost urban space throughout inductive and deductive methodology, analytical methodology; by analyzing some relevant examples and similar cases of lost spaces and finally through field methodology; by applying the achieved criteria on a case study in Alexandria and carrying on SWOT analysis and evaluation of the potentials of this case study.

Keywords: adaptive reuse, lost urban space, quality of public open space, urban fabric

Procedia PDF Downloads 642
8292 Study of Education Learning Techniques and Game Genres

Authors: Khadija Al Farei, Prakash Kumar, Vikas Rao Naidu

Abstract:

Games are being developed with different genres for different age groups, for many decades. In many places, educational games are playing a vital role for active classroom environment and better learning among students. Currently, the educational games have assumed an important place in children and teenagers lives. The role of educational games is important for improving the learning capability among the students especially of this generation, who really live among electronic gadgets. Hence, it is now important to make sure that in our educational system, we are updated with all such advancement in technologies. Already much research is going on in this area of edutainment. This research paper will review around ten different research papers to find the relation between the education learning techniques and games. The result of this review provides guidelines for enhanced teaching and learning solutions in education. In-house developed educational games proved to be more effective, compared to the one which is readily available in the market.

Keywords: education, education game, educational technology, edutainment, game genres, gaming in education

Procedia PDF Downloads 413
8291 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 211
8290 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 517
8289 Adult Language Learning in the Institute of Technology Sector in the Republic of Ireland

Authors: Una Carthy

Abstract:

A recent study of third level institutions in Ireland reveals that both age and aptitude can be overcome by teaching methodologies to motivate second language learners. This PhD investigation gathered quantitative and qualitative data from 14 Institutes of Technology over a three years period from 2011 to 2014. The fundamental research question was to establish the impact of institutional language policy on attitudes towards language learning. However, other related issues around second language acquisition arose in the course of the investigation. Data were collected from both lectures and students, allowing interesting points of comparison to emerge from both datasets. Negative perceptions among lecturers regarding language provision were often associated with the view that language learning belongs to primary and secondary level and has no place in third level education. This perception was offset by substantial data showing positive attitudes towards adult language learning. Lenneberg’s Critical Age Theory postulated that the optimum age for learning a second language is before puberty. More recently, scholars have challenged this theory in their studies, revealing that mature learners can and do succeed at learning languages. With regard to aptitude, a preoccupation among lecturers regarding poor literacy skills among students emerged and was often associated with resistance to second language acquisition. This was offset by a preponderance of qualitative data from students highlighting the crucial role which teaching approaches play in the learning process. Interestingly, the data collected regarding learning disabilities reveals that, given the appropriate learning environments, individuals can be motivated to acquire second languages, and indeed succeed at learning them. These findings are in keeping with other recent studies regarding attitudes towards second language learning among students with learning disabilities. Both sets of findings reinforce the case for language policies in the Institute of Technology (IoTs). Supportive and positive learning environments can be created in third level institutions to motivate adult learners, thereby overcoming perceived obstacles relating to age and aptitude.

Keywords: age, aptitude, second language acquisition, teaching methodologies

Procedia PDF Downloads 122
8288 Introducing Transport Engineering through Blended Learning Initiatives

Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi

Abstract:

Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.

Keywords: blended learning, highway design, teaching, transport planning

Procedia PDF Downloads 148
8287 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites

Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic

Abstract:

Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.

Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)

Procedia PDF Downloads 250